- Timestamp:
- Aug 20, 2014, 1:04:08 PM (11 years ago)
- Children:
- 0710bf
- Parents:
- 6aa6b7
- git-author:
- Frederik Heber <heber@…> (06/12/14 07:23:12)
- git-committer:
- Frederik Heber <heber@…> (08/20/14 13:04:08)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/Fragmentation/Exporters/SphericalPointDistribution.cpp
r6aa6b7 r3da643 53 53 54 54 #include "LinearAlgebra/Line.hpp" 55 #include "LinearAlgebra/Plane.hpp" 55 56 #include "LinearAlgebra/RealSpaceMatrix.hpp" 56 57 #include "LinearAlgebra/Vector.hpp" 57 58 58 typedef std::list<unsigned int> IndexList_t; 59 typedef std::vector<unsigned int> IndexArray_t;60 typedef std::vector<Vector> VectorArray_t; 59 // static entities 60 const double SphericalPointDistribution::warn_amplitude = 1e-2; 61 61 62 typedef std::vector<double> DistanceArray_t; 62 63 64 inline 63 65 DistanceArray_t calculatePairwiseDistances( 64 66 const std::vector<Vector> &_points, 65 const IndexList_t &_indices67 const SphericalPointDistribution::IndexList_t &_indices 66 68 ) 67 69 { 68 70 DistanceArray_t result; 69 for ( IndexList_t::const_iterator firstiter = _indices.begin();71 for (SphericalPointDistribution::IndexList_t::const_iterator firstiter = _indices.begin(); 70 72 firstiter != _indices.end(); ++firstiter) { 71 for ( IndexList_t::const_iterator seconditer = firstiter;73 for (SphericalPointDistribution::IndexList_t::const_iterator seconditer = firstiter; 72 74 seconditer != _indices.end(); ++seconditer) { 73 75 if (firstiter == seconditer) … … 98 100 * \return pair with L1 and squared L2 error 99 101 */ 100 std::pair<double, double> calculateErrorOfMatching(102 std::pair<double, double> SphericalPointDistribution::calculateErrorOfMatching( 101 103 const std::vector<Vector> &_old, 102 104 const std::vector<Vector> &_new, … … 135 137 } 136 138 137 SphericalPointDistribution::Polygon_t removeMatchingPoints(139 SphericalPointDistribution::Polygon_t SphericalPointDistribution::removeMatchingPoints( 138 140 const VectorArray_t &_points, 139 141 const IndexList_t &_matchingindices … … 160 162 } 161 163 162 struct MatchingControlStructure {163 bool foundflag;164 double bestL2;165 IndexList_t bestmatching;166 VectorArray_t oldpoints;167 VectorArray_t newpoints;168 };169 170 164 /** Recursive function to go through all possible matchings. 171 165 * … … 175 169 * \param _matchingsize 176 170 */ 177 void recurseMatchings(171 void SphericalPointDistribution::recurseMatchings( 178 172 MatchingControlStructure &_MCS, 179 173 IndexList_t &_matching, … … 224 218 } 225 219 226 /** Rotates a given polygon around x, y, and z axis by the given angles.227 * 228 * \param _polygon polygon whose points to rotate229 * \ param _q quaternion specifying the rotation of the coordinate system220 /** Decides by an orthonormal third vector whether the sign of the rotation 221 * angle should be negative or positive. 222 * 223 * \return -1 or 1 230 224 */ 231 SphericalPointDistribution::Polygon_t rotatePolygon( 225 inline 226 double determineSignOfRotation( 227 const Vector &_oldPosition, 228 const Vector &_newPosition, 229 const Vector &_RotationAxis 230 ) 231 { 232 Vector dreiBein(_oldPosition); 233 dreiBein.VectorProduct(_RotationAxis); 234 dreiBein.Normalize(); 235 const double sign = 236 (dreiBein.ScalarProduct(_newPosition) < 0.) ? -1. : +1.; 237 LOG(6, "DEBUG: oldCenter on plane is " << _oldPosition 238 << ", newCenter in plane is " << _newPosition 239 << ", and dreiBein is " << dreiBein); 240 return sign; 241 } 242 243 /** Finds combinatorially the best matching between points in \a _polygon 244 * and \a _newpolygon. 245 * 246 * We find the matching with the smallest L2 error, where we break when we stumble 247 * upon a matching with zero error. 248 * 249 * \sa recurseMatchings() for going through all matchings 250 * 251 * \param _polygon here, we have indices 0,1,2,... 252 * \param _newpolygon and here we need to find the correct indices 253 * \return list of indices: first in \a _polygon goes to first index for \a _newpolygon 254 */ 255 SphericalPointDistribution::IndexList_t SphericalPointDistribution::findBestMatching( 232 256 const SphericalPointDistribution::Polygon_t &_polygon, 233 const boost::math::quaternion<double> &_q) 234 { 235 SphericalPointDistribution::Polygon_t rotated_polygon = _polygon; 236 boost::math::quaternion<double> q_inverse = 237 boost::math::conj(_q)/(boost::math::norm(_q)); 238 239 // apply rotation angles 240 for (SphericalPointDistribution::Polygon_t::iterator iter = rotated_polygon.begin(); 241 iter != rotated_polygon.end(); ++iter) { 242 Vector ¤t = *iter; 243 boost::math::quaternion<double> p(0, current[0], current[1], current[2]); 244 p = _q * p * q_inverse; 245 LOG(5, "DEBUG: Rotated point is " << p); 246 // i have no idea why but first component comes up with wrong sign 247 current[0] = -p.R_component_2(); 248 current[1] = p.R_component_3(); 249 current[2] = p.R_component_4(); 250 } 251 252 return rotated_polygon; 257 const SphericalPointDistribution::Polygon_t &_newpolygon 258 ) 259 { 260 MatchingControlStructure MCS; 261 MCS.foundflag = false; 262 MCS.bestL2 = std::numeric_limits<double>::max(); 263 MCS.oldpoints.insert(MCS.oldpoints.begin(), _polygon.begin(),_polygon.end() ); 264 MCS.newpoints.insert(MCS.newpoints.begin(), _newpolygon.begin(),_newpolygon.end() ); 265 266 // search for bestmatching combinatorially 267 { 268 // translate polygon into vector to enable index addressing 269 IndexList_t indices(_newpolygon.size()); 270 std::generate(indices.begin(), indices.end(), UniqueNumber); 271 IndexList_t matching; 272 273 // walk through all matchings 274 const unsigned int matchingsize = _polygon.size(); 275 ASSERT( matchingsize <= indices.size(), 276 "SphericalPointDistribution::matchSphericalPointDistributions() - not enough new points to choose for matching to old ones."); 277 recurseMatchings(MCS, matching, indices, matchingsize); 278 } 279 return MCS.bestmatching; 280 } 281 282 inline 283 Vector calculateCenter( 284 const SphericalPointDistribution::VectorArray_t &_positions, 285 const SphericalPointDistribution::IndexList_t &_indices) 286 { 287 Vector Center; 288 Center.Zero(); 289 for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); 290 iter != _indices.end(); ++iter) 291 Center += _positions[*iter]; 292 if (!_indices.empty()) 293 Center *= 1./(double)_indices.size(); 294 295 return Center; 296 } 297 298 inline 299 void calculateOldAndNewCenters( 300 Vector &_oldCenter, 301 Vector &_newCenter, 302 const SphericalPointDistribution::VectorArray_t &_referencepositions, 303 const SphericalPointDistribution::VectorArray_t &_currentpositions, 304 const SphericalPointDistribution::IndexList_t &_bestmatching) 305 { 306 const size_t NumberIds = std::min(_bestmatching.size(), (size_t)3); 307 SphericalPointDistribution::IndexList_t continuousIds(NumberIds, -1); 308 std::generate(continuousIds.begin(), continuousIds.end(), UniqueNumber); 309 _oldCenter = calculateCenter(_referencepositions, continuousIds); 310 // C++11 defines a copy_n function ... 311 SphericalPointDistribution::IndexList_t::const_iterator enditer = _bestmatching.begin(); 312 std::advance(enditer, NumberIds); 313 SphericalPointDistribution::IndexList_t firstbestmatchingIds(NumberIds, -1); 314 std::copy(_bestmatching.begin(), enditer, firstbestmatchingIds.begin()); 315 _newCenter = calculateCenter( _currentpositions, firstbestmatchingIds); 316 } 317 318 SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPlaneAligningRotation( 319 const VectorArray_t &_referencepositions, 320 const VectorArray_t &_currentpositions, 321 const IndexList_t &_bestmatching 322 ) 323 { 324 bool dontcheck = false; 325 // initialize to no rotation 326 Rotation_t Rotation; 327 Rotation.first.Zero(); 328 Rotation.first[0] = 1.; 329 Rotation.second = 0.; 330 331 // calculate center of triangle/line/point consisting of first points of matching 332 Vector oldCenter; 333 Vector newCenter; 334 calculateOldAndNewCenters( 335 oldCenter, newCenter, 336 _referencepositions, _currentpositions, _bestmatching); 337 338 if ((!oldCenter.IsZero()) && (!newCenter.IsZero())) { 339 LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter); 340 oldCenter.Normalize(); 341 newCenter.Normalize(); 342 if (!oldCenter.IsEqualTo(newCenter)) { 343 // calculate rotation axis and angle 344 Rotation.first = oldCenter; 345 Rotation.first.VectorProduct(newCenter); 346 Rotation.second = oldCenter.Angle(newCenter); // /(M_PI/2.); 347 } else { 348 // no rotation required anymore 349 } 350 } else { 351 LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter); 352 if ((oldCenter.IsZero()) && (newCenter.IsZero())) { 353 // either oldCenter or newCenter (or both) is directly at origin 354 if (_bestmatching.size() == 2) { 355 // line case 356 Vector oldPosition = _currentpositions[*_bestmatching.begin()]; 357 Vector newPosition = _referencepositions[0]; 358 // check whether we need to rotate at all 359 if (!oldPosition.IsEqualTo(newPosition)) { 360 Rotation.first = oldPosition; 361 Rotation.first.VectorProduct(newPosition); 362 // orientation will fix the sign here eventually 363 Rotation.second = oldPosition.Angle(newPosition); 364 } else { 365 // no rotation required anymore 366 } 367 } else { 368 // triangle case 369 // both triangles/planes have same center, hence get axis by 370 // VectorProduct of Normals 371 Plane newplane(_referencepositions[0], _referencepositions[1], _referencepositions[2]); 372 VectorArray_t vectors; 373 for (IndexList_t::const_iterator iter = _bestmatching.begin(); 374 iter != _bestmatching.end(); ++iter) 375 vectors.push_back(_currentpositions[*iter]); 376 Plane oldplane(vectors[0], vectors[1], vectors[2]); 377 Vector oldPosition = oldplane.getNormal(); 378 Vector newPosition = newplane.getNormal(); 379 // check whether we need to rotate at all 380 if (!oldPosition.IsEqualTo(newPosition)) { 381 Rotation.first = oldPosition; 382 Rotation.first.VectorProduct(newPosition); 383 Rotation.first.Normalize(); 384 385 // construct reference vector to determine direction of rotation 386 const double sign = determineSignOfRotation(oldPosition, newPosition, Rotation.first); 387 Rotation.second = sign * oldPosition.Angle(newPosition); 388 LOG(5, "DEBUG: Rotating plane normals by " << Rotation.second 389 << " around axis " << Rotation.first); 390 } else { 391 // else do nothing 392 } 393 } 394 } else { 395 // TODO: we can't do anything here, but this case needs to be dealt with when 396 // we have no ideal geometries anymore 397 if ((oldCenter-newCenter).Norm() > warn_amplitude) 398 ELOG(2, "oldCenter is " << oldCenter << ", yet newCenter is " << newCenter); 399 // else they are considered close enough 400 dontcheck = true; 401 } 402 } 403 404 #ifndef NDEBUG 405 // check: rotation brings newCenter onto oldCenter position 406 if (!dontcheck) { 407 Line Axis(zeroVec, Rotation.first); 408 Vector test = Axis.rotateVector(newCenter, Rotation.second); 409 LOG(4, "CHECK: rotated newCenter is " << test 410 << ", oldCenter is " << oldCenter); 411 ASSERT( (test - oldCenter).NormSquared() < std::numeric_limits<double>::epsilon()*1e4, 412 "matchSphericalPointDistributions() - rotation does not work as expected by " 413 +toString((test - oldCenter).NormSquared())+"."); 414 } 415 #endif 416 417 return Rotation; 418 } 419 420 SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPointAligningRotation( 421 const VectorArray_t &remainingold, 422 const VectorArray_t &remainingnew, 423 const IndexList_t &_bestmatching) 424 { 425 // initialize rotation to zero 426 Rotation_t Rotation; 427 Rotation.first.Zero(); 428 Rotation.first[0] = 1.; 429 Rotation.second = 0.; 430 431 // recalculate center 432 Vector oldCenter; 433 Vector newCenter; 434 calculateOldAndNewCenters( 435 oldCenter, newCenter, 436 remainingold, remainingnew, _bestmatching); 437 438 Vector oldPosition = remainingnew[*_bestmatching.begin()]; 439 Vector newPosition = remainingold[0]; 440 LOG(6, "DEBUG: oldPosition is " << oldPosition << " and newPosition is " << newPosition); 441 if (!oldPosition.IsEqualTo(newPosition)) { 442 if ((!oldCenter.IsZero()) && (!newCenter.IsZero())) { 443 oldCenter.Normalize(); // note weighted sum of normalized weight is not normalized 444 Rotation.first = oldCenter; 445 LOG(6, "DEBUG: Picking normalized oldCenter as Rotation.first " << oldCenter); 446 oldPosition.ProjectOntoPlane(Rotation.first); 447 newPosition.ProjectOntoPlane(Rotation.first); 448 LOG(6, "DEBUG: Positions after projection are " << oldPosition << " and " << newPosition); 449 } else { 450 if (_bestmatching.size() == 2) { 451 // line situation 452 try { 453 Plane oldplane(oldPosition, oldCenter, newPosition); 454 Rotation.first = oldplane.getNormal(); 455 LOG(6, "DEBUG: Plane is " << oldplane << " and normal is " << Rotation.first); 456 } catch (LinearDependenceException &e) { 457 LOG(6, "DEBUG: Vectors defining plane are linearly dependent."); 458 // oldPosition and newPosition are on a line, just flip when not equal 459 if (!oldPosition.IsEqualTo(newPosition)) { 460 Rotation.first.Zero(); 461 Rotation.first.GetOneNormalVector(oldPosition); 462 LOG(6, "DEBUG: For flipping we use Rotation.first " << Rotation.first); 463 assert( Rotation.first.ScalarProduct(oldPosition) < std::numeric_limits<double>::epsilon()*1e4); 464 // Rotation.second = M_PI; 465 } else { 466 LOG(6, "DEBUG: oldPosition and newPosition are equivalent."); 467 } 468 } 469 } else { 470 // triangle situation 471 Plane oldplane(remainingold[0], remainingold[1], remainingold[2]); 472 Rotation.first = oldplane.getNormal(); 473 LOG(6, "DEBUG: oldPlane is " << oldplane << " and normal is " << Rotation.first); 474 oldPosition.ProjectOntoPlane(Rotation.first); 475 LOG(6, "DEBUG: Positions after projection are " << oldPosition << " and " << newPosition); 476 } 477 } 478 // construct reference vector to determine direction of rotation 479 const double sign = determineSignOfRotation(oldPosition, newPosition, Rotation.first); 480 Rotation.second = sign * oldPosition.Angle(newPosition); 481 } else { 482 LOG(6, "DEBUG: oldPosition and newPosition are equivalent, hence no orientating rotation."); 483 } 484 485 return Rotation; 253 486 } 254 487 … … 266 499 << " with new polygon " << _newpolygon); 267 500 501 if (_polygon.size() == _newpolygon.size()) { 502 // same number of points desired as are present? Do nothing 503 LOG(2, "INFO: There are no vacant points to return."); 504 return remainingpoints; 505 } 506 268 507 if (_polygon.size() > 0) { 269 MatchingControlStructure MCS; 270 MCS.foundflag = false; 271 MCS.bestL2 = std::numeric_limits<double>::max(); 272 MCS.oldpoints.insert(MCS.oldpoints.begin(), _polygon.begin(),_polygon.end() ); 273 MCS.newpoints.insert(MCS.newpoints.begin(), _newpolygon.begin(),_newpolygon.end() ); 274 275 // search for bestmatching combinatorially 508 IndexList_t bestmatching = findBestMatching(_polygon, _newpolygon); 509 LOG(2, "INFO: Best matching is " << bestmatching); 510 511 // determine rotation angles to align the two point distributions with 512 // respect to bestmatching: 513 // we use the center between the three first matching points 514 /// the first rotation brings these two centers to coincide 515 VectorArray_t rotated_newpolygon = remainingnew; 276 516 { 277 // translate polygon into vector to enable index addressing 278 IndexList_t indices(_newpolygon.size()); 279 std::generate(indices.begin(), indices.end(), UniqueNumber); 280 IndexList_t matching; 281 282 // walk through all matchings 283 const unsigned int matchingsize = _polygon.size(); 284 ASSERT( matchingsize <= indices.size(), 285 "SphericalPointDistribution::matchSphericalPointDistributions() - not enough new points to choose for matching to old ones."); 286 recurseMatchings(MCS, matching, indices, matchingsize); 287 } 288 LOG(2, "INFO: Best matching is " << MCS.bestmatching); 289 290 // determine rotation angles to align the two point distributions with 291 // respect to bestmatching 292 VectorArray_t rotated_newpolygon = remainingnew; 293 Vector oldCenter; 294 { 295 // calculate center of triangle/line/point consisting of first points of matching 296 Vector newCenter; 297 IndexList_t::const_iterator iter = MCS.bestmatching.begin(); 298 unsigned int i = 0; 299 for (; (i<3) && (i<MCS.bestmatching.size()); ++i, ++iter) { 300 oldCenter += remainingold[i]; 301 newCenter += remainingnew[*iter]; 302 } 303 oldCenter *= 1./(double)i; 304 newCenter *= 1./(double)i; 305 LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter); 306 307 if ((oldCenter - newCenter).NormSquared() > std::numeric_limits<double>::epsilon()*1e4) { 308 // setup quaternion 309 Vector RotationAxis = oldCenter; 310 RotationAxis.VectorProduct(newCenter); 311 Line Axis(zeroVec, RotationAxis); 312 RotationAxis.Normalize(); 313 const double RotationAngle = oldCenter.Angle(newCenter); // /(M_PI/2.); 314 LOG(5, "DEBUG: Rotate coordinate system by " << RotationAngle 315 << " around axis " << RotationAxis); 316 317 // apply rotation angles 318 for (VectorArray_t::iterator iter = rotated_newpolygon.begin(); 319 iter != rotated_newpolygon.end(); ++iter) { 320 Vector ¤t = *iter; 321 LOG(5, "DEBUG: Original point is " << current); 322 current = Axis.rotateVector(current, RotationAngle); 323 LOG(5, "DEBUG: Rotated point is " << current); 517 Rotation_t Rotation = findPlaneAligningRotation( 518 remainingold, 519 remainingnew, 520 bestmatching); 521 LOG(5, "DEBUG: Rotating coordinate system by " << Rotation.second 522 << " around axis " << Rotation.first); 523 Line Axis(zeroVec, Rotation.first); 524 525 // apply rotation angle to bring newCenter to oldCenter 526 for (VectorArray_t::iterator iter = rotated_newpolygon.begin(); 527 iter != rotated_newpolygon.end(); ++iter) { 528 Vector ¤t = *iter; 529 LOG(6, "DEBUG: Original point is " << current); 530 current = Axis.rotateVector(current, Rotation.second); 531 LOG(6, "DEBUG: Rotated point is " << current); 532 } 533 534 #ifndef NDEBUG 535 // check: rotated "newCenter" should now equal oldCenter 536 { 537 Vector oldCenter; 538 Vector rotatednewCenter; 539 calculateOldAndNewCenters( 540 oldCenter, rotatednewCenter, 541 remainingold, rotated_newpolygon, bestmatching); 542 // NOTE: Center must not necessarily lie on the sphere with norm 1, hence, we 543 // have to normalize it just as before, as oldCenter and newCenter lengths may differ. 544 if ((!oldCenter.IsZero()) && (!rotatednewCenter.IsZero())) { 545 oldCenter.Normalize(); 546 rotatednewCenter.Normalize(); 547 LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter 548 << ", oldCenter is " << oldCenter); 549 ASSERT( (rotatednewCenter - oldCenter).NormSquared() < std::numeric_limits<double>::epsilon()*1e4, 550 "matchSphericalPointDistributions() - rotation does not work as expected by " 551 +toString((rotatednewCenter - oldCenter).NormSquared())+"."); 324 552 } 325 553 } 326 } 327 // rotate triangle/line/point around itself to match orientation 328 if (MCS.bestmatching.size() > 1) { 329 if (oldCenter.NormSquared() > std::numeric_limits<double>::epsilon()*1e4) { 330 // construct RotationAxis and two points on its plane, defining the angle 331 const Line RotationAxis(zeroVec, oldCenter); 332 Vector oldPosition(rotated_newpolygon[*MCS.bestmatching.begin()]); 333 oldPosition.ProjectOntoPlane(RotationAxis.getDirection()); 334 Vector newPosition(remainingold[*MCS.bestmatching.begin()]); 335 newPosition.ProjectOntoPlane(RotationAxis.getDirection()); 336 337 // construct reference vector to determine direction of rotation 338 Vector dreiBein(oldPosition); 339 dreiBein.VectorProduct(oldCenter); 340 dreiBein.Normalize(); 341 const double sign = 342 (dreiBein.ScalarProduct(newPosition) < 0.) ? -1. : +1.; 343 LOG(6, "DEBUG: oldCenter on plane is " << oldPosition 344 << ", newCenter in plane is " << newPosition 345 << ", and dreiBein is " << dreiBein); 346 const double RotationAngle = sign * oldPosition.Angle(newPosition); 347 LOG(5, "DEBUG: Rotating around self is " << RotationAngle 348 << " around axis " << RotationAxis); 554 #endif 555 } 556 /// the second (orientation) rotation aligns the planes such that the 557 /// points themselves coincide 558 if (bestmatching.size() > 1) { 559 Rotation_t Rotation = findPointAligningRotation( 560 remainingold, 561 rotated_newpolygon, 562 bestmatching); 563 564 // construct RotationAxis and two points on its plane, defining the angle 565 Rotation.first.Normalize(); 566 const Line RotationAxis(zeroVec, Rotation.first); 567 568 LOG(5, "DEBUG: Rotating around self is " << Rotation.second 569 << " around axis " << RotationAxis); 349 570 350 571 #ifndef NDEBUG 351 // check: first bestmatching in rotated_newpolygon and remainingnew352 // should now equal353 {354 const IndexList_t::const_iterator iter = MCS.bestmatching.begin();355 Vector rotatednew = RotationAxis.rotateVector(356 rotated_newpolygon[*iter],357 RotationAngle);358 LOG(4, "CHECK: rotated first new bestmatching is " << rotatednew359 << " while old was " << remainingold[*iter]);360 ASSERT( (rotatednew - remainingold[*iter]).Norm()361 < std::numeric_limits<double>::epsilon()*1e4,362 "matchSphericalPointDistributions() - orientation rotation does not work as expected.");363 }572 // check: first bestmatching in rotated_newpolygon and remainingnew 573 // should now equal 574 { 575 const IndexList_t::const_iterator iter = bestmatching.begin(); 576 Vector rotatednew = RotationAxis.rotateVector( 577 rotated_newpolygon[*iter], 578 Rotation.second); 579 LOG(4, "CHECK: rotated first new bestmatching is " << rotatednew 580 << " while old was " << remainingold[0]); 581 ASSERT( (rotatednew - remainingold[0]).Norm() < warn_amplitude, 582 "matchSphericalPointDistributions() - orientation rotation ends up off by more than " 583 +toString(warn_amplitude)+"."); 584 } 364 585 #endif 365 586 366 for (VectorArray_t::iterator iter = rotated_newpolygon.begin(); 367 iter != rotated_newpolygon.end(); ++iter) { 368 Vector ¤t = *iter; 369 LOG(6, "DEBUG: Original point is " << current); 370 current = RotationAxis.rotateVector(current, RotationAngle); 371 LOG(6, "DEBUG: Rotated point is " << current); 372 } 587 for (VectorArray_t::iterator iter = rotated_newpolygon.begin(); 588 iter != rotated_newpolygon.end(); ++iter) { 589 Vector ¤t = *iter; 590 LOG(6, "DEBUG: Original point is " << current); 591 current = RotationAxis.rotateVector(current, Rotation.second); 592 LOG(6, "DEBUG: Rotated point is " << current); 373 593 } 374 594 } … … 376 596 // remove all points in matching and return remaining ones 377 597 SphericalPointDistribution::Polygon_t remainingpoints = 378 removeMatchingPoints(rotated_newpolygon, MCS.bestmatching);598 removeMatchingPoints(rotated_newpolygon, bestmatching); 379 599 LOG(2, "INFO: Remaining points are " << remainingpoints); 380 600 return remainingpoints;
Note:
See TracChangeset
for help on using the changeset viewer.
