- Timestamp:
- Sep 12, 2016, 11:48:37 PM (9 years ago)
- Branches:
- Action_Thermostats, Add_AtomRandomPerturbation, Add_FitFragmentPartialChargesAction, Add_RotateAroundBondAction, Add_SelectAtomByNameAction, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_StructOpt_integration_tests, Automaking_mpqc_open, AutomationFragmentation_failures, Candidate_v1.5.4, Candidate_v1.6.0, Candidate_v1.6.1, ChangeBugEmailaddress, ChangingTestPorts, ChemicalSpaceEvaluator, Combining_Subpackages, Debian_Package_split, Debian_package_split_molecuildergui_only, Disabling_MemDebug, Docu_Python_wait, EmpiricalPotential_contain_HomologyGraph, EmpiricalPotential_contain_HomologyGraph_documentation, Enable_parallel_make_install, Enhance_userguide, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, FitPartialCharges_GlobalError, Fix_ChargeSampling_PBC, Fix_ChronosMutex, Fix_FitPartialCharges, Fix_FitPotential_needs_atomicnumbers, Fix_ForceAnnealing, Fix_IndependentFragmentGrids, Fix_ParseParticles, Fix_ParseParticles_split_forward_backward_Actions, Fix_StatusMsg, Fix_StepWorldTime_single_argument, Fix_Verbose_Codepatterns, ForceAnnealing_goodresults, ForceAnnealing_oldresults, ForceAnnealing_tocheck, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, GeometryObjects, Gui_displays_atomic_force_velocity, IndependentFragmentGrids, IndependentFragmentGrids_IndividualZeroInstances, IndependentFragmentGrids_IntegrationTest, IndependentFragmentGrids_Sole_NN_Calculation, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, JobMarket_unresolvable_hostname_fix, ODR_violation_mpqc_open, PartialCharges_OrthogonalSummation, PythonUI_with_named_parameters, QtGui_reactivate_TimeChanged_changes, Recreated_GuiChecks, RotateToPrincipalAxisSystem_UndoRedo, SaturateAtoms_findBestMatching, StoppableMakroAction, Subpackage_CodePatterns, Subpackage_JobMarket, Subpackage_LinearAlgebra, Subpackage_levmar, Subpackage_mpqc_open, Subpackage_vmg, ThirdParty_MPQC_rebuilt_buildsystem, TrajectoryDependenant_MaxOrder, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps, Ubuntu_1604_changes, stable
- Children:
- 6393ff
- Parents:
- 0983e6
- git-author:
- Frederik Heber <heber@…> (07/09/14 22:08:37)
- git-committer:
- Frederik Heber <heber@…> (09/12/16 23:48:37)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/Fragmentation/Exporters/SphericalPointDistribution.cpp
r0983e6 r3678eb 43 43 44 44 #include <algorithm> 45 #include <boost/ math/quaternion.hpp>45 #include <boost/assign.hpp> 46 46 #include <cmath> 47 47 #include <functional> … … 58 58 #include "LinearAlgebra/Vector.hpp" 59 59 60 using namespace boost::assign; 61 60 62 // static entities 61 63 const double SphericalPointDistribution::SQRT_3(sqrt(3.0)); … … 84 86 */ 85 87 inline 86 Vector calculate Center(88 Vector calculateGeographicMidpoint( 87 89 const SphericalPointDistribution::VectorArray_t &_positions, 88 90 const SphericalPointDistribution::IndexList_t &_indices) … … 97 99 98 100 return Center; 101 } 102 103 inline 104 double calculateMinimumDistance( 105 const Vector &_center, 106 const SphericalPointDistribution::VectorArray_t &_points, 107 const SphericalPointDistribution::IndexList_t & _indices) 108 { 109 double MinimumDistance = 0.; 110 for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); 111 iter != _indices.end(); ++iter) { 112 const double angle = _center.Angle(_points[*iter]); 113 MinimumDistance += angle*angle; 114 } 115 return sqrt(MinimumDistance); 116 } 117 118 /** Calculates the center of minimum distance for a given set of points \a _points. 119 * 120 * According to http://www.geomidpoint.com/calculation.html this goes a follows: 121 * -# Let CurrentPoint be the geographic midpoint found in Method A. this is used as the starting point for the search. 122 * -# Let MinimumDistance be the sum total of all distances from the current point to all locations in 'Your Places'. 123 * -# Find the total distance between each location in 'Your Places' and all other locations in 'Your Places'. If any one of these locations has a new smallest distance then that location becomes the new CurrentPoint and MinimumDistance. 124 * -# Let TestDistance be PI/2 radians (6225 miles or 10018 km). 125 * -# Find the total distance between each of 8 test points and all locations in 'Your Places'. The test points are arranged in a circular pattern around the CurrentPoint at a distance of TestDistance to the north, northeast, east, southeast, south, southwest, west and northwest. 126 * -# If any of these 8 points has a new smallest distance then that point becomes the new CurrentPoint and MinimumDistance and go back to step 5 using that point. 127 * -# If none of the 8 test points has a new smallest distance then divide TestDistance by 2 and go back to step 5 using the same point. 128 * -# Repeat steps 5 to 7 until no new smallest distance can be found or until TestDistance is less than 0.00000002 radians. 129 * 130 * \param _points set of points 131 * \return Center of minimum distance for all these points, is always of length 1 132 */ 133 Vector SphericalPointDistribution::calculateCenterOfMinimumDistance( 134 const SphericalPointDistribution::VectorArray_t &_positions, 135 const SphericalPointDistribution::IndexList_t &_indices) 136 { 137 ASSERT( _positions.size() >= _indices.size(), 138 "calculateCenterOfMinimumDistance() - less positions than indices given."); 139 Vector center(1.,0.,0.); 140 141 /// first treat some special cases 142 // no positions given: return x axis vector (NOT zero!) 143 { 144 if (_indices.empty()) 145 return center; 146 // one position given: return it directly 147 if (_positions.size() == (size_t)1) 148 return _positions[0]; 149 // two positions on a line given: return closest point to (1.,0.,0.) 150 if (fabs(_positions[0].ScalarProduct(_positions[1]) + 1.) 151 < std::numeric_limits<double>::epsilon()*1e4) { 152 Vector candidate; 153 if (_positions[0].ScalarProduct(center) > _positions[1].ScalarProduct(center)) 154 candidate = _positions[0]; 155 else 156 candidate = _positions[1]; 157 // non-uniqueness: all positions on great circle, normal to given line are valid 158 // so, we just pick one because returning a unique point is topmost priority 159 Vector normal; 160 normal.GetOneNormalVector(candidate); 161 Vector othernormal = candidate; 162 othernormal.VectorProduct(normal); 163 // now both normal and othernormal describe the plane containing the great circle 164 Plane greatcircle(normal, zeroVec, othernormal); 165 // check which axis is contained and pick the one not 166 if (greatcircle.isContained(center)) { 167 center = Vector(0.,1.,0.); 168 if (greatcircle.isContained(center)) 169 center = Vector(0.,0.,1.); 170 // now we are done cause a plane cannot contain all three axis vectors 171 } 172 center = greatcircle.getClosestPoint(candidate); 173 // assure length of 1 174 center.Normalize(); 175 } 176 } 177 178 // start with geographic midpoint 179 center = calculateGeographicMidpoint(_positions, _indices); 180 if (!center.IsZero()) { 181 center.Normalize(); 182 LOG(4, "DEBUG: Starting with geographical midpoint of " << _positions << " under indices " 183 << _indices << " is " << center); 184 } else { 185 // any point is good actually 186 center = _positions[0]; 187 LOG(4, "DEBUG: Starting with first position " << center); 188 } 189 190 // calculate initial MinimumDistance 191 double MinimumDistance = calculateMinimumDistance(center, _positions, _indices); 192 LOG(5, "DEBUG: MinimumDistance to this center is " << MinimumDistance); 193 194 // check all present points whether they may serve as a better center 195 for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); 196 iter != _indices.end(); ++iter) { 197 const Vector ¢erCandidate = _positions[*iter]; 198 const double candidateDistance = calculateMinimumDistance(centerCandidate, _positions, _indices); 199 if (candidateDistance < MinimumDistance) { 200 MinimumDistance = candidateDistance; 201 center = centerCandidate; 202 LOG(5, "DEBUG: new MinimumDistance to current test point " << MinimumDistance 203 << " is " << center); 204 } 205 } 206 LOG(5, "DEBUG: new MinimumDistance to center " << center << " is " << MinimumDistance); 207 208 // now iterate over TestDistance 209 double TestDistance = Vector(1.,0.,0.).Angle(Vector(0.,1.,0.)); 210 // LOG(6, "DEBUG: initial TestDistance is " << TestDistance); 211 212 const double threshold = sqrt(std::numeric_limits<double>::epsilon()); 213 // check each of eight test points at N, NE, E, SE, S, SW, W, NW 214 typedef std::vector<double> angles_t; 215 angles_t testangles; 216 testangles += 0./180.*M_PI, 45./180.*M_PI, 90./180.*M_PI, 135./180.*M_PI, 217 180./180.*M_PI, 225./180.*M_PI, 270./180.*M_PI, 315./180.*M_PI; 218 while (TestDistance > threshold) { 219 Vector OneNormal; 220 OneNormal.GetOneNormalVector(center); 221 Line RotationAxis(zeroVec, OneNormal); 222 Vector North = RotationAxis.rotateVector(center,TestDistance); 223 Line CompassRose(zeroVec, center); 224 bool updatedflag = false; 225 for (angles_t::const_iterator angleiter = testangles.begin(); 226 angleiter != testangles.end(); ++angleiter) { 227 Vector centerCandidate = CompassRose.rotateVector(North, *angleiter); 228 // centerCandidate.Normalize(); 229 const double candidateDistance = calculateMinimumDistance(centerCandidate, _positions, _indices); 230 if (candidateDistance < MinimumDistance) { 231 MinimumDistance = candidateDistance; 232 center = centerCandidate; 233 updatedflag = true; 234 LOG(5, "DEBUG: new MinimumDistance to test point at " << *angleiter/M_PI*180. 235 << "° is " << MinimumDistance); 236 } 237 } 238 239 // if no new point, decrease TestDistance 240 if (!updatedflag) { 241 TestDistance *= 0.5; 242 // LOG(6, "DEBUG: TestDistance is now " << TestDistance); 243 } 244 } 245 LOG(4, "DEBUG: Final MinimumDistance to center " << center << " is " << MinimumDistance); 246 247 return center; 248 } 249 250 Vector calculateCenterOfMinimumDistance( 251 const SphericalPointDistribution::PolygonWithIndices &_points) 252 { 253 return SphericalPointDistribution::calculateCenterOfMinimumDistance(_points.polygon, _points.indices); 254 } 255 256 /** Calculate the center of a given set of points in \a _positions but only 257 * for those indicated by \a _indices. 258 * 259 */ 260 inline 261 Vector calculateCenter( 262 const SphericalPointDistribution::VectorArray_t &_positions, 263 const SphericalPointDistribution::IndexList_t &_indices) 264 { 265 // Vector Center; 266 // Center.Zero(); 267 // for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); 268 // iter != _indices.end(); ++iter) 269 // Center += _positions[*iter]; 270 // if (!_indices.empty()) 271 // Center *= 1./(double)_indices.size(); 272 // 273 // return Center; 274 return SphericalPointDistribution::calculateCenterOfMinimumDistance(_positions, _indices); 99 275 } 100 276 … … 749 925 oldCenter, rotatednewCenter, 750 926 oldSet, rotatednewSet); 751 // NOTE: Center must not necessarily lie on the sphere with norm 1, hence, we 752 // have to normalize it just as before, as oldCenter and newCenter lengths may differ. 753 if ((!oldCenter.IsZero()) && (!rotatednewCenter.IsZero())) { 754 oldCenter.Normalize(); 755 rotatednewCenter.Normalize(); 756 LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter 757 << ", oldCenter is " << oldCenter); 758 const double difference = (rotatednewCenter - oldCenter).NormSquared(); 759 ASSERT( difference < std::numeric_limits<double>::epsilon()*1e4, 760 "matchSphericalPointDistributions() - rotation does not work as expected by " 761 +toString(difference)+"."); 762 } 927 oldCenter.Normalize(); 928 rotatednewCenter.Normalize(); 929 // check whether centers are anti-parallel (factor -1) 930 // then we have the "non-unique poles" situation: points lie on great circle 931 // and both poles are valid solution 932 if (fabs(oldCenter.ScalarProduct(rotatednewCenter) + 1.) 933 < std::numeric_limits<double>::epsilon()*1e4) 934 rotatednewCenter *= -1.; 935 LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter 936 << ", oldCenter is " << oldCenter); 937 const double difference = (rotatednewCenter - oldCenter).NormSquared(); 938 ASSERT( difference < std::numeric_limits<double>::epsilon()*1e4, 939 "matchSphericalPointDistributions() - rotation does not work as expected by " 940 +toString(difference)+"."); 763 941 } 764 942 #endif
Note:
See TracChangeset
for help on using the changeset viewer.