source: src/tesselation.cpp@ 8725ed

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 8725ed was 1e168b, checked in by Frederik Heber <heber@…>, 15 years ago

Now the best (in terms of ShortestAngle) baseline is picked among all open ones instead of the next.

  • Element initialization was done for all constructors in tesselation.cpp
  • Property mode set to 100644
File size: 166.5 KB
Line 
1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "helpers.hpp"
11#include "linkedcell.hpp"
12#include "log.hpp"
13#include "tesselation.hpp"
14#include "tesselationhelpers.hpp"
15#include "vector.hpp"
16#include "verbose.hpp"
17
18class molecule;
19
20// ======================================== Points on Boundary =================================
21
22/** Constructor of BoundaryPointSet.
23 */
24BoundaryPointSet::BoundaryPointSet() :
25 LinesCount(0),
26 value(0.),
27 Nr(-1)
28{
29};
30
31/** Constructor of BoundaryPointSet with Tesselpoint.
32 * \param *Walker TesselPoint this boundary point represents
33 */
34BoundaryPointSet::BoundaryPointSet(TesselPoint * Walker)
35{
36 node = Walker;
37 LinesCount = 0;
38 Nr = Walker->nr;
39 value = 0.;
40};
41
42/** Destructor of BoundaryPointSet.
43 * Sets node to NULL to avoid removing the original, represented TesselPoint.
44 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
45 */
46BoundaryPointSet::~BoundaryPointSet()
47{
48 //Log() << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
49 if (!lines.empty())
50 eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl;
51 node = NULL;
52};
53
54/** Add a line to the LineMap of this point.
55 * \param *line line to add
56 */
57void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
58{
59 Log() << Verbose(6) << "Adding " << *this << " to line " << *line << "."
60 << endl;
61 if (line->endpoints[0] == this)
62 {
63 lines.insert(LinePair(line->endpoints[1]->Nr, line));
64 }
65 else
66 {
67 lines.insert(LinePair(line->endpoints[0]->Nr, line));
68 }
69 LinesCount++;
70};
71
72/** output operator for BoundaryPointSet.
73 * \param &ost output stream
74 * \param &a boundary point
75 */
76ostream & operator <<(ostream &ost, const BoundaryPointSet &a)
77{
78 ost << "[" << a.Nr << "|" << a.node->Name << " at " << *a.node->node << "]";
79 return ost;
80}
81;
82
83// ======================================== Lines on Boundary =================================
84
85/** Constructor of BoundaryLineSet.
86 */
87BoundaryLineSet::BoundaryLineSet() :
88 Nr(-1)
89{
90 for (int i = 0; i < 2; i++)
91 endpoints[i] = NULL;
92};
93
94/** Constructor of BoundaryLineSet with two endpoints.
95 * Adds line automatically to each endpoints' LineMap
96 * \param *Point[2] array of two boundary points
97 * \param number number of the list
98 */
99BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], const int number)
100{
101 // set number
102 Nr = number;
103 // set endpoints in ascending order
104 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
105 // add this line to the hash maps of both endpoints
106 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
107 Point[1]->AddLine(this); //
108 // set skipped to false
109 skipped = false;
110 // clear triangles list
111 Log() << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
112};
113
114/** Destructor for BoundaryLineSet.
115 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
116 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
117 */
118BoundaryLineSet::~BoundaryLineSet()
119{
120 int Numbers[2];
121
122 // get other endpoint number of finding copies of same line
123 if (endpoints[1] != NULL)
124 Numbers[0] = endpoints[1]->Nr;
125 else
126 Numbers[0] = -1;
127 if (endpoints[0] != NULL)
128 Numbers[1] = endpoints[0]->Nr;
129 else
130 Numbers[1] = -1;
131
132 for (int i = 0; i < 2; i++) {
133 if (endpoints[i] != NULL) {
134 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
135 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
136 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
137 if ((*Runner).second == this) {
138 //Log() << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
139 endpoints[i]->lines.erase(Runner);
140 break;
141 }
142 } else { // there's just a single line left
143 if (endpoints[i]->lines.erase(Nr)) {
144 //Log() << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
145 }
146 }
147 if (endpoints[i]->lines.empty()) {
148 //Log() << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
149 if (endpoints[i] != NULL) {
150 delete(endpoints[i]);
151 endpoints[i] = NULL;
152 }
153 }
154 }
155 }
156 if (!triangles.empty())
157 eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl;
158};
159
160/** Add triangle to TriangleMap of this boundary line.
161 * \param *triangle to add
162 */
163void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
164{
165 Log() << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
166 triangles.insert(TrianglePair(triangle->Nr, triangle));
167};
168
169/** Checks whether we have a common endpoint with given \a *line.
170 * \param *line other line to test
171 * \return true - common endpoint present, false - not connected
172 */
173bool BoundaryLineSet::IsConnectedTo(class BoundaryLineSet *line)
174{
175 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
176 return true;
177 else
178 return false;
179};
180
181/** Checks whether the adjacent triangles of a baseline are convex or not.
182 * We sum the two angles of each height vector with respect to the center of the baseline.
183 * If greater/equal M_PI than we are convex.
184 * \param *out output stream for debugging
185 * \return true - triangles are convex, false - concave or less than two triangles connected
186 */
187bool BoundaryLineSet::CheckConvexityCriterion()
188{
189 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
190 // get the two triangles
191 if (triangles.size() != 2) {
192 eLog() << Verbose(1) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl;
193 return true;
194 }
195 // check normal vectors
196 // have a normal vector on the base line pointing outwards
197 //Log() << Verbose(3) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
198 BaseLineCenter.CopyVector(endpoints[0]->node->node);
199 BaseLineCenter.AddVector(endpoints[1]->node->node);
200 BaseLineCenter.Scale(1./2.);
201 BaseLine.CopyVector(endpoints[0]->node->node);
202 BaseLine.SubtractVector(endpoints[1]->node->node);
203 //Log() << Verbose(3) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
204
205 BaseLineNormal.Zero();
206 NormalCheck.Zero();
207 double sign = -1.;
208 int i=0;
209 class BoundaryPointSet *node = NULL;
210 for(TriangleMap::iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
211 //Log() << Verbose(3) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
212 NormalCheck.AddVector(&runner->second->NormalVector);
213 NormalCheck.Scale(sign);
214 sign = -sign;
215 if (runner->second->NormalVector.NormSquared() > MYEPSILON)
216 BaseLineNormal.CopyVector(&runner->second->NormalVector); // yes, copy second on top of first
217 else {
218 Log() << Verbose(1) << "CRITICAL: Triangle " << *runner->second << " has zero normal vector!" << endl;
219 exit(255);
220 }
221 node = runner->second->GetThirdEndpoint(this);
222 if (node != NULL) {
223 //Log() << Verbose(3) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
224 helper[i].CopyVector(node->node->node);
225 helper[i].SubtractVector(&BaseLineCenter);
226 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
227 //Log() << Verbose(4) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
228 i++;
229 } else {
230 //eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl;
231 return true;
232 }
233 }
234 //Log() << Verbose(3) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
235 if (NormalCheck.NormSquared() < MYEPSILON) {
236 Log() << Verbose(3) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;
237 return true;
238 }
239 BaseLineNormal.Scale(-1.);
240 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
241 if ((angle - M_PI) > -MYEPSILON) {
242 Log() << Verbose(3) << "ACCEPT: Angle is greater than pi: convex." << endl;
243 return true;
244 } else {
245 Log() << Verbose(3) << "REJECT: Angle is less than pi: concave." << endl;
246 return false;
247 }
248}
249
250/** Checks whether point is any of the two endpoints this line contains.
251 * \param *point point to test
252 * \return true - point is of the line, false - is not
253 */
254bool BoundaryLineSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
255{
256 for(int i=0;i<2;i++)
257 if (point == endpoints[i])
258 return true;
259 return false;
260};
261
262/** Returns other endpoint of the line.
263 * \param *point other endpoint
264 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
265 */
266class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(class BoundaryPointSet *point)
267{
268 if (endpoints[0] == point)
269 return endpoints[1];
270 else if (endpoints[1] == point)
271 return endpoints[0];
272 else
273 return NULL;
274};
275
276/** output operator for BoundaryLineSet.
277 * \param &ost output stream
278 * \param &a boundary line
279 */
280ostream & operator <<(ostream &ost, const BoundaryLineSet &a)
281{
282 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "]";
283 return ost;
284};
285
286// ======================================== Triangles on Boundary =================================
287
288/** Constructor for BoundaryTriangleSet.
289 */
290BoundaryTriangleSet::BoundaryTriangleSet() :
291 Nr(-1)
292{
293 for (int i = 0; i < 3; i++)
294 {
295 endpoints[i] = NULL;
296 lines[i] = NULL;
297 }
298};
299
300/** Constructor for BoundaryTriangleSet with three lines.
301 * \param *line[3] lines that make up the triangle
302 * \param number number of triangle
303 */
304BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number) :
305 Nr(number)
306{
307 // set number
308 // set lines
309 Log() << Verbose(5) << "New triangle " << Nr << ":";
310 for (int i = 0; i < 3; i++)
311 {
312 lines[i] = line[i];
313 lines[i]->AddTriangle(this);
314 }
315 // get ascending order of endpoints
316 map<int, class BoundaryPointSet *> OrderMap;
317 for (int i = 0; i < 3; i++)
318 // for all three lines
319 for (int j = 0; j < 2; j++)
320 { // for both endpoints
321 OrderMap.insert(pair<int, class BoundaryPointSet *> (
322 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
323 // and we don't care whether insertion fails
324 }
325 // set endpoints
326 int Counter = 0;
327 Log() << Verbose(6) << " with end points ";
328 for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
329 != OrderMap.end(); runner++)
330 {
331 endpoints[Counter] = runner->second;
332 Log() << Verbose(0) << " " << *endpoints[Counter];
333 Counter++;
334 }
335 if (Counter < 3)
336 {
337 eLog() << Verbose(0) << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
338 performCriticalExit();
339 }
340 Log() << Verbose(0) << "." << endl;
341};
342
343/** Destructor of BoundaryTriangleSet.
344 * Removes itself from each of its lines' LineMap and removes them if necessary.
345 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
346 */
347BoundaryTriangleSet::~BoundaryTriangleSet()
348{
349 for (int i = 0; i < 3; i++) {
350 if (lines[i] != NULL) {
351 if (lines[i]->triangles.erase(Nr)) {
352 //Log() << Verbose(5) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
353 }
354 if (lines[i]->triangles.empty()) {
355 //Log() << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
356 delete (lines[i]);
357 lines[i] = NULL;
358 }
359 }
360 }
361 //Log() << Verbose(5) << "Erasing triangle Nr." << Nr << " itself." << endl;
362};
363
364/** Calculates the normal vector for this triangle.
365 * Is made unique by comparison with \a OtherVector to point in the other direction.
366 * \param &OtherVector direction vector to make normal vector unique.
367 */
368void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
369{
370 // get normal vector
371 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
372
373 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
374 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
375 NormalVector.Scale(-1.);
376};
377
378/** Finds the point on the triangle \a *BTS the line defined by \a *MolCenter and \a *x crosses through.
379 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
380 * This we test if it's really on the plane and whether it's inside the triangle on the plane or not.
381 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
382 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
383 * the first two basepoints) or not.
384 * \param *out output stream for debugging
385 * \param *MolCenter offset vector of line
386 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
387 * \param *Intersection intersection on plane on return
388 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
389 */
390bool BoundaryTriangleSet::GetIntersectionInsideTriangle(Vector *MolCenter, Vector *x, Vector *Intersection)
391{
392 Vector CrossPoint;
393 Vector helper;
394
395 if (!Intersection->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, MolCenter, x)) {
396 Log() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;
397 return false;
398 }
399
400 // Calculate cross point between one baseline and the line from the third endpoint to intersection
401 int i=0;
402 do {
403 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {
404 helper.CopyVector(endpoints[(i+1)%3]->node->node);
405 helper.SubtractVector(endpoints[i%3]->node->node);
406 } else
407 i++;
408 if (i>2)
409 break;
410 } while (CrossPoint.NormSquared() < MYEPSILON);
411 if (i==3) {
412 eLog() << Verbose(1) << "Could not find any cross points, something's utterly wrong here!" << endl;
413 exit(255);
414 }
415 CrossPoint.SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector
416
417 // check whether intersection is inside or not by comparing length of intersection and length of cross point
418 if ((CrossPoint.NormSquared() - helper.NormSquared()) < MYEPSILON) { // inside
419 return true;
420 } else { // outside!
421 Intersection->Zero();
422 return false;
423 }
424};
425
426/** Checks whether lines is any of the three boundary lines this triangle contains.
427 * \param *line line to test
428 * \return true - line is of the triangle, false - is not
429 */
430bool BoundaryTriangleSet::ContainsBoundaryLine(class BoundaryLineSet *line)
431{
432 for(int i=0;i<3;i++)
433 if (line == lines[i])
434 return true;
435 return false;
436};
437
438/** Checks whether point is any of the three endpoints this triangle contains.
439 * \param *point point to test
440 * \return true - point is of the triangle, false - is not
441 */
442bool BoundaryTriangleSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
443{
444 for(int i=0;i<3;i++)
445 if (point == endpoints[i])
446 return true;
447 return false;
448};
449
450/** Checks whether point is any of the three endpoints this triangle contains.
451 * \param *point TesselPoint to test
452 * \return true - point is of the triangle, false - is not
453 */
454bool BoundaryTriangleSet::ContainsBoundaryPoint(class TesselPoint *point)
455{
456 for(int i=0;i<3;i++)
457 if (point == endpoints[i]->node)
458 return true;
459 return false;
460};
461
462/** Checks whether three given \a *Points coincide with triangle's endpoints.
463 * \param *Points[3] pointer to BoundaryPointSet
464 * \return true - is the very triangle, false - is not
465 */
466bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3])
467{
468 return (((endpoints[0] == Points[0])
469 || (endpoints[0] == Points[1])
470 || (endpoints[0] == Points[2])
471 ) && (
472 (endpoints[1] == Points[0])
473 || (endpoints[1] == Points[1])
474 || (endpoints[1] == Points[2])
475 ) && (
476 (endpoints[2] == Points[0])
477 || (endpoints[2] == Points[1])
478 || (endpoints[2] == Points[2])
479
480 ));
481};
482
483/** Checks whether three given \a *Points coincide with triangle's endpoints.
484 * \param *Points[3] pointer to BoundaryPointSet
485 * \return true - is the very triangle, false - is not
486 */
487bool BoundaryTriangleSet::IsPresentTupel(class BoundaryTriangleSet *T)
488{
489 return (((endpoints[0] == T->endpoints[0])
490 || (endpoints[0] == T->endpoints[1])
491 || (endpoints[0] == T->endpoints[2])
492 ) && (
493 (endpoints[1] == T->endpoints[0])
494 || (endpoints[1] == T->endpoints[1])
495 || (endpoints[1] == T->endpoints[2])
496 ) && (
497 (endpoints[2] == T->endpoints[0])
498 || (endpoints[2] == T->endpoints[1])
499 || (endpoints[2] == T->endpoints[2])
500
501 ));
502};
503
504/** Returns the endpoint which is not contained in the given \a *line.
505 * \param *line baseline defining two endpoints
506 * \return pointer third endpoint or NULL if line does not belong to triangle.
507 */
508class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(class BoundaryLineSet *line)
509{
510 // sanity check
511 if (!ContainsBoundaryLine(line))
512 return NULL;
513 for(int i=0;i<3;i++)
514 if (!line->ContainsBoundaryPoint(endpoints[i]))
515 return endpoints[i];
516 // actually, that' impossible :)
517 return NULL;
518};
519
520/** Calculates the center point of the triangle.
521 * Is third of the sum of all endpoints.
522 * \param *center central point on return.
523 */
524void BoundaryTriangleSet::GetCenter(Vector *center)
525{
526 center->Zero();
527 for(int i=0;i<3;i++)
528 center->AddVector(endpoints[i]->node->node);
529 center->Scale(1./3.);
530}
531
532/** output operator for BoundaryTriangleSet.
533 * \param &ost output stream
534 * \param &a boundary triangle
535 */
536ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
537{
538 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
539 << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
540 return ost;
541};
542
543// =========================================================== class TESSELPOINT ===========================================
544
545/** Constructor of class TesselPoint.
546 */
547TesselPoint::TesselPoint()
548{
549 node = NULL;
550 nr = -1;
551 Name = NULL;
552};
553
554/** Destructor for class TesselPoint.
555 */
556TesselPoint::~TesselPoint()
557{
558};
559
560/** Prints LCNode to screen.
561 */
562ostream & operator << (ostream &ost, const TesselPoint &a)
563{
564 ost << "[" << (a.Name) << "|" << a.Name << " at " << *a.node << "]";
565 return ost;
566};
567
568/** Prints LCNode to screen.
569 */
570ostream & TesselPoint::operator << (ostream &ost)
571{
572 ost << "[" << (Name) << "|" << this << "]";
573 return ost;
574};
575
576
577// =========================================================== class POINTCLOUD ============================================
578
579/** Constructor of class PointCloud.
580 */
581PointCloud::PointCloud()
582{
583};
584
585/** Destructor for class PointCloud.
586 */
587PointCloud::~PointCloud()
588{
589};
590
591// ============================ CandidateForTesselation =============================
592
593/** Constructor of class CandidateForTesselation.
594 */
595CandidateForTesselation::CandidateForTesselation (BoundaryLineSet* line) :
596 point(NULL),
597 BaseLine(line),
598 ShortestAngle(2.*M_PI),
599 OtherShortestAngle(2.*M_PI)
600{
601};
602
603
604/** Constructor of class CandidateForTesselation.
605 */
606CandidateForTesselation::CandidateForTesselation (TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) :
607 point(candidate),
608 BaseLine(line),
609 ShortestAngle(2.*M_PI),
610 OtherShortestAngle(2.*M_PI)
611{
612 OptCenter.CopyVector(&OptCandidateCenter);
613 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
614};
615
616/** Destructor for class CandidateForTesselation.
617 */
618CandidateForTesselation::~CandidateForTesselation() {
619 point = NULL;
620 BaseLine = NULL;
621};
622
623/** output operator for CandidateForTesselation.
624 * \param &ost output stream
625 * \param &a boundary line
626 */
627ostream & operator <<(ostream &ost, const CandidateForTesselation &a)
628{
629 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node->Name << "," << a.BaseLine->endpoints[1]->node->Name << "] with ";
630 if (a.point == NULL)
631 ost << "no candidate.";
632 else
633 ost << "candidate " << *(a.point) << " at angle " << (a.ShortestAngle)<< ".";
634
635 return ost;
636};
637
638
639// =========================================================== class TESSELATION ===========================================
640
641/** Constructor of class Tesselation.
642 */
643Tesselation::Tesselation() :
644 PointsOnBoundaryCount(0),
645 LinesOnBoundaryCount(0),
646 TrianglesOnBoundaryCount(0),
647 LastTriangle(NULL),
648 TriangleFilesWritten(0),
649 InternalPointer(PointsOnBoundary.begin())
650{
651}
652;
653
654/** Destructor of class Tesselation.
655 * We have to free all points, lines and triangles.
656 */
657Tesselation::~Tesselation()
658{
659 Log() << Verbose(1) << "Free'ing TesselStruct ... " << endl;
660 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
661 if (runner->second != NULL) {
662 delete (runner->second);
663 runner->second = NULL;
664 } else
665 eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl;
666 }
667 Log() << Verbose(1) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl;
668}
669;
670
671/** PointCloud implementation of GetCenter
672 * Uses PointsOnBoundary and STL stuff.
673 */
674Vector * Tesselation::GetCenter(ofstream *out) const
675{
676 Vector *Center = new Vector(0.,0.,0.);
677 int num=0;
678 for (GoToFirst(); (!IsEnd()); GoToNext()) {
679 Center->AddVector(GetPoint()->node);
680 num++;
681 }
682 Center->Scale(1./num);
683 return Center;
684};
685
686/** PointCloud implementation of GoPoint
687 * Uses PointsOnBoundary and STL stuff.
688 */
689TesselPoint * Tesselation::GetPoint() const
690{
691 return (InternalPointer->second->node);
692};
693
694/** PointCloud implementation of GetTerminalPoint.
695 * Uses PointsOnBoundary and STL stuff.
696 */
697TesselPoint * Tesselation::GetTerminalPoint() const
698{
699 PointMap::const_iterator Runner = PointsOnBoundary.end();
700 Runner--;
701 return (Runner->second->node);
702};
703
704/** PointCloud implementation of GoToNext.
705 * Uses PointsOnBoundary and STL stuff.
706 */
707void Tesselation::GoToNext() const
708{
709 if (InternalPointer != PointsOnBoundary.end())
710 InternalPointer++;
711};
712
713/** PointCloud implementation of GoToPrevious.
714 * Uses PointsOnBoundary and STL stuff.
715 */
716void Tesselation::GoToPrevious() const
717{
718 if (InternalPointer != PointsOnBoundary.begin())
719 InternalPointer--;
720};
721
722/** PointCloud implementation of GoToFirst.
723 * Uses PointsOnBoundary and STL stuff.
724 */
725void Tesselation::GoToFirst() const
726{
727 InternalPointer = PointsOnBoundary.begin();
728};
729
730/** PointCloud implementation of GoToLast.
731 * Uses PointsOnBoundary and STL stuff.
732 */
733void Tesselation::GoToLast() const
734{
735 InternalPointer = PointsOnBoundary.end();
736 InternalPointer--;
737};
738
739/** PointCloud implementation of IsEmpty.
740 * Uses PointsOnBoundary and STL stuff.
741 */
742bool Tesselation::IsEmpty() const
743{
744 return (PointsOnBoundary.empty());
745};
746
747/** PointCloud implementation of IsLast.
748 * Uses PointsOnBoundary and STL stuff.
749 */
750bool Tesselation::IsEnd() const
751{
752 return (InternalPointer == PointsOnBoundary.end());
753};
754
755
756/** Gueses first starting triangle of the convex envelope.
757 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
758 * \param *out output stream for debugging
759 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
760 */
761void
762Tesselation::GuessStartingTriangle()
763{
764 // 4b. create a starting triangle
765 // 4b1. create all distances
766 DistanceMultiMap DistanceMMap;
767 double distance, tmp;
768 Vector PlaneVector, TrialVector;
769 PointMap::iterator A, B, C; // three nodes of the first triangle
770 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
771
772 // with A chosen, take each pair B,C and sort
773 if (A != PointsOnBoundary.end())
774 {
775 B = A;
776 B++;
777 for (; B != PointsOnBoundary.end(); B++)
778 {
779 C = B;
780 C++;
781 for (; C != PointsOnBoundary.end(); C++)
782 {
783 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
784 distance = tmp * tmp;
785 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
786 distance += tmp * tmp;
787 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
788 distance += tmp * tmp;
789 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
790 }
791 }
792 }
793 // // listing distances
794 // Log() << Verbose(1) << "Listing DistanceMMap:";
795 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
796 // Log() << Verbose(0) << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
797 // }
798 // Log() << Verbose(0) << endl;
799 // 4b2. pick three baselines forming a triangle
800 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
801 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
802 for (; baseline != DistanceMMap.end(); baseline++)
803 {
804 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
805 // 2. next, we have to check whether all points reside on only one side of the triangle
806 // 3. construct plane vector
807 PlaneVector.MakeNormalVector(A->second->node->node,
808 baseline->second.first->second->node->node,
809 baseline->second.second->second->node->node);
810 Log() << Verbose(2) << "Plane vector of candidate triangle is ";
811 PlaneVector.Output();
812 Log() << Verbose(0) << endl;
813 // 4. loop over all points
814 double sign = 0.;
815 PointMap::iterator checker = PointsOnBoundary.begin();
816 for (; checker != PointsOnBoundary.end(); checker++)
817 {
818 // (neglecting A,B,C)
819 if ((checker == A) || (checker == baseline->second.first) || (checker
820 == baseline->second.second))
821 continue;
822 // 4a. project onto plane vector
823 TrialVector.CopyVector(checker->second->node->node);
824 TrialVector.SubtractVector(A->second->node->node);
825 distance = TrialVector.ScalarProduct(&PlaneVector);
826 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
827 continue;
828 Log() << Verbose(3) << "Projection of " << checker->second->node->Name
829 << " yields distance of " << distance << "." << endl;
830 tmp = distance / fabs(distance);
831 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
832 if ((sign != 0) && (tmp != sign))
833 {
834 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
835 Log() << Verbose(2) << "Current candidates: "
836 << A->second->node->Name << ","
837 << baseline->second.first->second->node->Name << ","
838 << baseline->second.second->second->node->Name << " leaves "
839 << checker->second->node->Name << " outside the convex hull."
840 << endl;
841 break;
842 }
843 else
844 { // note the sign for later
845 Log() << Verbose(2) << "Current candidates: "
846 << A->second->node->Name << ","
847 << baseline->second.first->second->node->Name << ","
848 << baseline->second.second->second->node->Name << " leave "
849 << checker->second->node->Name << " inside the convex hull."
850 << endl;
851 sign = tmp;
852 }
853 // 4d. Check whether the point is inside the triangle (check distance to each node
854 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
855 int innerpoint = 0;
856 if ((tmp < A->second->node->node->DistanceSquared(
857 baseline->second.first->second->node->node)) && (tmp
858 < A->second->node->node->DistanceSquared(
859 baseline->second.second->second->node->node)))
860 innerpoint++;
861 tmp = checker->second->node->node->DistanceSquared(
862 baseline->second.first->second->node->node);
863 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(
864 A->second->node->node)) && (tmp
865 < baseline->second.first->second->node->node->DistanceSquared(
866 baseline->second.second->second->node->node)))
867 innerpoint++;
868 tmp = checker->second->node->node->DistanceSquared(
869 baseline->second.second->second->node->node);
870 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(
871 baseline->second.first->second->node->node)) && (tmp
872 < baseline->second.second->second->node->node->DistanceSquared(
873 A->second->node->node)))
874 innerpoint++;
875 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
876 if (innerpoint == 3)
877 break;
878 }
879 // 5. come this far, all on same side? Then break 1. loop and construct triangle
880 if (checker == PointsOnBoundary.end())
881 {
882 Log() << Verbose(0) << "Looks like we have a candidate!" << endl;
883 break;
884 }
885 }
886 if (baseline != DistanceMMap.end())
887 {
888 BPS[0] = baseline->second.first->second;
889 BPS[1] = baseline->second.second->second;
890 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
891 BPS[0] = A->second;
892 BPS[1] = baseline->second.second->second;
893 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
894 BPS[0] = baseline->second.first->second;
895 BPS[1] = A->second;
896 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
897
898 // 4b3. insert created triangle
899 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
900 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
901 TrianglesOnBoundaryCount++;
902 for (int i = 0; i < NDIM; i++)
903 {
904 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
905 LinesOnBoundaryCount++;
906 }
907
908 Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
909 }
910 else
911 {
912 Log() << Verbose(1) << "No starting triangle found." << endl;
913 exit(255);
914 }
915}
916;
917
918/** Tesselates the convex envelope of a cluster from a single starting triangle.
919 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
920 * 2 triangles. Hence, we go through all current lines:
921 * -# if the lines contains to only one triangle
922 * -# We search all points in the boundary
923 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
924 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
925 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
926 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
927 * \param *out output stream for debugging
928 * \param *configuration for IsAngstroem
929 * \param *cloud cluster of points
930 */
931void Tesselation::TesselateOnBoundary(const PointCloud * const cloud)
932{
933 bool flag;
934 PointMap::iterator winner;
935 class BoundaryPointSet *peak = NULL;
936 double SmallestAngle, TempAngle;
937 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
938 LineMap::iterator LineChecker[2];
939
940 Center = cloud->GetCenter();
941 // create a first tesselation with the given BoundaryPoints
942 do {
943 flag = false;
944 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
945 if (baseline->second->triangles.size() == 1) {
946 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
947 SmallestAngle = M_PI;
948
949 // get peak point with respect to this base line's only triangle
950 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
951 Log() << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
952 for (int i = 0; i < 3; i++)
953 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
954 peak = BTS->endpoints[i];
955 Log() << Verbose(3) << " and has peak " << *peak << "." << endl;
956
957 // prepare some auxiliary vectors
958 Vector BaseLineCenter, BaseLine;
959 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
960 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
961 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
962 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
963 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
964
965 // offset to center of triangle
966 CenterVector.Zero();
967 for (int i = 0; i < 3; i++)
968 CenterVector.AddVector(BTS->endpoints[i]->node->node);
969 CenterVector.Scale(1. / 3.);
970 Log() << Verbose(4) << "CenterVector of base triangle is " << CenterVector << endl;
971
972 // normal vector of triangle
973 NormalVector.CopyVector(Center);
974 NormalVector.SubtractVector(&CenterVector);
975 BTS->GetNormalVector(NormalVector);
976 NormalVector.CopyVector(&BTS->NormalVector);
977 Log() << Verbose(4) << "NormalVector of base triangle is " << NormalVector << endl;
978
979 // vector in propagation direction (out of triangle)
980 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
981 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
982 TempVector.CopyVector(&CenterVector);
983 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
984 //Log() << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
985 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
986 PropagationVector.Scale(-1.);
987 Log() << Verbose(4) << "PropagationVector of base triangle is " << PropagationVector << endl;
988 winner = PointsOnBoundary.end();
989
990 // loop over all points and calculate angle between normal vector of new and present triangle
991 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
992 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
993 Log() << Verbose(3) << "Target point is " << *(target->second) << ":" << endl;
994
995 // first check direction, so that triangles don't intersect
996 VirtualNormalVector.CopyVector(target->second->node->node);
997 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
998 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
999 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
1000 Log() << Verbose(4) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
1001 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees)
1002 Log() << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
1003 continue;
1004 } else
1005 Log() << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
1006
1007 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
1008 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
1009 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
1010 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
1011 Log() << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
1012 continue;
1013 }
1014 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
1015 Log() << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
1016 continue;
1017 }
1018
1019 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
1020 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
1021 Log() << Verbose(4) << "Current target is peak!" << endl;
1022 continue;
1023 }
1024
1025 // check for linear dependence
1026 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1027 TempVector.SubtractVector(target->second->node->node);
1028 helper.CopyVector(baseline->second->endpoints[1]->node->node);
1029 helper.SubtractVector(target->second->node->node);
1030 helper.ProjectOntoPlane(&TempVector);
1031 if (fabs(helper.NormSquared()) < MYEPSILON) {
1032 Log() << Verbose(4) << "Chosen set of vectors is linear dependent." << endl;
1033 continue;
1034 }
1035
1036 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
1037 flag = true;
1038 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
1039 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1040 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
1041 TempVector.AddVector(target->second->node->node);
1042 TempVector.Scale(1./3.);
1043 TempVector.SubtractVector(Center);
1044 // make it always point outward
1045 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
1046 VirtualNormalVector.Scale(-1.);
1047 // calculate angle
1048 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1049 Log() << Verbose(4) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
1050 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
1051 SmallestAngle = TempAngle;
1052 winner = target;
1053 Log() << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
1054 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
1055 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
1056 helper.CopyVector(target->second->node->node);
1057 helper.SubtractVector(&BaseLineCenter);
1058 helper.ProjectOntoPlane(&BaseLine);
1059 // ...the one with the smaller angle is the better candidate
1060 TempVector.CopyVector(target->second->node->node);
1061 TempVector.SubtractVector(&BaseLineCenter);
1062 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1063 TempAngle = TempVector.Angle(&helper);
1064 TempVector.CopyVector(winner->second->node->node);
1065 TempVector.SubtractVector(&BaseLineCenter);
1066 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1067 if (TempAngle < TempVector.Angle(&helper)) {
1068 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1069 SmallestAngle = TempAngle;
1070 winner = target;
1071 Log() << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
1072 } else
1073 Log() << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
1074 } else
1075 Log() << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
1076 }
1077 } // end of loop over all boundary points
1078
1079 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
1080 if (winner != PointsOnBoundary.end()) {
1081 Log() << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
1082 // create the lins of not yet present
1083 BLS[0] = baseline->second;
1084 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1085 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1086 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1087 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1088 BPS[0] = baseline->second->endpoints[0];
1089 BPS[1] = winner->second;
1090 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1091 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1092 LinesOnBoundaryCount++;
1093 } else
1094 BLS[1] = LineChecker[0]->second;
1095 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1096 BPS[0] = baseline->second->endpoints[1];
1097 BPS[1] = winner->second;
1098 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1099 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1100 LinesOnBoundaryCount++;
1101 } else
1102 BLS[2] = LineChecker[1]->second;
1103 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1104 BTS->GetCenter(&helper);
1105 helper.SubtractVector(Center);
1106 helper.Scale(-1);
1107 BTS->GetNormalVector(helper);
1108 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1109 TrianglesOnBoundaryCount++;
1110 } else {
1111 Log() << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
1112 }
1113
1114 // 5d. If the set of lines is not yet empty, go to 5. and continue
1115 } else
1116 Log() << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
1117 } while (flag);
1118
1119 // exit
1120 delete(Center);
1121};
1122
1123/** Inserts all points outside of the tesselated surface into it by adding new triangles.
1124 * \param *out output stream for debugging
1125 * \param *cloud cluster of points
1126 * \param *LC LinkedCell structure to find nearest point quickly
1127 * \return true - all straddling points insert, false - something went wrong
1128 */
1129bool Tesselation::InsertStraddlingPoints(const PointCloud *cloud, const LinkedCell *LC)
1130{
1131 Vector Intersection, Normal;
1132 TesselPoint *Walker = NULL;
1133 Vector *Center = cloud->GetCenter();
1134 list<BoundaryTriangleSet*> *triangles = NULL;
1135 bool AddFlag = false;
1136 LinkedCell *BoundaryPoints = NULL;
1137
1138 Log() << Verbose(1) << "Begin of InsertStraddlingPoints" << endl;
1139
1140 cloud->GoToFirst();
1141 BoundaryPoints = new LinkedCell(this, 5.);
1142 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
1143 if (AddFlag) {
1144 delete(BoundaryPoints);
1145 BoundaryPoints = new LinkedCell(this, 5.);
1146 AddFlag = false;
1147 }
1148 Walker = cloud->GetPoint();
1149 Log() << Verbose(2) << "Current point is " << *Walker << "." << endl;
1150 // get the next triangle
1151 triangles = FindClosestTrianglesToPoint(Walker->node, BoundaryPoints);
1152 BTS = triangles->front();
1153 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
1154 Log() << Verbose(2) << "No triangles found, probably a tesselation point itself." << endl;
1155 cloud->GoToNext();
1156 continue;
1157 } else {
1158 }
1159 Log() << Verbose(2) << "Closest triangle is " << *BTS << "." << endl;
1160 // get the intersection point
1161 if (BTS->GetIntersectionInsideTriangle(Center, Walker->node, &Intersection)) {
1162 Log() << Verbose(2) << "We have an intersection at " << Intersection << "." << endl;
1163 // we have the intersection, check whether in- or outside of boundary
1164 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1165 // inside, next!
1166 Log() << Verbose(2) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
1167 } else {
1168 // outside!
1169 Log() << Verbose(2) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
1170 class BoundaryLineSet *OldLines[3], *NewLines[3];
1171 class BoundaryPointSet *OldPoints[3], *NewPoint;
1172 // store the three old lines and old points
1173 for (int i=0;i<3;i++) {
1174 OldLines[i] = BTS->lines[i];
1175 OldPoints[i] = BTS->endpoints[i];
1176 }
1177 Normal.CopyVector(&BTS->NormalVector);
1178 // add Walker to boundary points
1179 Log() << Verbose(2) << "Adding " << *Walker << " to BoundaryPoints." << endl;
1180 AddFlag = true;
1181 if (AddBoundaryPoint(Walker,0))
1182 NewPoint = BPS[0];
1183 else
1184 continue;
1185 // remove triangle
1186 Log() << Verbose(2) << "Erasing triangle " << *BTS << "." << endl;
1187 TrianglesOnBoundary.erase(BTS->Nr);
1188 delete(BTS);
1189 // create three new boundary lines
1190 for (int i=0;i<3;i++) {
1191 BPS[0] = NewPoint;
1192 BPS[1] = OldPoints[i];
1193 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1194 Log() << Verbose(3) << "Creating new line " << *NewLines[i] << "." << endl;
1195 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1196 LinesOnBoundaryCount++;
1197 }
1198 // create three new triangle with new point
1199 for (int i=0;i<3;i++) { // find all baselines
1200 BLS[0] = OldLines[i];
1201 int n = 1;
1202 for (int j=0;j<3;j++) {
1203 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1204 if (n>2) {
1205 Log() << Verbose(1) << BLS[0] << " connects to all of the new lines?!" << endl;
1206 return false;
1207 } else
1208 BLS[n++] = NewLines[j];
1209 }
1210 }
1211 // create the triangle
1212 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1213 Normal.Scale(-1.);
1214 BTS->GetNormalVector(Normal);
1215 Normal.Scale(-1.);
1216 Log() << Verbose(2) << "Created new triangle " << *BTS << "." << endl;
1217 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1218 TrianglesOnBoundaryCount++;
1219 }
1220 }
1221 } else { // something is wrong with FindClosestTriangleToPoint!
1222 eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl;
1223 return false;
1224 }
1225 cloud->GoToNext();
1226 }
1227
1228 // exit
1229 delete(Center);
1230 Log() << Verbose(1) << "End of InsertStraddlingPoints" << endl;
1231 return true;
1232};
1233
1234/** Adds a point to the tesselation::PointsOnBoundary list.
1235 * \param *Walker point to add
1236 * \param n TesselStruct::BPS index to put pointer into
1237 * \return true - new point was added, false - point already present
1238 */
1239bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
1240{
1241 PointTestPair InsertUnique;
1242 BPS[n] = new class BoundaryPointSet(Walker);
1243 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1244 if (InsertUnique.second) { // if new point was not present before, increase counter
1245 PointsOnBoundaryCount++;
1246 return true;
1247 } else {
1248 delete(BPS[n]);
1249 BPS[n] = InsertUnique.first->second;
1250 return false;
1251 }
1252}
1253;
1254
1255/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1256 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1257 * @param Candidate point to add
1258 * @param n index for this point in Tesselation::TPS array
1259 */
1260void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
1261{
1262 PointTestPair InsertUnique;
1263 TPS[n] = new class BoundaryPointSet(Candidate);
1264 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1265 if (InsertUnique.second) { // if new point was not present before, increase counter
1266 PointsOnBoundaryCount++;
1267 } else {
1268 delete TPS[n];
1269 Log() << Verbose(4) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
1270 TPS[n] = (InsertUnique.first)->second;
1271 }
1272}
1273;
1274
1275/** Sets point to a present Tesselation::PointsOnBoundary.
1276 * Tesselation::TPS is set to the existing one or NULL if not found.
1277 * @param Candidate point to set to
1278 * @param n index for this point in Tesselation::TPS array
1279 */
1280void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
1281{
1282 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->nr);
1283 if (FindPoint != PointsOnBoundary.end())
1284 TPS[n] = FindPoint->second;
1285 else
1286 TPS[n] = NULL;
1287};
1288
1289/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1290 * If successful it raises the line count and inserts the new line into the BLS,
1291 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1292 * @param *a first endpoint
1293 * @param *b second endpoint
1294 * @param n index of Tesselation::BLS giving the line with both endpoints
1295 */
1296void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n) {
1297 bool insertNewLine = true;
1298
1299 if (a->lines.find(b->node->nr) != a->lines.end()) {
1300 LineMap::iterator FindLine = a->lines.find(b->node->nr);
1301 pair<LineMap::iterator,LineMap::iterator> FindPair;
1302 FindPair = a->lines.equal_range(b->node->nr);
1303 Log() << Verbose(5) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl;
1304
1305 for (FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
1306 // If there is a line with less than two attached triangles, we don't need a new line.
1307 if (FindLine->second->triangles.size() < 2) {
1308 insertNewLine = false;
1309 Log() << Verbose(4) << "Using existing line " << *FindLine->second << endl;
1310
1311 BPS[0] = FindLine->second->endpoints[0];
1312 BPS[1] = FindLine->second->endpoints[1];
1313 BLS[n] = FindLine->second;
1314
1315 // remove existing line from OpenLines
1316 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
1317 delete(CandidateLine->second);
1318 OpenLines.erase(CandidateLine);
1319
1320 break;
1321 }
1322 }
1323 }
1324
1325 if (insertNewLine) {
1326 AlwaysAddTesselationTriangleLine(a, b, n);
1327 }
1328}
1329;
1330
1331/**
1332 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1333 * Raises the line count and inserts the new line into the BLS.
1334 *
1335 * @param *a first endpoint
1336 * @param *b second endpoint
1337 * @param n index of Tesselation::BLS giving the line with both endpoints
1338 */
1339void Tesselation::AlwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
1340{
1341 Log() << Verbose(4) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl;
1342 BPS[0] = a;
1343 BPS[1] = b;
1344 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1345 // add line to global map
1346 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1347 // increase counter
1348 LinesOnBoundaryCount++;
1349 // also add to open lines
1350 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
1351 OpenLines.insert(pair< BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
1352};
1353
1354/** Function adds triangle to global list.
1355 * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
1356 */
1357void Tesselation::AddTesselationTriangle()
1358{
1359 Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1360
1361 // add triangle to global map
1362 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1363 TrianglesOnBoundaryCount++;
1364
1365 // set as last new triangle
1366 LastTriangle = BTS;
1367
1368 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1369};
1370
1371/** Function adds triangle to global list.
1372 * Furthermore, the triangle number is set to \a nr.
1373 * \param nr triangle number
1374 */
1375void Tesselation::AddTesselationTriangle(const int nr)
1376{
1377 Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1378
1379 // add triangle to global map
1380 TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
1381
1382 // set as last new triangle
1383 LastTriangle = BTS;
1384
1385 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1386};
1387
1388/** Removes a triangle from the tesselation.
1389 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1390 * Removes itself from memory.
1391 * \param *triangle to remove
1392 */
1393void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1394{
1395 if (triangle == NULL)
1396 return;
1397 for (int i = 0; i < 3; i++) {
1398 if (triangle->lines[i] != NULL) {
1399 Log() << Verbose(5) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1400 triangle->lines[i]->triangles.erase(triangle->Nr);
1401 if (triangle->lines[i]->triangles.empty()) {
1402 Log() << Verbose(5) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1403 RemoveTesselationLine(triangle->lines[i]);
1404 } else {
1405 Log() << Verbose(5) << *triangle->lines[i] << " is still attached to another triangle: ";
1406 for(TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
1407 Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
1408 Log() << Verbose(0) << endl;
1409// for (int j=0;j<2;j++) {
1410// Log() << Verbose(5) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";
1411// for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)
1412// Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1413// Log() << Verbose(0) << endl;
1414// }
1415 }
1416 triangle->lines[i] = NULL; // free'd or not: disconnect
1417 } else
1418 eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl;
1419 }
1420
1421 if (TrianglesOnBoundary.erase(triangle->Nr))
1422 Log() << Verbose(5) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1423 delete(triangle);
1424};
1425
1426/** Removes a line from the tesselation.
1427 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1428 * \param *line line to remove
1429 */
1430void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1431{
1432 int Numbers[2];
1433
1434 if (line == NULL)
1435 return;
1436 // get other endpoint number for finding copies of same line
1437 if (line->endpoints[1] != NULL)
1438 Numbers[0] = line->endpoints[1]->Nr;
1439 else
1440 Numbers[0] = -1;
1441 if (line->endpoints[0] != NULL)
1442 Numbers[1] = line->endpoints[0]->Nr;
1443 else
1444 Numbers[1] = -1;
1445
1446 for (int i = 0; i < 2; i++) {
1447 if (line->endpoints[i] != NULL) {
1448 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1449 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1450 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1451 if ((*Runner).second == line) {
1452 Log() << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1453 line->endpoints[i]->lines.erase(Runner);
1454 break;
1455 }
1456 } else { // there's just a single line left
1457 if (line->endpoints[i]->lines.erase(line->Nr))
1458 Log() << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1459 }
1460 if (line->endpoints[i]->lines.empty()) {
1461 Log() << Verbose(5) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1462 RemoveTesselationPoint(line->endpoints[i]);
1463 } else {
1464 Log() << Verbose(5) << *line->endpoints[i] << " has still lines it's attached to: ";
1465 for(LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
1466 Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1467 Log() << Verbose(0) << endl;
1468 }
1469 line->endpoints[i] = NULL; // free'd or not: disconnect
1470 } else
1471 eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl;
1472 }
1473 if (!line->triangles.empty())
1474 eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl;
1475
1476 if (LinesOnBoundary.erase(line->Nr))
1477 Log() << Verbose(5) << "Removing line Nr. " << line->Nr << "." << endl;
1478 delete(line);
1479};
1480
1481/** Removes a point from the tesselation.
1482 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
1483 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
1484 * \param *point point to remove
1485 */
1486void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
1487{
1488 if (point == NULL)
1489 return;
1490 if (PointsOnBoundary.erase(point->Nr))
1491 Log() << Verbose(5) << "Removing point Nr. " << point->Nr << "." << endl;
1492 delete(point);
1493};
1494
1495/** Checks whether the triangle consisting of the three points is already present.
1496 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1497 * lines. If any of the three edges already has two triangles attached, false is
1498 * returned.
1499 * \param *out output stream for debugging
1500 * \param *Candidates endpoints of the triangle candidate
1501 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1502 * triangles exist which is the maximum for three points
1503 */
1504int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
1505{
1506 int adjacentTriangleCount = 0;
1507 class BoundaryPointSet *Points[3];
1508
1509 Log() << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
1510 // builds a triangle point set (Points) of the end points
1511 for (int i = 0; i < 3; i++) {
1512 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1513 if (FindPoint != PointsOnBoundary.end()) {
1514 Points[i] = FindPoint->second;
1515 } else {
1516 Points[i] = NULL;
1517 }
1518 }
1519
1520 // checks lines between the points in the Points for their adjacent triangles
1521 for (int i = 0; i < 3; i++) {
1522 if (Points[i] != NULL) {
1523 for (int j = i; j < 3; j++) {
1524 if (Points[j] != NULL) {
1525 LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1526 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1527 TriangleMap *triangles = &FindLine->second->triangles;
1528 Log() << Verbose(3) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
1529 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1530 if (FindTriangle->second->IsPresentTupel(Points)) {
1531 adjacentTriangleCount++;
1532 }
1533 }
1534 Log() << Verbose(3) << "end." << endl;
1535 }
1536 // Only one of the triangle lines must be considered for the triangle count.
1537 //Log() << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1538 //return adjacentTriangleCount;
1539 }
1540 }
1541 }
1542 }
1543
1544 Log() << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1545 Log() << Verbose(2) << "End of CheckPresenceOfTriangle" << endl;
1546 return adjacentTriangleCount;
1547};
1548
1549/** Checks whether the triangle consisting of the three points is already present.
1550 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1551 * lines. If any of the three edges already has two triangles attached, false is
1552 * returned.
1553 * \param *out output stream for debugging
1554 * \param *Candidates endpoints of the triangle candidate
1555 * \return NULL - none found or pointer to triangle
1556 */
1557class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
1558{
1559 class BoundaryTriangleSet *triangle = NULL;
1560 class BoundaryPointSet *Points[3];
1561
1562 // builds a triangle point set (Points) of the end points
1563 for (int i = 0; i < 3; i++) {
1564 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1565 if (FindPoint != PointsOnBoundary.end()) {
1566 Points[i] = FindPoint->second;
1567 } else {
1568 Points[i] = NULL;
1569 }
1570 }
1571
1572 // checks lines between the points in the Points for their adjacent triangles
1573 for (int i = 0; i < 3; i++) {
1574 if (Points[i] != NULL) {
1575 for (int j = i; j < 3; j++) {
1576 if (Points[j] != NULL) {
1577 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1578 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1579 TriangleMap *triangles = &FindLine->second->triangles;
1580 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1581 if (FindTriangle->second->IsPresentTupel(Points)) {
1582 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
1583 triangle = FindTriangle->second;
1584 }
1585 }
1586 }
1587 // Only one of the triangle lines must be considered for the triangle count.
1588 //Log() << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1589 //return adjacentTriangleCount;
1590 }
1591 }
1592 }
1593 }
1594
1595 return triangle;
1596};
1597
1598
1599/** Finds the starting triangle for FindNonConvexBorder().
1600 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
1601 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
1602 * point are called.
1603 * \param *out output stream for debugging
1604 * \param RADIUS radius of virtual rolling sphere
1605 * \param *LC LinkedCell structure with neighbouring TesselPoint's
1606 */
1607void Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC)
1608{
1609 Log() << Verbose(1) << "Begin of FindStartingTriangle\n";
1610 int i = 0;
1611 TesselPoint* FirstPoint = NULL;
1612 TesselPoint* SecondPoint = NULL;
1613 TesselPoint* MaxPoint[NDIM];
1614 double maxCoordinate[NDIM];
1615 Vector Oben;
1616 Vector helper;
1617 Vector Chord;
1618 Vector SearchDirection;
1619
1620 Oben.Zero();
1621
1622 for (i = 0; i < 3; i++) {
1623 MaxPoint[i] = NULL;
1624 maxCoordinate[i] = -1;
1625 }
1626
1627 // 1. searching topmost point with respect to each axis
1628 for (int i=0;i<NDIM;i++) { // each axis
1629 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
1630 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
1631 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
1632 const LinkedNodes *List = LC->GetCurrentCell();
1633 //Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
1634 if (List != NULL) {
1635 for (LinkedNodes::const_iterator Runner = List->begin();Runner != List->end();Runner++) {
1636 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
1637 Log() << Verbose(2) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
1638 maxCoordinate[i] = (*Runner)->node->x[i];
1639 MaxPoint[i] = (*Runner);
1640 }
1641 }
1642 } else {
1643 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
1644 }
1645 }
1646 }
1647
1648 Log() << Verbose(2) << "Found maximum coordinates: ";
1649 for (int i=0;i<NDIM;i++)
1650 Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t";
1651 Log() << Verbose(0) << endl;
1652
1653 BTS = NULL;
1654 CandidateList *OptCandidates = new CandidateList();
1655 for (int k=0;k<NDIM;k++) {
1656 Oben.Zero();
1657 Oben.x[k] = 1.;
1658 FirstPoint = MaxPoint[k];
1659 Log() << Verbose(1) << "Coordinates of start node at " << *FirstPoint->node << "." << endl;
1660
1661 double ShortestAngle;
1662 TesselPoint* OptCandidate = NULL;
1663 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1664
1665 FindSecondPointForTesselation(FirstPoint, Oben, OptCandidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
1666 SecondPoint = OptCandidate;
1667 if (SecondPoint == NULL) // have we found a second point?
1668 continue;
1669
1670 helper.CopyVector(FirstPoint->node);
1671 helper.SubtractVector(SecondPoint->node);
1672 helper.Normalize();
1673 Oben.ProjectOntoPlane(&helper);
1674 Oben.Normalize();
1675 helper.VectorProduct(&Oben);
1676 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1677
1678 Chord.CopyVector(FirstPoint->node); // bring into calling function
1679 Chord.SubtractVector(SecondPoint->node);
1680 double radius = Chord.ScalarProduct(&Chord);
1681 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
1682 helper.CopyVector(&Oben);
1683 helper.Scale(CircleRadius);
1684 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
1685
1686 // look in one direction of baseline for initial candidate
1687 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
1688
1689 // adding point 1 and point 2 and add the line between them
1690 Log() << Verbose(1) << "Coordinates of start node at " << *FirstPoint->node << "." << endl;
1691 AddTesselationPoint(FirstPoint, 0);
1692 Log() << Verbose(1) << "Found second point is at " << *SecondPoint->node << ".\n";
1693 AddTesselationPoint(SecondPoint, 1);
1694 AddTesselationLine(TPS[0], TPS[1], 0);
1695
1696 //Log() << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
1697 FindThirdPointForTesselation(Oben, SearchDirection, helper, BLS[0], NULL, *&OptCandidates, &ShortestAngle, RADIUS, LC);
1698 Log() << Verbose(1) << "List of third Points is ";
1699 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1700 Log() << Verbose(0) << " " << *(*it)->point;
1701 }
1702 Log() << Verbose(0) << endl;
1703
1704 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1705 // add third triangle point
1706 AddTesselationPoint((*it)->point, 2);
1707 // add the second and third line
1708 AddTesselationLine(TPS[1], TPS[2], 1);
1709 AddTesselationLine(TPS[0], TPS[2], 2);
1710 // ... and triangles to the Maps of the Tesselation class
1711 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1712 AddTesselationTriangle();
1713 // ... and calculate its normal vector (with correct orientation)
1714 (*it)->OptCenter.Scale(-1.);
1715 Log() << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
1716 BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
1717 Log() << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
1718 << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
1719
1720// // if we do not reach the end with the next step of iteration, we need to setup a new first line
1721// if (it != OptCandidates->end()--) {
1722// FirstPoint = (*it)->BaseLine->endpoints[0]->node;
1723// SecondPoint = (*it)->point;
1724// // adding point 1 and point 2 and the line between them
1725// AddTesselationPoint(FirstPoint, 0);
1726// AddTesselationPoint(SecondPoint, 1);
1727// AddTesselationLine(TPS[0], TPS[1], 0);
1728// }
1729 Log() << Verbose(2) << "Projection is " << BTS->NormalVector.ScalarProduct(&Oben) << "." << endl;
1730 }
1731 if (BTS != NULL) // we have created one starting triangle
1732 break;
1733 else {
1734 // remove all candidates from the list and then the list itself
1735 class CandidateForTesselation *remover = NULL;
1736 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1737 remover = *it;
1738 delete(remover);
1739 }
1740 OptCandidates->clear();
1741 }
1742 }
1743
1744 // remove all candidates from the list and then the list itself
1745 class CandidateForTesselation *remover = NULL;
1746 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1747 remover = *it;
1748 delete(remover);
1749 }
1750 delete(OptCandidates);
1751 Log() << Verbose(1) << "End of FindStartingTriangle\n";
1752};
1753
1754/** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
1755 * This is supposed to prevent early closing of the tesselation.
1756 * \param *BaseRay baseline, i.e. not \a *OptCandidate
1757 * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
1758 * \param ShortestAngle path length on this circle band for the current \a *ThirdNode
1759 * \param RADIUS radius of sphere
1760 * \param *LC LinkedCell structure
1761 * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
1762 */
1763bool Tesselation::HasOtherBaselineBetterCandidate(const BoundaryLineSet * const BaseRay, const TesselPoint * const ThirdNode, double ShortestAngle, double RADIUS, const LinkedCell * const LC) const
1764{
1765 bool result = false;
1766 Vector CircleCenter;
1767 Vector CirclePlaneNormal;
1768 Vector OldSphereCenter;
1769 Vector SearchDirection;
1770 Vector helper;
1771 TesselPoint *OtherOptCandidate = NULL;
1772 double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1773 double radius, CircleRadius;
1774 BoundaryLineSet *Line = NULL;
1775 BoundaryTriangleSet *T = NULL;
1776
1777 Log() << Verbose(1) << "Begin of HasOtherBaselineBetterCandidate" << endl;
1778
1779 // check both other lines
1780 PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->nr);
1781 if (FindPoint != PointsOnBoundary.end()) {
1782 for (int i=0;i<2;i++) {
1783 LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->nr);
1784 if (FindLine != (FindPoint->second)->lines.end()) {
1785 Line = FindLine->second;
1786 Log() << Verbose(1) << "Found line " << *Line << "." << endl;
1787 if (Line->triangles.size() == 1) {
1788 T = Line->triangles.begin()->second;
1789 // construct center of circle
1790 CircleCenter.CopyVector(Line->endpoints[0]->node->node);
1791 CircleCenter.AddVector(Line->endpoints[1]->node->node);
1792 CircleCenter.Scale(0.5);
1793
1794 // construct normal vector of circle
1795 CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
1796 CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
1797
1798 // calculate squared radius of circle
1799 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1800 if (radius/4. < RADIUS*RADIUS) {
1801 CircleRadius = RADIUS*RADIUS - radius/4.;
1802 CirclePlaneNormal.Normalize();
1803 //Log() << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
1804
1805 // construct old center
1806 GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
1807 helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
1808 radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1809 helper.Scale(sqrt(RADIUS*RADIUS - radius));
1810 OldSphereCenter.AddVector(&helper);
1811 OldSphereCenter.SubtractVector(&CircleCenter);
1812 //Log() << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
1813
1814 // construct SearchDirection
1815 SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
1816 helper.CopyVector(Line->endpoints[0]->node->node);
1817 helper.SubtractVector(ThirdNode->node);
1818 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1819 SearchDirection.Scale(-1.);
1820 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1821 SearchDirection.Normalize();
1822 Log() << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
1823 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1824 // rotated the wrong way!
1825 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
1826 }
1827
1828 // add third point
1829 CandidateList *OptCandidates = new CandidateList();
1830 FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, Line, ThirdNode, OptCandidates, &OtherShortestAngle, RADIUS, LC);
1831 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1832 if (((*it)->point == BaseRay->endpoints[0]->node) || ((*it)->point == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
1833 continue;
1834 Log() << Verbose(1) << " Third point candidate is " << *(*it)->point
1835 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
1836 Log() << Verbose(1) << " Baseline is " << *BaseRay << endl;
1837
1838 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
1839 TesselPoint *PointCandidates[3];
1840 PointCandidates[0] = (*it)->point;
1841 PointCandidates[1] = BaseRay->endpoints[0]->node;
1842 PointCandidates[2] = BaseRay->endpoints[1]->node;
1843 bool check=false;
1844 int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
1845 // If there is no triangle, add it regularly.
1846 if (existentTrianglesCount == 0) {
1847 SetTesselationPoint((*it)->point, 0);
1848 SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
1849 SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
1850
1851 if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
1852 OtherOptCandidate = (*it)->point;
1853 check = true;
1854 }
1855 } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
1856 SetTesselationPoint((*it)->point, 0);
1857 SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
1858 SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
1859
1860 // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
1861 // i.e. at least one of the three lines must be present with TriangleCount <= 1
1862 if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
1863 OtherOptCandidate = (*it)->point;
1864 check = true;
1865 }
1866 }
1867
1868 if (check) {
1869 if (ShortestAngle > OtherShortestAngle) {
1870 Log() << Verbose(1) << "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << "." << endl;
1871 result = true;
1872 break;
1873 }
1874 }
1875 }
1876 delete(OptCandidates);
1877 if (result)
1878 break;
1879 } else {
1880 Log() << Verbose(1) << "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!" << endl;
1881 }
1882 } else {
1883 eLog() << Verbose(2) << "Baseline is connected to two triangles already?" << endl;
1884 }
1885 } else {
1886 Log() << Verbose(2) << "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << "." << endl;
1887 }
1888 }
1889 } else {
1890 eLog() << Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl;
1891 }
1892
1893 Log() << Verbose(1) << "End of HasOtherBaselineBetterCandidate" << endl;
1894
1895 return result;
1896};
1897
1898/** This function finds a triangle to a line, adjacent to an existing one.
1899 * @param out output stream for debugging
1900 * @param CandidateLine current cadndiate baseline to search from
1901 * @param T current triangle which \a Line is edge of
1902 * @param RADIUS radius of the rolling ball
1903 * @param N number of found triangles
1904 * @param *LC LinkedCell structure with neighbouring points
1905 */
1906bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC)
1907{
1908 Log() << Verbose(0) << "Begin of FindNextSuitableTriangle\n";
1909 bool result = true;
1910 CandidateList *OptCandidates = new CandidateList();
1911
1912 Vector CircleCenter;
1913 Vector CirclePlaneNormal;
1914 Vector OldSphereCenter;
1915 Vector SearchDirection;
1916 Vector helper;
1917 TesselPoint *ThirdNode = NULL;
1918 LineMap::iterator testline;
1919 double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1920 double radius, CircleRadius;
1921
1922 Log() << Verbose(1) << "Current baseline is " << *CandidateLine.BaseLine << " of triangle " << T << "." << endl;
1923 for (int i=0;i<3;i++)
1924 if ((T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[0]->node) && (T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[1]->node))
1925 ThirdNode = T.endpoints[i]->node;
1926
1927 // construct center of circle
1928 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
1929 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
1930 CircleCenter.Scale(0.5);
1931
1932 // construct normal vector of circle
1933 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
1934 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
1935
1936 // calculate squared radius of circle
1937 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1938 if (radius/4. < RADIUS*RADIUS) {
1939 CircleRadius = RADIUS*RADIUS - radius/4.;
1940 CirclePlaneNormal.Normalize();
1941 //Log() << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
1942
1943 // construct old center
1944 GetCenterofCircumcircle(&OldSphereCenter, *T.endpoints[0]->node->node, *T.endpoints[1]->node->node, *T.endpoints[2]->node->node);
1945 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
1946 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1947 helper.Scale(sqrt(RADIUS*RADIUS - radius));
1948 OldSphereCenter.AddVector(&helper);
1949 OldSphereCenter.SubtractVector(&CircleCenter);
1950 //Log() << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
1951
1952 // construct SearchDirection
1953 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
1954 helper.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
1955 helper.SubtractVector(ThirdNode->node);
1956 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1957 SearchDirection.Scale(-1.);
1958 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1959 SearchDirection.Normalize();
1960 Log() << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
1961 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1962 // rotated the wrong way!
1963 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
1964 }
1965
1966 // add third point
1967 FindThirdPointForTesselation(T.NormalVector, SearchDirection, OldSphereCenter, CandidateLine.BaseLine, ThirdNode, OptCandidates, &ShortestAngle, RADIUS, LC);
1968
1969 } else {
1970 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl;
1971 }
1972
1973 if (OptCandidates->begin() == OptCandidates->end()) {
1974 eLog() << Verbose(2) << "Could not find a suitable candidate." << endl;
1975 return false;
1976 }
1977 Log() << Verbose(1) << "Third Points are ";
1978 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1979 Log() << Verbose(1) << " " << *(*it)->point << endl;
1980 }
1981
1982 BoundaryLineSet *BaseRay = CandidateLine.BaseLine;
1983 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
1984 Log() << Verbose(1) << " Third point candidate is " << *(*it)->point
1985 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
1986 Log() << Verbose(1) << " Baseline is " << *BaseRay << endl;
1987
1988 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
1989 TesselPoint *PointCandidates[3];
1990 PointCandidates[0] = (*it)->point;
1991 PointCandidates[1] = BaseRay->endpoints[0]->node;
1992 PointCandidates[2] = BaseRay->endpoints[1]->node;
1993 int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
1994
1995 BTS = NULL;
1996 // check for present edges and whether we reach better candidates from them
1997 //if (HasOtherBaselineBetterCandidate(BaseRay, (*it)->point, ShortestAngle, RADIUS, LC) ) {
1998 if (0) {
1999 result = false;
2000 break;
2001 } else {
2002 // If there is no triangle, add it regularly.
2003 if (existentTrianglesCount == 0) {
2004 AddTesselationPoint((*it)->point, 0);
2005 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
2006 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
2007
2008 if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
2009 CandidateLine.point = (*it)->point;
2010 CandidateLine.OptCenter.CopyVector(&((*it)->OptCenter));
2011 CandidateLine.OtherOptCenter.CopyVector(&((*it)->OtherOptCenter));
2012 CandidateLine.ShortestAngle = ShortestAngle;
2013 } else {
2014// eLog() << Verbose(2) << "This triangle consisting of ";
2015// Log() << Verbose(0) << *(*it)->point << ", ";
2016// Log() << Verbose(0) << *BaseRay->endpoints[0]->node << " and ";
2017// Log() << Verbose(0) << *BaseRay->endpoints[1]->node << " ";
2018// Log() << Verbose(0) << "exists and is not added, as it 0x80000000006fc150(does not seem helpful!" << endl;
2019 result = false;
2020 }
2021 } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
2022 AddTesselationPoint((*it)->point, 0);
2023 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
2024 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
2025
2026 // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
2027 // i.e. at least one of the three lines must be present with TriangleCount <= 1
2028 if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS) || CandidateLine.BaseLine->skipped) {
2029 CandidateLine.point = (*it)->point;
2030 CandidateLine.OptCenter.CopyVector(&(*it)->OptCenter);
2031 CandidateLine.OtherOptCenter.CopyVector(&(*it)->OtherOptCenter);
2032 CandidateLine.ShortestAngle = ShortestAngle+2.*M_PI;
2033
2034 } else {
2035// eLog() << Verbose(2) << "This triangle consisting of " << *(*it)->point << ", " << *BaseRay->endpoints[0]->node << " and " << *BaseRay->endpoints[1]->node << " " << "exists and is not added, as it does not seem helpful!" << endl;
2036 result = false;
2037 }
2038 } else {
2039// Log() << Verbose(1) << "This triangle consisting of ";
2040// Log() << Verbose(0) << *(*it)->point << ", ";
2041// Log() << Verbose(0) << *BaseRay->endpoints[0]->node << " and ";
2042// Log() << Verbose(0) << *BaseRay->endpoints[1]->node << " ";
2043// Log() << Verbose(0) << "is invalid!" << endl;
2044 result = false;
2045 }
2046 }
2047
2048 // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
2049 BaseRay = BLS[0];
2050 if ((BTS != NULL) && (BTS->NormalVector.NormSquared() < MYEPSILON)) {
2051 eLog() << Verbose(1) << "Triangle " << *BTS << " has zero normal vector!" << endl;
2052 exit(255);
2053 }
2054
2055 }
2056
2057 // remove all candidates from the list and then the list itself
2058 class CandidateForTesselation *remover = NULL;
2059 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
2060 remover = *it;
2061 delete(remover);
2062 }
2063 delete(OptCandidates);
2064 Log() << Verbose(0) << "End of FindNextSuitableTriangle\n";
2065 return result;
2066};
2067
2068/** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
2069 * \param &CandidateLine triangle to add
2070 */
2071void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine)
2072{
2073 Vector Center;
2074 Log() << Verbose(2) << "BaseLine is :" << *(CandidateLine.BaseLine) << " with candidate " << *(CandidateLine.point) << "." << endl;
2075 // add the points
2076 AddTesselationPoint(CandidateLine.point, 0);
2077 AddTesselationPoint(CandidateLine.BaseLine->endpoints[0]->node, 1);
2078 AddTesselationPoint(CandidateLine.BaseLine->endpoints[1]->node, 2);
2079
2080 Center.CopyVector(&CandidateLine.OptCenter);
2081 // add the lines
2082 AddTesselationLine(TPS[0], TPS[1], 0);
2083 AddTesselationLine(TPS[0], TPS[2], 1);
2084 AddTesselationLine(TPS[1], TPS[2], 2);
2085
2086 // add the triangles
2087 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2088 AddTesselationTriangle();
2089 Center.Scale(-1.);
2090 BTS->GetNormalVector(Center);
2091
2092 Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " for this triangle ... " << endl;
2093};
2094
2095/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
2096 * We look whether the closest point on \a *Base with respect to the other baseline is outside
2097 * of the segment formed by both endpoints (concave) or not (convex).
2098 * \param *out output stream for debugging
2099 * \param *Base line to be flipped
2100 * \return NULL - convex, otherwise endpoint that makes it concave
2101 */
2102class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
2103{
2104 class BoundaryPointSet *Spot = NULL;
2105 class BoundaryLineSet *OtherBase;
2106 Vector *ClosestPoint;
2107
2108 int m=0;
2109 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2110 for (int j=0;j<3;j++) // all of their endpoints and baselines
2111 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2112 BPS[m++] = runner->second->endpoints[j];
2113 OtherBase = new class BoundaryLineSet(BPS,-1);
2114
2115 Log() << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
2116 Log() << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
2117
2118 // get the closest point on each line to the other line
2119 ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
2120
2121 // delete the temporary other base line
2122 delete(OtherBase);
2123
2124 // get the distance vector from Base line to OtherBase line
2125 Vector DistanceToIntersection[2], BaseLine;
2126 double distance[2];
2127 BaseLine.CopyVector(Base->endpoints[1]->node->node);
2128 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
2129 for (int i=0;i<2;i++) {
2130 DistanceToIntersection[i].CopyVector(ClosestPoint);
2131 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
2132 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
2133 }
2134 delete(ClosestPoint);
2135 if ((distance[0] * distance[1]) > 0) { // have same sign?
2136 Log() << Verbose(3) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl;
2137 if (distance[0] < distance[1]) {
2138 Spot = Base->endpoints[0];
2139 } else {
2140 Spot = Base->endpoints[1];
2141 }
2142 return Spot;
2143 } else { // different sign, i.e. we are in between
2144 Log() << Verbose(3) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;
2145 return NULL;
2146 }
2147
2148};
2149
2150void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
2151{
2152 // print all lines
2153 Log() << Verbose(1) << "Printing all boundary points for debugging:" << endl;
2154 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin();PointRunner != PointsOnBoundary.end(); PointRunner++)
2155 Log() << Verbose(2) << *(PointRunner->second) << endl;
2156};
2157
2158void Tesselation::PrintAllBoundaryLines(ofstream *out) const
2159{
2160 // print all lines
2161 Log() << Verbose(1) << "Printing all boundary lines for debugging:" << endl;
2162 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
2163 Log() << Verbose(2) << *(LineRunner->second) << endl;
2164};
2165
2166void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
2167{
2168 // print all triangles
2169 Log() << Verbose(1) << "Printing all boundary triangles for debugging:" << endl;
2170 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
2171 Log() << Verbose(2) << *(TriangleRunner->second) << endl;
2172};
2173
2174/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
2175 * \param *out output stream for debugging
2176 * \param *Base line to be flipped
2177 * \return volume change due to flipping (0 - then no flipped occured)
2178 */
2179double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
2180{
2181 class BoundaryLineSet *OtherBase;
2182 Vector *ClosestPoint[2];
2183 double volume;
2184
2185 int m=0;
2186 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2187 for (int j=0;j<3;j++) // all of their endpoints and baselines
2188 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2189 BPS[m++] = runner->second->endpoints[j];
2190 OtherBase = new class BoundaryLineSet(BPS,-1);
2191
2192 Log() << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
2193 Log() << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
2194
2195 // get the closest point on each line to the other line
2196 ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
2197 ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
2198
2199 // get the distance vector from Base line to OtherBase line
2200 Vector Distance;
2201 Distance.CopyVector(ClosestPoint[1]);
2202 Distance.SubtractVector(ClosestPoint[0]);
2203
2204 // calculate volume
2205 volume = CalculateVolumeofGeneralTetraeder(*Base->endpoints[1]->node->node, *OtherBase->endpoints[0]->node->node, *OtherBase->endpoints[1]->node->node, *Base->endpoints[0]->node->node);
2206
2207 // delete the temporary other base line and the closest points
2208 delete(ClosestPoint[0]);
2209 delete(ClosestPoint[1]);
2210 delete(OtherBase);
2211
2212 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
2213 Log() << Verbose(3) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
2214 return false;
2215 } else { // check for sign against BaseLineNormal
2216 Vector BaseLineNormal;
2217 BaseLineNormal.Zero();
2218 if (Base->triangles.size() < 2) {
2219 eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl;
2220 return 0.;
2221 }
2222 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2223 Log() << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2224 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2225 }
2226 BaseLineNormal.Scale(1./2.);
2227
2228 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
2229 Log() << Verbose(2) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
2230 // calculate volume summand as a general tetraeder
2231 return volume;
2232 } else { // Base higher than OtherBase -> do nothing
2233 Log() << Verbose(2) << "REJECT: Base line is higher: Nothing to do." << endl;
2234 return 0.;
2235 }
2236 }
2237};
2238
2239/** For a given baseline and its two connected triangles, flips the baseline.
2240 * I.e. we create the new baseline between the other two endpoints of these four
2241 * endpoints and reconstruct the two triangles accordingly.
2242 * \param *out output stream for debugging
2243 * \param *Base line to be flipped
2244 * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
2245 */
2246class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
2247{
2248 class BoundaryLineSet *OldLines[4], *NewLine;
2249 class BoundaryPointSet *OldPoints[2];
2250 Vector BaseLineNormal;
2251 int OldTriangleNrs[2], OldBaseLineNr;
2252 int i,m;
2253
2254 Log() << Verbose(1) << "Begin of FlipBaseline" << endl;
2255
2256 // calculate NormalVector for later use
2257 BaseLineNormal.Zero();
2258 if (Base->triangles.size() < 2) {
2259 eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl;
2260 return NULL;
2261 }
2262 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2263 Log() << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2264 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2265 }
2266 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
2267
2268 // get the two triangles
2269 // gather four endpoints and four lines
2270 for (int j=0;j<4;j++)
2271 OldLines[j] = NULL;
2272 for (int j=0;j<2;j++)
2273 OldPoints[j] = NULL;
2274 i=0;
2275 m=0;
2276 Log() << Verbose(3) << "The four old lines are: ";
2277 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2278 for (int j=0;j<3;j++) // all of their endpoints and baselines
2279 if (runner->second->lines[j] != Base) { // pick not the central baseline
2280 OldLines[i++] = runner->second->lines[j];
2281 Log() << Verbose(0) << *runner->second->lines[j] << "\t";
2282 }
2283 Log() << Verbose(0) << endl;
2284 Log() << Verbose(3) << "The two old points are: ";
2285 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2286 for (int j=0;j<3;j++) // all of their endpoints and baselines
2287 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
2288 OldPoints[m++] = runner->second->endpoints[j];
2289 Log() << Verbose(0) << *runner->second->endpoints[j] << "\t";
2290 }
2291 Log() << Verbose(0) << endl;
2292
2293 // check whether everything is in place to create new lines and triangles
2294 if (i<4) {
2295 eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl;
2296 return NULL;
2297 }
2298 for (int j=0;j<4;j++)
2299 if (OldLines[j] == NULL) {
2300 eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl;
2301 return NULL;
2302 }
2303 for (int j=0;j<2;j++)
2304 if (OldPoints[j] == NULL) {
2305 eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl;
2306 return NULL;
2307 }
2308
2309 // remove triangles and baseline removes itself
2310 Log() << Verbose(3) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
2311 OldBaseLineNr = Base->Nr;
2312 m=0;
2313 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2314 Log() << Verbose(3) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
2315 OldTriangleNrs[m++] = runner->second->Nr;
2316 RemoveTesselationTriangle(runner->second);
2317 }
2318
2319 // construct new baseline (with same number as old one)
2320 BPS[0] = OldPoints[0];
2321 BPS[1] = OldPoints[1];
2322 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
2323 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
2324 Log() << Verbose(3) << "INFO: Created new baseline " << *NewLine << "." << endl;
2325
2326 // construct new triangles with flipped baseline
2327 i=-1;
2328 if (OldLines[0]->IsConnectedTo(OldLines[2]))
2329 i=2;
2330 if (OldLines[0]->IsConnectedTo(OldLines[3]))
2331 i=3;
2332 if (i!=-1) {
2333 BLS[0] = OldLines[0];
2334 BLS[1] = OldLines[i];
2335 BLS[2] = NewLine;
2336 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
2337 BTS->GetNormalVector(BaseLineNormal);
2338 AddTesselationTriangle(OldTriangleNrs[0]);
2339 Log() << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2340
2341 BLS[0] = (i==2 ? OldLines[3] : OldLines[2]);
2342 BLS[1] = OldLines[1];
2343 BLS[2] = NewLine;
2344 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
2345 BTS->GetNormalVector(BaseLineNormal);
2346 AddTesselationTriangle(OldTriangleNrs[1]);
2347 Log() << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2348 } else {
2349 Log() << Verbose(1) << "The four old lines do not connect, something's utterly wrong here!" << endl;
2350 return NULL;
2351 }
2352
2353 Log() << Verbose(1) << "End of FlipBaseline" << endl;
2354 return NewLine;
2355};
2356
2357
2358/** Finds the second point of starting triangle.
2359 * \param *a first node
2360 * \param Oben vector indicating the outside
2361 * \param OptCandidate reference to recommended candidate on return
2362 * \param Storage[3] array storing angles and other candidate information
2363 * \param RADIUS radius of virtual sphere
2364 * \param *LC LinkedCell structure with neighbouring points
2365 */
2366void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC)
2367{
2368 Log() << Verbose(2) << "Begin of FindSecondPointForTesselation" << endl;
2369 Vector AngleCheck;
2370 class TesselPoint* Candidate = NULL;
2371 double norm = -1.;
2372 double angle = 0.;
2373 int N[NDIM];
2374 int Nlower[NDIM];
2375 int Nupper[NDIM];
2376
2377 if (LC->SetIndexToNode(a)) { // get cell for the starting point
2378 for(int i=0;i<NDIM;i++) // store indices of this cell
2379 N[i] = LC->n[i];
2380 } else {
2381 eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl;
2382 return;
2383 }
2384 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2385 for (int i=0;i<NDIM;i++) {
2386 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2387 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2388 }
2389 Log() << Verbose(3) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :"
2390 << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl;
2391
2392 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2393 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2394 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2395 const LinkedNodes *List = LC->GetCurrentCell();
2396 //Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2397 if (List != NULL) {
2398 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2399 Candidate = (*Runner);
2400 // check if we only have one unique point yet ...
2401 if (a != Candidate) {
2402 // Calculate center of the circle with radius RADIUS through points a and Candidate
2403 Vector OrthogonalizedOben, aCandidate, Center;
2404 double distance, scaleFactor;
2405
2406 OrthogonalizedOben.CopyVector(&Oben);
2407 aCandidate.CopyVector(a->node);
2408 aCandidate.SubtractVector(Candidate->node);
2409 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
2410 OrthogonalizedOben.Normalize();
2411 distance = 0.5 * aCandidate.Norm();
2412 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2413 OrthogonalizedOben.Scale(scaleFactor);
2414
2415 Center.CopyVector(Candidate->node);
2416 Center.AddVector(a->node);
2417 Center.Scale(0.5);
2418 Center.AddVector(&OrthogonalizedOben);
2419
2420 AngleCheck.CopyVector(&Center);
2421 AngleCheck.SubtractVector(a->node);
2422 norm = aCandidate.Norm();
2423 // second point shall have smallest angle with respect to Oben vector
2424 if (norm < RADIUS*2.) {
2425 angle = AngleCheck.Angle(&Oben);
2426 if (angle < Storage[0]) {
2427 //Log() << Verbose(3) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2428 Log() << Verbose(3) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
2429 OptCandidate = Candidate;
2430 Storage[0] = angle;
2431 //Log() << Verbose(3) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2432 } else {
2433 //Log() << Verbose(3) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
2434 }
2435 } else {
2436 //Log() << Verbose(3) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
2437 }
2438 } else {
2439 //Log() << Verbose(3) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
2440 }
2441 }
2442 } else {
2443 Log() << Verbose(3) << "Linked cell list is empty." << endl;
2444 }
2445 }
2446 Log() << Verbose(2) << "End of FindSecondPointForTesselation" << endl;
2447};
2448
2449
2450/** This recursive function finds a third point, to form a triangle with two given ones.
2451 * Note that this function is for the starting triangle.
2452 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2453 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2454 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2455 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2456 * us the "null" on this circle, the new center of the candidate point will be some way along this
2457 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2458 * by the normal vector of the base triangle that always points outwards by construction.
2459 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2460 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2461 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2462 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2463 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2464 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2465 * both.
2466 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2467 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2468 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2469 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2470 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2471 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
2472 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
2473 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2474 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2475 * @param BaseLine BoundaryLineSet with the current base line
2476 * @param ThirdNode third point to avoid in search
2477 * @param candidates list of equally good candidates to return
2478 * @param ShortestAngle the current path length on this circle band for the current OptCandidate
2479 * @param RADIUS radius of sphere
2480 * @param *LC LinkedCell structure with neighbouring points
2481 */
2482void Tesselation::FindThirdPointForTesselation(Vector &NormalVector, Vector &SearchDirection, Vector &OldSphereCenter, class BoundaryLineSet *BaseLine, const class TesselPoint * const ThirdNode, CandidateList* &candidates, double *ShortestAngle, const double RADIUS, const LinkedCell *LC) const
2483{
2484 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2485 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2486 Vector SphereCenter;
2487 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2488 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2489 Vector NewNormalVector; // normal vector of the Candidate's triangle
2490 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2491 double CircleRadius; // radius of this circle
2492 double radius;
2493 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2494 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2495 TesselPoint *Candidate = NULL;
2496 CandidateForTesselation *optCandidate = NULL;
2497
2498 Log() << Verbose(1) << "Begin of FindThirdPointForTesselation" << endl;
2499
2500 Log() << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2501
2502 // construct center of circle
2503 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2504 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
2505 CircleCenter.Scale(0.5);
2506
2507 // construct normal vector of circle
2508 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2509 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
2510
2511 // calculate squared radius TesselPoint *ThirdNode,f circle
2512 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2513 if (radius/4. < RADIUS*RADIUS) {
2514 CircleRadius = RADIUS*RADIUS - radius/4.;
2515 CirclePlaneNormal.Normalize();
2516 //Log() << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2517
2518 // test whether old center is on the band's plane
2519 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2520 eLog() << Verbose(1) << "Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2521 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2522 }
2523 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2524 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2525 //Log() << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2526
2527 // check SearchDirection
2528 //Log() << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2529 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2530 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2531 }
2532
2533 // get cell for the starting point
2534 if (LC->SetIndexToVector(&CircleCenter)) {
2535 for(int i=0;i<NDIM;i++) // store indices of this cell
2536 N[i] = LC->n[i];
2537 //Log() << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2538 } else {
2539 eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2540 return;
2541 }
2542 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2543 //Log() << Verbose(2) << "LC Intervals:";
2544 for (int i=0;i<NDIM;i++) {
2545 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2546 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2547 //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2548 }
2549 //Log() << Verbose(0) << endl;
2550 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2551 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2552 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2553 const LinkedNodes *List = LC->GetCurrentCell();
2554 //Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2555 if (List != NULL) {
2556 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2557 Candidate = (*Runner);
2558
2559 // check for three unique points
2560 //Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->node << "." << endl;
2561 if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
2562
2563 // construct both new centers
2564 GetCenterofCircumcircle(&NewSphereCenter, *BaseLine->endpoints[0]->node->node, *BaseLine->endpoints[1]->node->node, *Candidate->node);
2565 OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2566
2567 if ((NewNormalVector.MakeNormalVector(BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node))
2568 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
2569 ) {
2570 helper.CopyVector(&NewNormalVector);
2571 //Log() << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2572 radius = BaseLine->endpoints[0]->node->node->DistanceSquared(&NewSphereCenter);
2573 if (radius < RADIUS*RADIUS) {
2574 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2575 //Log() << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
2576 NewSphereCenter.AddVector(&helper);
2577 NewSphereCenter.SubtractVector(&CircleCenter);
2578 //Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2579
2580 // OtherNewSphereCenter is created by the same vector just in the other direction
2581 helper.Scale(-1.);
2582 OtherNewSphereCenter.AddVector(&helper);
2583 OtherNewSphereCenter.SubtractVector(&CircleCenter);
2584 //Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2585
2586 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2587 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2588 alpha = min(alpha, Otheralpha);
2589 // if there is a better candidate, drop the current list and add the new candidate
2590 // otherwise ignore the new candidate and keep the list
2591 if (*ShortestAngle > (alpha - HULLEPSILON)) {
2592 optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
2593 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2594 optCandidate->OptCenter.CopyVector(&NewSphereCenter);
2595 optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
2596 } else {
2597 optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
2598 optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
2599 }
2600 // if there is an equal candidate, add it to the list without clearing the list
2601 if ((*ShortestAngle - HULLEPSILON) < alpha) {
2602 candidates->push_back(optCandidate);
2603 Log() << Verbose(2) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
2604 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2605 } else {
2606 // remove all candidates from the list and then the list itself
2607 class CandidateForTesselation *remover = NULL;
2608 for (CandidateList::iterator it = candidates->begin(); it != candidates->end(); ++it) {
2609 remover = *it;
2610 delete(remover);
2611 }
2612 candidates->clear();
2613 candidates->push_back(optCandidate);
2614 Log() << Verbose(2) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
2615 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2616 }
2617 *ShortestAngle = alpha;
2618 //Log() << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
2619 } else {
2620 if ((optCandidate != NULL) && (optCandidate->point != NULL)) {
2621 //Log() << Verbose(2) << "REJECT: Old candidate " << *(optCandidate->point) << " with " << *ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
2622 } else {
2623 //Log() << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2624 }
2625 }
2626
2627 } else {
2628 //Log() << Verbose(2) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
2629 }
2630 } else {
2631 //Log() << Verbose(2) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2632 }
2633 } else {
2634 if (ThirdNode != NULL) {
2635 //Log() << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
2636 } else {
2637 //Log() << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
2638 }
2639 }
2640 }
2641 }
2642 }
2643 } else {
2644 eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2645 }
2646 } else {
2647 if (ThirdNode != NULL)
2648 Log() << Verbose(2) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
2649 else
2650 Log() << Verbose(2) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
2651 }
2652
2653 //Log() << Verbose(2) << "INFO: Sorting candidate list ..." << endl;
2654 if (candidates->size() > 1) {
2655 candidates->unique();
2656 candidates->sort(SortCandidates);
2657 }
2658
2659 Log() << Verbose(1) << "End of FindThirdPointForTesselation" << endl;
2660};
2661
2662/** Finds the endpoint two lines are sharing.
2663 * \param *line1 first line
2664 * \param *line2 second line
2665 * \return point which is shared or NULL if none
2666 */
2667class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
2668{
2669 const BoundaryLineSet * lines[2] = { line1, line2 };
2670 class BoundaryPointSet *node = NULL;
2671 map<int, class BoundaryPointSet *> OrderMap;
2672 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
2673 for (int i = 0; i < 2; i++)
2674 // for both lines
2675 for (int j = 0; j < 2; j++)
2676 { // for both endpoints
2677 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
2678 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
2679 if (!OrderTest.second)
2680 { // if insertion fails, we have common endpoint
2681 node = OrderTest.first->second;
2682 Log() << Verbose(5) << "Common endpoint of lines " << *line1
2683 << " and " << *line2 << " is: " << *node << "." << endl;
2684 j = 2;
2685 i = 2;
2686 break;
2687 }
2688 }
2689 return node;
2690};
2691
2692/** Finds the triangle that is closest to a given Vector \a *x.
2693 * \param *out output stream for debugging
2694 * \param *x Vector to look from
2695 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case.
2696 */
2697list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(const Vector *x, const LinkedCell* LC) const
2698{
2699 TesselPoint *trianglePoints[3];
2700 TesselPoint *SecondPoint = NULL;
2701 list<BoundaryTriangleSet*> *triangles = NULL;
2702
2703 if (LinesOnBoundary.empty()) {
2704 Log() << Verbose(0) << "Error: There is no tesselation structure to compare the point with, please create one first.";
2705 return NULL;
2706 }
2707 Log() << Verbose(1) << "Finding closest Tesselpoint to " << *x << " ... " << endl;
2708 trianglePoints[0] = FindClosestPoint(x, SecondPoint, LC);
2709
2710 // check whether closest point is "too close" :), then it's inside
2711 if (trianglePoints[0] == NULL) {
2712 Log() << Verbose(2) << "Is the only point, no one else is closeby." << endl;
2713 return NULL;
2714 }
2715 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) {
2716 Log() << Verbose(3) << "Point is right on a tesselation point, no nearest triangle." << endl;
2717 PointMap::const_iterator PointRunner = PointsOnBoundary.find(trianglePoints[0]->nr);
2718 triangles = new list<BoundaryTriangleSet*>;
2719 if (PointRunner != PointsOnBoundary.end()) {
2720 for(LineMap::iterator LineRunner = PointRunner->second->lines.begin(); LineRunner != PointRunner->second->lines.end(); LineRunner++)
2721 for(TriangleMap::iterator TriangleRunner = LineRunner->second->triangles.begin(); TriangleRunner != LineRunner->second->triangles.end(); TriangleRunner++)
2722 triangles->push_back(TriangleRunner->second);
2723 triangles->sort();
2724 triangles->unique();
2725 } else {
2726 PointRunner = PointsOnBoundary.find(SecondPoint->nr);
2727 trianglePoints[0] = SecondPoint;
2728 if (PointRunner != PointsOnBoundary.end()) {
2729 for(LineMap::iterator LineRunner = PointRunner->second->lines.begin(); LineRunner != PointRunner->second->lines.end(); LineRunner++)
2730 for(TriangleMap::iterator TriangleRunner = LineRunner->second->triangles.begin(); TriangleRunner != LineRunner->second->triangles.end(); TriangleRunner++)
2731 triangles->push_back(TriangleRunner->second);
2732 triangles->sort();
2733 triangles->unique();
2734 } else {
2735 eLog() << Verbose(1) << "I cannot find a boundary point to the tessel point " << *trianglePoints[0] << "." << endl;
2736 return NULL;
2737 }
2738 }
2739 } else {
2740 list<TesselPoint*> *connectedClosestPoints = GetCircleOfConnectedPoints(trianglePoints[0], x);
2741 if (connectedClosestPoints != NULL) {
2742 trianglePoints[1] = connectedClosestPoints->front();
2743 trianglePoints[2] = connectedClosestPoints->back();
2744 for (int i=0;i<3;i++) {
2745 if (trianglePoints[i] == NULL) {
2746 eLog() << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl;
2747 }
2748 //Log() << Verbose(2) << "List of triangle points:" << endl;
2749 //Log() << Verbose(3) << *trianglePoints[i] << endl;
2750 }
2751
2752 triangles = FindTriangles(trianglePoints);
2753 Log() << Verbose(2) << "List of possible triangles:" << endl;
2754 for(list<BoundaryTriangleSet*>::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
2755 Log() << Verbose(3) << **Runner << endl;
2756
2757 delete(connectedClosestPoints);
2758 } else {
2759 triangles = NULL;
2760 Log() << Verbose(1) << "There is no circle of connected points!" << endl;
2761 }
2762 }
2763
2764 if ((triangles == NULL) || (triangles->empty())) {
2765 eLog() << Verbose(1) << "There is no nearest triangle. Please check the tesselation structure.";
2766 delete(triangles);
2767 return NULL;
2768 } else
2769 return triangles;
2770};
2771
2772/** Finds closest triangle to a point.
2773 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
2774 * \param *out output stream for debugging
2775 * \param *x Vector to look from
2776 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
2777 */
2778class BoundaryTriangleSet * Tesselation::FindClosestTriangleToPoint(const Vector *x, const LinkedCell* LC) const
2779{
2780 class BoundaryTriangleSet *result = NULL;
2781 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(x, LC);
2782 Vector Center;
2783
2784 if (triangles == NULL)
2785 return NULL;
2786
2787 if (triangles->size() == 1) { // there is no degenerate case
2788 result = triangles->front();
2789 Log() << Verbose(2) << "Normal Vector of this triangle is " << result->NormalVector << "." << endl;
2790 } else {
2791 result = triangles->front();
2792 result->GetCenter(&Center);
2793 Center.SubtractVector(x);
2794 Log() << Verbose(2) << "Normal Vector of this front side is " << result->NormalVector << "." << endl;
2795 if (Center.ScalarProduct(&result->NormalVector) < 0) {
2796 result = triangles->back();
2797 Log() << Verbose(2) << "Normal Vector of this back side is " << result->NormalVector << "." << endl;
2798 if (Center.ScalarProduct(&result->NormalVector) < 0) {
2799 eLog() << Verbose(1) << "Front and back side yield NormalVector in wrong direction!" << endl;
2800 }
2801 }
2802 }
2803 delete(triangles);
2804 return result;
2805};
2806
2807/** Checks whether the provided Vector is within the tesselation structure.
2808 *
2809 * @param point of which to check the position
2810 * @param *LC LinkedCell structure
2811 *
2812 * @return true if the point is inside the tesselation structure, false otherwise
2813 */
2814bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const
2815{
2816 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(&Point, LC);
2817 Vector Center;
2818
2819 if (result == NULL) {// is boundary point or only point in point cloud?
2820 Log() << Verbose(1) << Point << " is the only point in vicinity." << endl;
2821 return false;
2822 }
2823
2824 result->GetCenter(&Center);
2825 Log() << Verbose(3) << "INFO: Central point of the triangle is " << Center << "." << endl;
2826 Center.SubtractVector(&Point);
2827 Log() << Verbose(3) << "INFO: Vector from center to point to test is " << Center << "." << endl;
2828 if (Center.ScalarProduct(&result->NormalVector) > -MYEPSILON) {
2829 Log() << Verbose(1) << Point << " is an inner point." << endl;
2830 return true;
2831 } else {
2832 Log() << Verbose(1) << Point << " is NOT an inner point." << endl;
2833 return false;
2834 }
2835}
2836
2837/** Checks whether the provided TesselPoint is within the tesselation structure.
2838 *
2839 * @param *Point of which to check the position
2840 * @param *LC Linked Cell structure
2841 *
2842 * @return true if the point is inside the tesselation structure, false otherwise
2843 */
2844bool Tesselation::IsInnerPoint(const TesselPoint * const Point, const LinkedCell* const LC) const
2845{
2846 return IsInnerPoint(*(Point->node), LC);
2847}
2848
2849/** Gets all points connected to the provided point by triangulation lines.
2850 *
2851 * @param *Point of which get all connected points
2852 *
2853 * @return set of the all points linked to the provided one
2854 */
2855set<TesselPoint*> * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
2856{
2857 set<TesselPoint*> *connectedPoints = new set<TesselPoint*>;
2858 class BoundaryPointSet *ReferencePoint = NULL;
2859 TesselPoint* current;
2860 bool takePoint = false;
2861
2862 Log() << Verbose(3) << "Begin of GetAllConnectedPoints" << endl;
2863
2864 // find the respective boundary point
2865 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
2866 if (PointRunner != PointsOnBoundary.end()) {
2867 ReferencePoint = PointRunner->second;
2868 } else {
2869 Log() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
2870 ReferencePoint = NULL;
2871 }
2872
2873 // little trick so that we look just through lines connect to the BoundaryPoint
2874 // OR fall-back to look through all lines if there is no such BoundaryPoint
2875 const LineMap *Lines;;
2876 if (ReferencePoint != NULL)
2877 Lines = &(ReferencePoint->lines);
2878 else
2879 Lines = &LinesOnBoundary;
2880 LineMap::const_iterator findLines = Lines->begin();
2881 while (findLines != Lines->end()) {
2882 takePoint = false;
2883
2884 if (findLines->second->endpoints[0]->Nr == Point->nr) {
2885 takePoint = true;
2886 current = findLines->second->endpoints[1]->node;
2887 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
2888 takePoint = true;
2889 current = findLines->second->endpoints[0]->node;
2890 }
2891
2892 if (takePoint) {
2893 Log() << Verbose(5) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl;
2894 connectedPoints->insert(current);
2895 }
2896
2897 findLines++;
2898 }
2899
2900 if (connectedPoints->size() == 0) { // if have not found any points
2901 eLog() << Verbose(1) << "We have not found any connected points to " << *Point<< "." << endl;
2902 return NULL;
2903 }
2904
2905 Log() << Verbose(3) << "End of GetAllConnectedPoints" << endl;
2906 return connectedPoints;
2907};
2908
2909
2910/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
2911 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2912 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2913 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2914 * triangle we are looking for.
2915 *
2916 * @param *out output stream for debugging
2917 * @param *Point of which get all connected points
2918 * @param *Reference Reference vector for zero angle or NULL for no preference
2919 * @return list of the all points linked to the provided one
2920 */
2921list<TesselPoint*> * Tesselation::GetCircleOfConnectedPoints(const TesselPoint* const Point, const Vector * const Reference) const
2922{
2923 map<double, TesselPoint*> anglesOfPoints;
2924 set<TesselPoint*> *connectedPoints = GetAllConnectedPoints(Point);
2925 list<TesselPoint*> *connectedCircle = new list<TesselPoint*>;
2926 Vector center;
2927 Vector PlaneNormal;
2928 Vector AngleZero;
2929 Vector OrthogonalVector;
2930 Vector helper;
2931
2932 if (connectedPoints == NULL) {
2933 Log() << Verbose(2) << "Could not find any connected points!" << endl;
2934 delete(connectedCircle);
2935 return NULL;
2936 }
2937 Log() << Verbose(2) << "Begin of GetCircleOfConnectedPoints" << endl;
2938
2939 // calculate central point
2940 for (set<TesselPoint*>::const_iterator TesselRunner = connectedPoints->begin(); TesselRunner != connectedPoints->end(); TesselRunner++)
2941 center.AddVector((*TesselRunner)->node);
2942 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()
2943 // << "; scale factor " << 1.0/connectedPoints.size();
2944 center.Scale(1.0/connectedPoints->size());
2945 Log() << Verbose(4) << "INFO: Calculated center of all circle points is " << center << "." << endl;
2946
2947 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
2948 PlaneNormal.CopyVector(Point->node);
2949 PlaneNormal.SubtractVector(&center);
2950 PlaneNormal.Normalize();
2951 Log() << Verbose(4) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
2952
2953 // construct one orthogonal vector
2954 if (Reference != NULL) {
2955 AngleZero.CopyVector(Reference);
2956 AngleZero.SubtractVector(Point->node);
2957 AngleZero.ProjectOntoPlane(&PlaneNormal);
2958 }
2959 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) {
2960 Log() << Verbose(4) << "Using alternatively " << *(*connectedPoints->begin())->node << " as angle 0 referencer." << endl;
2961 AngleZero.CopyVector((*connectedPoints->begin())->node);
2962 AngleZero.SubtractVector(Point->node);
2963 AngleZero.ProjectOntoPlane(&PlaneNormal);
2964 if (AngleZero.NormSquared() < MYEPSILON) {
2965 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl;
2966 performCriticalExit();
2967 }
2968 }
2969 Log() << Verbose(4) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
2970 if (AngleZero.NormSquared() > MYEPSILON)
2971 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
2972 else
2973 OrthogonalVector.MakeNormalVector(&PlaneNormal);
2974 Log() << Verbose(4) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
2975
2976 // go through all connected points and calculate angle
2977 for (set<TesselPoint*>::iterator listRunner = connectedPoints->begin(); listRunner != connectedPoints->end(); listRunner++) {
2978 helper.CopyVector((*listRunner)->node);
2979 helper.SubtractVector(Point->node);
2980 helper.ProjectOntoPlane(&PlaneNormal);
2981 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
2982 Log() << Verbose(3) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
2983 anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
2984 }
2985
2986 for(map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
2987 connectedCircle->push_back(AngleRunner->second);
2988 }
2989
2990 delete(connectedPoints);
2991
2992 Log() << Verbose(2) << "End of GetCircleOfConnectedPoints" << endl;
2993
2994 return connectedCircle;
2995}
2996
2997/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
2998 *
2999 * @param *out output stream for debugging
3000 * @param *Point of which get all connected points
3001 * @return list of the all points linked to the provided one
3002 */
3003list<list<TesselPoint*> *> * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
3004{
3005 map<double, TesselPoint*> anglesOfPoints;
3006 list<list<TesselPoint*> *> *ListOfPaths = new list<list<TesselPoint*> *>;
3007 list<TesselPoint*> *connectedPath = NULL;
3008 Vector center;
3009 Vector PlaneNormal;
3010 Vector AngleZero;
3011 Vector OrthogonalVector;
3012 Vector helper;
3013 class BoundaryPointSet *ReferencePoint = NULL;
3014 class BoundaryPointSet *CurrentPoint = NULL;
3015 class BoundaryTriangleSet *triangle = NULL;
3016 class BoundaryLineSet *CurrentLine = NULL;
3017 class BoundaryLineSet *StartLine = NULL;
3018
3019 // find the respective boundary point
3020 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
3021 if (PointRunner != PointsOnBoundary.end()) {
3022 ReferencePoint = PointRunner->second;
3023 } else {
3024 eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
3025 return NULL;
3026 }
3027
3028 map <class BoundaryLineSet *, bool> TouchedLine;
3029 map <class BoundaryTriangleSet *, bool> TouchedTriangle;
3030 map <class BoundaryLineSet *, bool>::iterator LineRunner;
3031 map <class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
3032 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
3033 TouchedLine.insert( pair <class BoundaryLineSet *, bool>(Runner->second, false) );
3034 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
3035 TouchedTriangle.insert( pair <class BoundaryTriangleSet *, bool>(Sprinter->second, false) );
3036 }
3037 if (!ReferencePoint->lines.empty()) {
3038 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
3039 LineRunner = TouchedLine.find(runner->second);
3040 if (LineRunner == TouchedLine.end()) {
3041 eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl;
3042 } else if (!LineRunner->second) {
3043 LineRunner->second = true;
3044 connectedPath = new list<TesselPoint*>;
3045 triangle = NULL;
3046 CurrentLine = runner->second;
3047 StartLine = CurrentLine;
3048 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
3049 Log() << Verbose(3)<< "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl;
3050 do {
3051 // push current one
3052 Log() << Verbose(3) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
3053 connectedPath->push_back(CurrentPoint->node);
3054
3055 // find next triangle
3056 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
3057 Log() << Verbose(3) << "INFO: Inspecting triangle " << *Runner->second << "." << endl;
3058 if ((Runner->second != triangle)) { // look for first triangle not equal to old one
3059 triangle = Runner->second;
3060 TriangleRunner = TouchedTriangle.find(triangle);
3061 if (TriangleRunner != TouchedTriangle.end()) {
3062 if (!TriangleRunner->second) {
3063 TriangleRunner->second = true;
3064 Log() << Verbose(3) << "INFO: Connecting triangle is " << *triangle << "." << endl;
3065 break;
3066 } else {
3067 Log() << Verbose(3) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl;
3068 triangle = NULL;
3069 }
3070 } else {
3071 eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl;
3072 triangle = NULL;
3073 }
3074 }
3075 }
3076 if (triangle == NULL)
3077 break;
3078 // find next line
3079 for (int i=0;i<3;i++) {
3080 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
3081 CurrentLine = triangle->lines[i];
3082 Log() << Verbose(3) << "INFO: Connecting line is " << *CurrentLine << "." << endl;
3083 break;
3084 }
3085 }
3086 LineRunner = TouchedLine.find(CurrentLine);
3087 if (LineRunner == TouchedLine.end())
3088 eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl;
3089 else
3090 LineRunner->second = true;
3091 // find next point
3092 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
3093
3094 } while (CurrentLine != StartLine);
3095 // last point is missing, as it's on start line
3096 Log() << Verbose(3) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
3097 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
3098 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
3099
3100 ListOfPaths->push_back(connectedPath);
3101 } else {
3102 Log() << Verbose(3) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl;
3103 }
3104 }
3105 } else {
3106 eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl;
3107 }
3108
3109 return ListOfPaths;
3110}
3111
3112/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
3113 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
3114 * @param *out output stream for debugging
3115 * @param *Point of which get all connected points
3116 * @return list of the closed paths
3117 */
3118list<list<TesselPoint*> *> * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
3119{
3120 list<list<TesselPoint*> *> *ListofPaths = GetPathsOfConnectedPoints(Point);
3121 list<list<TesselPoint*> *> *ListofClosedPaths = new list<list<TesselPoint*> *>;
3122 list<TesselPoint*> *connectedPath = NULL;
3123 list<TesselPoint*> *newPath = NULL;
3124 int count = 0;
3125
3126
3127 list<TesselPoint*>::iterator CircleRunner;
3128 list<TesselPoint*>::iterator CircleStart;
3129
3130 for(list<list<TesselPoint*> *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
3131 connectedPath = *ListRunner;
3132
3133 Log() << Verbose(2) << "INFO: Current path is " << connectedPath << "." << endl;
3134
3135 // go through list, look for reappearance of starting Point and count
3136 CircleStart = connectedPath->begin();
3137
3138 // go through list, look for reappearance of starting Point and create list
3139 list<TesselPoint*>::iterator Marker = CircleStart;
3140 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
3141 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
3142 // we have a closed circle from Marker to new Marker
3143 Log() << Verbose(3) << count+1 << ". closed path consists of: ";
3144 newPath = new list<TesselPoint*>;
3145 list<TesselPoint*>::iterator CircleSprinter = Marker;
3146 for (; CircleSprinter != CircleRunner; CircleSprinter++) {
3147 newPath->push_back(*CircleSprinter);
3148 Log() << Verbose(0) << (**CircleSprinter) << " <-> ";
3149 }
3150 Log() << Verbose(0) << ".." << endl;
3151 count++;
3152 Marker = CircleRunner;
3153
3154 // add to list
3155 ListofClosedPaths->push_back(newPath);
3156 }
3157 }
3158 }
3159 Log() << Verbose(3) << "INFO: " << count << " closed additional path(s) have been created." << endl;
3160
3161 // delete list of paths
3162 while (!ListofPaths->empty()) {
3163 connectedPath = *(ListofPaths->begin());
3164 ListofPaths->remove(connectedPath);
3165 delete(connectedPath);
3166 }
3167 delete(ListofPaths);
3168
3169 // exit
3170 return ListofClosedPaths;
3171};
3172
3173
3174/** Gets all belonging triangles for a given BoundaryPointSet.
3175 * \param *out output stream for debugging
3176 * \param *Point BoundaryPoint
3177 * \return pointer to allocated list of triangles
3178 */
3179set<BoundaryTriangleSet*> *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
3180{
3181 set<BoundaryTriangleSet*> *connectedTriangles = new set<BoundaryTriangleSet*>;
3182
3183 if (Point == NULL) {
3184 eLog() << Verbose(1) << "Point given is NULL." << endl;
3185 } else {
3186 // go through its lines and insert all triangles
3187 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
3188 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
3189 connectedTriangles->insert(TriangleRunner->second);
3190 }
3191 }
3192
3193 return connectedTriangles;
3194};
3195
3196
3197/** Removes a boundary point from the envelope while keeping it closed.
3198 * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
3199 * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
3200 * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
3201 * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
3202 * -# the surface is closed, when the path is empty
3203 * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
3204 * \param *out output stream for debugging
3205 * \param *point point to be removed
3206 * \return volume added to the volume inside the tesselated surface by the removal
3207 */
3208double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point) {
3209 class BoundaryLineSet *line = NULL;
3210 class BoundaryTriangleSet *triangle = NULL;
3211 Vector OldPoint, NormalVector;
3212 double volume = 0;
3213 int count = 0;
3214
3215 if (point == NULL) {
3216 eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl;
3217 return 0.;
3218 } else
3219 Log() << Verbose(2) << "Removing point " << *point << " from tesselated boundary ..." << endl;
3220
3221 // copy old location for the volume
3222 OldPoint.CopyVector(point->node->node);
3223
3224 // get list of connected points
3225 if (point->lines.empty()) {
3226 eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl;
3227 return 0.;
3228 }
3229
3230 list<list<TesselPoint*> *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
3231 list<TesselPoint*> *connectedPath = NULL;
3232
3233 // gather all triangles
3234 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
3235 count+=LineRunner->second->triangles.size();
3236 map<class BoundaryTriangleSet *, int> Candidates;
3237 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
3238 line = LineRunner->second;
3239 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
3240 triangle = TriangleRunner->second;
3241 Candidates.insert( pair<class BoundaryTriangleSet *, int> (triangle, triangle->Nr) );
3242 }
3243 }
3244
3245 // remove all triangles
3246 count=0;
3247 NormalVector.Zero();
3248 for (map<class BoundaryTriangleSet *, int>::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
3249 Log() << Verbose(3) << "INFO: Removing triangle " << *(Runner->first) << "." << endl;
3250 NormalVector.SubtractVector(&Runner->first->NormalVector); // has to point inward
3251 RemoveTesselationTriangle(Runner->first);
3252 count++;
3253 }
3254 Log() << Verbose(1) << count << " triangles were removed." << endl;
3255
3256 list<list<TesselPoint*> *>::iterator ListAdvance = ListOfClosedPaths->begin();
3257 list<list<TesselPoint*> *>::iterator ListRunner = ListAdvance;
3258 map<class BoundaryTriangleSet *, int>::iterator NumberRunner = Candidates.begin();
3259 list<TesselPoint*>::iterator StartNode, MiddleNode, EndNode;
3260 double angle;
3261 double smallestangle;
3262 Vector Point, Reference, OrthogonalVector;
3263 if (count > 2) { // less than three triangles, then nothing will be created
3264 class TesselPoint *TriangleCandidates[3];
3265 count = 0;
3266 for ( ; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
3267 if (ListAdvance != ListOfClosedPaths->end())
3268 ListAdvance++;
3269
3270 connectedPath = *ListRunner;
3271
3272 // re-create all triangles by going through connected points list
3273 list<class BoundaryLineSet *> NewLines;
3274 for (;!connectedPath->empty();) {
3275 // search middle node with widest angle to next neighbours
3276 EndNode = connectedPath->end();
3277 smallestangle = 0.;
3278 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
3279 Log() << Verbose(3) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;
3280 // construct vectors to next and previous neighbour
3281 StartNode = MiddleNode;
3282 if (StartNode == connectedPath->begin())
3283 StartNode = connectedPath->end();
3284 StartNode--;
3285 //Log() << Verbose(3) << "INFO: StartNode is " << **StartNode << "." << endl;
3286 Point.CopyVector((*StartNode)->node);
3287 Point.SubtractVector((*MiddleNode)->node);
3288 StartNode = MiddleNode;
3289 StartNode++;
3290 if (StartNode == connectedPath->end())
3291 StartNode = connectedPath->begin();
3292 //Log() << Verbose(3) << "INFO: EndNode is " << **StartNode << "." << endl;
3293 Reference.CopyVector((*StartNode)->node);
3294 Reference.SubtractVector((*MiddleNode)->node);
3295 OrthogonalVector.CopyVector((*MiddleNode)->node);
3296 OrthogonalVector.SubtractVector(&OldPoint);
3297 OrthogonalVector.MakeNormalVector(&Reference);
3298 angle = GetAngle(Point, Reference, OrthogonalVector);
3299 //if (angle < M_PI) // no wrong-sided triangles, please?
3300 if(fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
3301 smallestangle = angle;
3302 EndNode = MiddleNode;
3303 }
3304 }
3305 MiddleNode = EndNode;
3306 if (MiddleNode == connectedPath->end()) {
3307 Log() << Verbose(1) << "CRITICAL: Could not find a smallest angle!" << endl;
3308 exit(255);
3309 }
3310 StartNode = MiddleNode;
3311 if (StartNode == connectedPath->begin())
3312 StartNode = connectedPath->end();
3313 StartNode--;
3314 EndNode++;
3315 if (EndNode == connectedPath->end())
3316 EndNode = connectedPath->begin();
3317 Log() << Verbose(4) << "INFO: StartNode is " << **StartNode << "." << endl;
3318 Log() << Verbose(4) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;
3319 Log() << Verbose(4) << "INFO: EndNode is " << **EndNode << "." << endl;
3320 Log() << Verbose(3) << "INFO: Attempting to create triangle " << (*StartNode)->Name << ", " << (*MiddleNode)->Name << " and " << (*EndNode)->Name << "." << endl;
3321 TriangleCandidates[0] = *StartNode;
3322 TriangleCandidates[1] = *MiddleNode;
3323 TriangleCandidates[2] = *EndNode;
3324 triangle = GetPresentTriangle(TriangleCandidates);
3325 if (triangle != NULL) {
3326 eLog() << Verbose(2) << "New triangle already present, skipping!" << endl;
3327 StartNode++;
3328 MiddleNode++;
3329 EndNode++;
3330 if (StartNode == connectedPath->end())
3331 StartNode = connectedPath->begin();
3332 if (MiddleNode == connectedPath->end())
3333 MiddleNode = connectedPath->begin();
3334 if (EndNode == connectedPath->end())
3335 EndNode = connectedPath->begin();
3336 continue;
3337 }
3338 Log() << Verbose(5) << "Adding new triangle points."<< endl;
3339 AddTesselationPoint(*StartNode, 0);
3340 AddTesselationPoint(*MiddleNode, 1);
3341 AddTesselationPoint(*EndNode, 2);
3342 Log() << Verbose(5) << "Adding new triangle lines."<< endl;
3343 AddTesselationLine(TPS[0], TPS[1], 0);
3344 AddTesselationLine(TPS[0], TPS[2], 1);
3345 NewLines.push_back(BLS[1]);
3346 AddTesselationLine(TPS[1], TPS[2], 2);
3347 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3348 BTS->GetNormalVector(NormalVector);
3349 AddTesselationTriangle();
3350 // calculate volume summand as a general tetraeder
3351 volume += CalculateVolumeofGeneralTetraeder(*TPS[0]->node->node, *TPS[1]->node->node, *TPS[2]->node->node, OldPoint);
3352 // advance number
3353 count++;
3354
3355 // prepare nodes for next triangle
3356 StartNode = EndNode;
3357 Log() << Verbose(4) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl;
3358 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
3359 if (connectedPath->size() == 2) { // we are done
3360 connectedPath->remove(*StartNode); // remove the start node
3361 connectedPath->remove(*EndNode); // remove the end node
3362 break;
3363 } else if (connectedPath->size() < 2) { // something's gone wrong!
3364 Log() << Verbose(1) << "CRITICAL: There are only two endpoints left!" << endl;
3365 exit(255);
3366 } else {
3367 MiddleNode = StartNode;
3368 MiddleNode++;
3369 if (MiddleNode == connectedPath->end())
3370 MiddleNode = connectedPath->begin();
3371 EndNode = MiddleNode;
3372 EndNode++;
3373 if (EndNode == connectedPath->end())
3374 EndNode = connectedPath->begin();
3375 }
3376 }
3377 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
3378 if (NewLines.size() > 1) {
3379 list<class BoundaryLineSet *>::iterator Candidate;
3380 class BoundaryLineSet *OtherBase = NULL;
3381 double tmp, maxgain;
3382 do {
3383 maxgain = 0;
3384 for(list<class BoundaryLineSet *>::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
3385 tmp = PickFarthestofTwoBaselines(*Runner);
3386 if (maxgain < tmp) {
3387 maxgain = tmp;
3388 Candidate = Runner;
3389 }
3390 }
3391 if (maxgain != 0) {
3392 volume += maxgain;
3393 Log() << Verbose(3) << "Flipping baseline with highest volume" << **Candidate << "." << endl;
3394 OtherBase = FlipBaseline(*Candidate);
3395 NewLines.erase(Candidate);
3396 NewLines.push_back(OtherBase);
3397 }
3398 } while (maxgain != 0.);
3399 }
3400
3401 ListOfClosedPaths->remove(connectedPath);
3402 delete(connectedPath);
3403 }
3404 Log() << Verbose(1) << count << " triangles were created." << endl;
3405 } else {
3406 while (!ListOfClosedPaths->empty()) {
3407 ListRunner = ListOfClosedPaths->begin();
3408 connectedPath = *ListRunner;
3409 ListOfClosedPaths->remove(connectedPath);
3410 delete(connectedPath);
3411 }
3412 Log() << Verbose(1) << "No need to create any triangles." << endl;
3413 }
3414 delete(ListOfClosedPaths);
3415
3416 Log() << Verbose(1) << "Removed volume is " << volume << "." << endl;
3417
3418 return volume;
3419};
3420
3421
3422
3423/**
3424 * Finds triangles belonging to the three provided points.
3425 *
3426 * @param *Points[3] list, is expected to contain three points
3427 *
3428 * @return triangles which belong to the provided points, will be empty if there are none,
3429 * will usually be one, in case of degeneration, there will be two
3430 */
3431list<BoundaryTriangleSet*> *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
3432{
3433 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>;
3434 LineMap::const_iterator FindLine;
3435 TriangleMap::const_iterator FindTriangle;
3436 class BoundaryPointSet *TrianglePoints[3];
3437
3438 for (int i = 0; i < 3; i++) {
3439 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr);
3440 if (FindPoint != PointsOnBoundary.end()) {
3441 TrianglePoints[i] = FindPoint->second;
3442 } else {
3443 TrianglePoints[i] = NULL;
3444 }
3445 }
3446
3447 // checks lines between the points in the Points for their adjacent triangles
3448 for (int i = 0; i < 3; i++) {
3449 if (TrianglePoints[i] != NULL) {
3450 for (int j = i+1; j < 3; j++) {
3451 if (TrianglePoints[j] != NULL) {
3452 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap!
3453 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr);
3454 FindLine++) {
3455 for (FindTriangle = FindLine->second->triangles.begin();
3456 FindTriangle != FindLine->second->triangles.end();
3457 FindTriangle++) {
3458 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
3459 result->push_back(FindTriangle->second);
3460 }
3461 }
3462 }
3463 // Is it sufficient to consider one of the triangle lines for this.
3464 return result;
3465 }
3466 }
3467 }
3468 }
3469
3470 return result;
3471}
3472
3473/**
3474 * Finds all degenerated lines within the tesselation structure.
3475 *
3476 * @return map of keys of degenerated line pairs, each line occurs twice
3477 * in the list, once as key and once as value
3478 */
3479map<int, int> * Tesselation::FindAllDegeneratedLines()
3480{
3481 map<int, class BoundaryLineSet *> AllLines;
3482 map<int, int> * DegeneratedLines = new map<int, int>;
3483
3484 // sanity check
3485 if (LinesOnBoundary.empty()) {
3486 Log() << Verbose(1) << "Warning: FindAllDegeneratedTriangles() was called without any tesselation structure.";
3487 return DegeneratedLines;
3488 }
3489
3490 LineMap::iterator LineRunner1;
3491 pair<LineMap::iterator, bool> tester;
3492 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
3493 tester = AllLines.insert( pair<int,BoundaryLineSet *> (LineRunner1->second->endpoints[0]->Nr, LineRunner1->second) );
3494 if ((!tester.second) && (tester.first->second->endpoints[1]->Nr == LineRunner1->second->endpoints[1]->Nr)) { // found degenerated line
3495 DegeneratedLines->insert ( pair<int, int> (LineRunner1->second->Nr, tester.first->second->Nr) );
3496 DegeneratedLines->insert ( pair<int, int> (tester.first->second->Nr, LineRunner1->second->Nr) );
3497 }
3498 }
3499
3500 AllLines.clear();
3501
3502 Log() << Verbose(1) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl;
3503 map<int,int>::iterator it;
3504 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++)
3505 Log() << Verbose(2) << (*it).first << " => " << (*it).second << endl;
3506
3507 return DegeneratedLines;
3508}
3509
3510/**
3511 * Finds all degenerated triangles within the tesselation structure.
3512 *
3513 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
3514 * in the list, once as key and once as value
3515 */
3516map<int, int> * Tesselation::FindAllDegeneratedTriangles()
3517{
3518 map<int, int> * DegeneratedLines = FindAllDegeneratedLines();
3519 map<int, int> * DegeneratedTriangles = new map<int, int>;
3520
3521 TriangleMap::iterator TriangleRunner1, TriangleRunner2;
3522 LineMap::iterator Liner;
3523 class BoundaryLineSet *line1 = NULL, *line2 = NULL;
3524
3525 for (map<int, int>::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
3526 // run over both lines' triangles
3527 Liner = LinesOnBoundary.find(LineRunner->first);
3528 if (Liner != LinesOnBoundary.end())
3529 line1 = Liner->second;
3530 Liner = LinesOnBoundary.find(LineRunner->second);
3531 if (Liner != LinesOnBoundary.end())
3532 line2 = Liner->second;
3533 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
3534 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
3535 if ((TriangleRunner1->second != TriangleRunner2->second)
3536 && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
3537 DegeneratedTriangles->insert( pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr) );
3538 DegeneratedTriangles->insert( pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr) );
3539 }
3540 }
3541 }
3542 }
3543 delete(DegeneratedLines);
3544
3545 Log() << Verbose(1) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl;
3546 map<int,int>::iterator it;
3547 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
3548 Log() << Verbose(2) << (*it).first << " => " << (*it).second << endl;
3549
3550 return DegeneratedTriangles;
3551}
3552
3553/**
3554 * Purges degenerated triangles from the tesselation structure if they are not
3555 * necessary to keep a single point within the structure.
3556 */
3557void Tesselation::RemoveDegeneratedTriangles()
3558{
3559 map<int, int> * DegeneratedTriangles = FindAllDegeneratedTriangles();
3560 TriangleMap::iterator finder;
3561 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
3562 int count = 0;
3563
3564 Log() << Verbose(1) << "Begin of RemoveDegeneratedTriangles" << endl;
3565
3566 for (map<int, int>::iterator TriangleKeyRunner = DegeneratedTriangles->begin();
3567 TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner
3568 ) {
3569 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
3570 if (finder != TrianglesOnBoundary.end())
3571 triangle = finder->second;
3572 else
3573 break;
3574 finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
3575 if (finder != TrianglesOnBoundary.end())
3576 partnerTriangle = finder->second;
3577 else
3578 break;
3579
3580 bool trianglesShareLine = false;
3581 for (int i = 0; i < 3; ++i)
3582 for (int j = 0; j < 3; ++j)
3583 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
3584
3585 if (trianglesShareLine
3586 && (triangle->endpoints[1]->LinesCount > 2)
3587 && (triangle->endpoints[2]->LinesCount > 2)
3588 && (triangle->endpoints[0]->LinesCount > 2)
3589 ) {
3590 // check whether we have to fix lines
3591 BoundaryTriangleSet *Othertriangle = NULL;
3592 BoundaryTriangleSet *OtherpartnerTriangle = NULL;
3593 TriangleMap::iterator TriangleRunner;
3594 for (int i = 0; i < 3; ++i)
3595 for (int j = 0; j < 3; ++j)
3596 if (triangle->lines[i] != partnerTriangle->lines[j]) {
3597 // get the other two triangles
3598 for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
3599 if (TriangleRunner->second != triangle) {
3600 Othertriangle = TriangleRunner->second;
3601 }
3602 for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
3603 if (TriangleRunner->second != partnerTriangle) {
3604 OtherpartnerTriangle = TriangleRunner->second;
3605 }
3606 /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
3607 // the line of triangle receives the degenerated ones
3608 triangle->lines[i]->triangles.erase(Othertriangle->Nr);
3609 triangle->lines[i]->triangles.insert( TrianglePair( partnerTriangle->Nr, partnerTriangle) );
3610 for (int k=0;k<3;k++)
3611 if (triangle->lines[i] == Othertriangle->lines[k]) {
3612 Othertriangle->lines[k] = partnerTriangle->lines[j];
3613 break;
3614 }
3615 // the line of partnerTriangle receives the non-degenerated ones
3616 partnerTriangle->lines[j]->triangles.erase( partnerTriangle->Nr);
3617 partnerTriangle->lines[j]->triangles.insert( TrianglePair( Othertriangle->Nr, Othertriangle) );
3618 partnerTriangle->lines[j] = triangle->lines[i];
3619 }
3620
3621 // erase the pair
3622 count += (int) DegeneratedTriangles->erase(triangle->Nr);
3623 Log() << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;
3624 RemoveTesselationTriangle(triangle);
3625 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
3626 Log() << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;
3627 RemoveTesselationTriangle(partnerTriangle);
3628 } else {
3629 Log() << Verbose(1) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle
3630 << " and its partner " << *partnerTriangle << " because it is essential for at"
3631 << " least one of the endpoints to be kept in the tesselation structure." << endl;
3632 }
3633 }
3634 delete(DegeneratedTriangles);
3635 if (count > 0)
3636 LastTriangle = NULL;
3637
3638 Log() << Verbose(1) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl;
3639 Log() << Verbose(1) << "End of RemoveDegeneratedTriangles" << endl;
3640}
3641
3642/** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
3643 * We look for the closest point on the boundary, we look through its connected boundary lines and
3644 * seek the one with the minimum angle between its center point and the new point and this base line.
3645 * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
3646 * \param *out output stream for debugging
3647 * \param *point point to add
3648 * \param *LC Linked Cell structure to find nearest point
3649 */
3650void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC)
3651{
3652 Log() << Verbose(2) << "Begin of AddBoundaryPointByDegeneratedTriangle" << endl;
3653
3654 // find nearest boundary point
3655 class TesselPoint *BackupPoint = NULL;
3656 class TesselPoint *NearestPoint = FindClosestPoint(point->node, BackupPoint, LC);
3657 class BoundaryPointSet *NearestBoundaryPoint = NULL;
3658 PointMap::iterator PointRunner;
3659
3660 if (NearestPoint == point)
3661 NearestPoint = BackupPoint;
3662 PointRunner = PointsOnBoundary.find(NearestPoint->nr);
3663 if (PointRunner != PointsOnBoundary.end()) {
3664 NearestBoundaryPoint = PointRunner->second;
3665 } else {
3666 eLog() << Verbose(1) << "I cannot find the boundary point." << endl;
3667 return;
3668 }
3669 Log() << Verbose(2) << "Nearest point on boundary is " << NearestPoint->Name << "." << endl;
3670
3671 // go through its lines and find the best one to split
3672 Vector CenterToPoint;
3673 Vector BaseLine;
3674 double angle, BestAngle = 0.;
3675 class BoundaryLineSet *BestLine = NULL;
3676 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
3677 BaseLine.CopyVector(Runner->second->endpoints[0]->node->node);
3678 BaseLine.SubtractVector(Runner->second->endpoints[1]->node->node);
3679 CenterToPoint.CopyVector(Runner->second->endpoints[0]->node->node);
3680 CenterToPoint.AddVector(Runner->second->endpoints[1]->node->node);
3681 CenterToPoint.Scale(0.5);
3682 CenterToPoint.SubtractVector(point->node);
3683 angle = CenterToPoint.Angle(&BaseLine);
3684 if (fabs(angle - M_PI/2.) < fabs(BestAngle - M_PI/2.)) {
3685 BestAngle = angle;
3686 BestLine = Runner->second;
3687 }
3688 }
3689
3690 // remove one triangle from the chosen line
3691 class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
3692 BestLine->triangles.erase(TempTriangle->Nr);
3693 int nr = -1;
3694 for (int i=0;i<3; i++) {
3695 if (TempTriangle->lines[i] == BestLine) {
3696 nr = i;
3697 break;
3698 }
3699 }
3700
3701 // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
3702 Log() << Verbose(5) << "Adding new triangle points."<< endl;
3703 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
3704 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
3705 AddTesselationPoint(point, 2);
3706 Log() << Verbose(5) << "Adding new triangle lines."<< endl;
3707 AddTesselationLine(TPS[0], TPS[1], 0);
3708 AddTesselationLine(TPS[0], TPS[2], 1);
3709 AddTesselationLine(TPS[1], TPS[2], 2);
3710 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3711 BTS->GetNormalVector(TempTriangle->NormalVector);
3712 BTS->NormalVector.Scale(-1.);
3713 Log() << Verbose(3) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl;
3714 AddTesselationTriangle();
3715
3716 // create other side of this triangle and close both new sides of the first created triangle
3717 Log() << Verbose(5) << "Adding new triangle points."<< endl;
3718 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
3719 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
3720 AddTesselationPoint(point, 2);
3721 Log() << Verbose(5) << "Adding new triangle lines."<< endl;
3722 AddTesselationLine(TPS[0], TPS[1], 0);
3723 AddTesselationLine(TPS[0], TPS[2], 1);
3724 AddTesselationLine(TPS[1], TPS[2], 2);
3725 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3726 BTS->GetNormalVector(TempTriangle->NormalVector);
3727 Log() << Verbose(3) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl;
3728 AddTesselationTriangle();
3729
3730 // add removed triangle to the last open line of the second triangle
3731 for (int i=0;i<3;i++) { // look for the same line as BestLine (only it's its degenerated companion)
3732 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
3733 if (BestLine == BTS->lines[i]){
3734 Log() << Verbose(1) << "CRITICAL: BestLine is same as found line, something's wrong here!" << endl;
3735 exit(255);
3736 }
3737 BTS->lines[i]->triangles.insert( pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle) );
3738 TempTriangle->lines[nr] = BTS->lines[i];
3739 break;
3740 }
3741 }
3742
3743 // exit
3744 Log() << Verbose(2) << "End of AddBoundaryPointByDegeneratedTriangle" << endl;
3745};
3746
3747/** Writes the envelope to file.
3748 * \param *out otuput stream for debugging
3749 * \param *filename basename of output file
3750 * \param *cloud PointCloud structure with all nodes
3751 */
3752void Tesselation::Output(const char *filename, const PointCloud * const cloud)
3753{
3754 ofstream *tempstream = NULL;
3755 string NameofTempFile;
3756 char NumberName[255];
3757
3758 if (LastTriangle != NULL) {
3759 sprintf(NumberName, "-%04d-%s_%s_%s", (int)TrianglesOnBoundary.size(), LastTriangle->endpoints[0]->node->Name, LastTriangle->endpoints[1]->node->Name, LastTriangle->endpoints[2]->node->Name);
3760 if (DoTecplotOutput) {
3761 string NameofTempFile(filename);
3762 NameofTempFile.append(NumberName);
3763 for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
3764 NameofTempFile.erase(npos, 1);
3765 NameofTempFile.append(TecplotSuffix);
3766 Log() << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
3767 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
3768 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
3769 tempstream->close();
3770 tempstream->flush();
3771 delete(tempstream);
3772 }
3773
3774 if (DoRaster3DOutput) {
3775 string NameofTempFile(filename);
3776 NameofTempFile.append(NumberName);
3777 for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
3778 NameofTempFile.erase(npos, 1);
3779 NameofTempFile.append(Raster3DSuffix);
3780 Log() << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
3781 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
3782 WriteRaster3dFile(tempstream, this, cloud);
3783 IncludeSphereinRaster3D(tempstream, this, cloud);
3784 tempstream->close();
3785 tempstream->flush();
3786 delete(tempstream);
3787 }
3788 }
3789 if (DoTecplotOutput || DoRaster3DOutput)
3790 TriangleFilesWritten++;
3791};
Note: See TracBrowser for help on using the repository browser.