source: src/moleculelist.cpp@ 1614174

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 1614174 was e138de, checked in by Frederik Heber <heber@…>, 16 years ago

Huge change from ofstream * (const) out --> Log().

  • first shift was done via regular expressions
  • then via error messages from the code
  • note that class atom, class element and class molecule kept in parts their output stream, was they print to file.
  • make check runs fine
  • MISSING: Verbosity is not fixed for everything (i.e. if no endl; is present and next has Verbose(0) ...)

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100755
File size: 42.0 KB
Line 
1/** \file MoleculeListClass.cpp
2 *
3 * Function implementations for the class MoleculeListClass.
4 *
5 */
6
7#include "atom.hpp"
8#include "bond.hpp"
9#include "boundary.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "helpers.hpp"
13#include "linkedcell.hpp"
14#include "lists.hpp"
15#include "log.hpp"
16#include "molecule.hpp"
17#include "memoryallocator.hpp"
18#include "periodentafel.hpp"
19
20/*********************************** Functions for class MoleculeListClass *************************/
21
22/** Constructor for MoleculeListClass.
23 */
24MoleculeListClass::MoleculeListClass()
25{
26 // empty lists
27 ListOfMolecules.clear();
28 MaxIndex = 1;
29};
30
31/** Destructor for MoleculeListClass.
32 */
33MoleculeListClass::~MoleculeListClass()
34{
35 Log() << Verbose(3) << this << ": Freeing ListOfMolcules." << endl;
36 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
37 Log() << Verbose(4) << "ListOfMolecules: Freeing " << *ListRunner << "." << endl;
38 delete (*ListRunner);
39 }
40 Log() << Verbose(4) << "Freeing ListOfMolecules." << endl;
41 ListOfMolecules.clear(); // empty list
42};
43
44/** Insert a new molecule into the list and set its number.
45 * \param *mol molecule to add to list.
46 * \return true - add successful
47 */
48void MoleculeListClass::insert(molecule *mol)
49{
50 mol->IndexNr = MaxIndex++;
51 ListOfMolecules.push_back(mol);
52};
53
54/** Compare whether two molecules are equal.
55 * \param *a molecule one
56 * \param *n molecule two
57 * \return lexical value (-1, 0, +1)
58 */
59int MolCompare(const void *a, const void *b)
60{
61 int *aList = NULL, *bList = NULL;
62 int Count, Counter, aCounter, bCounter;
63 int flag;
64 atom *aWalker = NULL;
65 atom *bWalker = NULL;
66
67 // sort each atom list and put the numbers into a list, then go through
68 //Log() << Verbose(0) << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl;
69 if ((**(molecule **) a).AtomCount < (**(molecule **) b).AtomCount) {
70 return -1;
71 } else {
72 if ((**(molecule **) a).AtomCount > (**(molecule **) b).AtomCount)
73 return +1;
74 else {
75 Count = (**(molecule **) a).AtomCount;
76 aList = new int[Count];
77 bList = new int[Count];
78
79 // fill the lists
80 aWalker = (**(molecule **) a).start;
81 bWalker = (**(molecule **) b).start;
82 Counter = 0;
83 aCounter = 0;
84 bCounter = 0;
85 while ((aWalker->next != (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
86 aWalker = aWalker->next;
87 bWalker = bWalker->next;
88 if (aWalker->GetTrueFather() == NULL)
89 aList[Counter] = Count + (aCounter++);
90 else
91 aList[Counter] = aWalker->GetTrueFather()->nr;
92 if (bWalker->GetTrueFather() == NULL)
93 bList[Counter] = Count + (bCounter++);
94 else
95 bList[Counter] = bWalker->GetTrueFather()->nr;
96 Counter++;
97 }
98 // check if AtomCount was for real
99 flag = 0;
100 if ((aWalker->next == (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
101 flag = -1;
102 } else {
103 if ((aWalker->next != (**(molecule **) a).end) && (bWalker->next == (**(molecule **) b).end))
104 flag = 1;
105 }
106 if (flag == 0) {
107 // sort the lists
108 gsl_heapsort(aList, Count, sizeof(int), CompareDoubles);
109 gsl_heapsort(bList, Count, sizeof(int), CompareDoubles);
110 // compare the lists
111
112 flag = 0;
113 for (int i = 0; i < Count; i++) {
114 if (aList[i] < bList[i]) {
115 flag = -1;
116 } else {
117 if (aList[i] > bList[i])
118 flag = 1;
119 }
120 if (flag != 0)
121 break;
122 }
123 }
124 delete[] (aList);
125 delete[] (bList);
126 return flag;
127 }
128 }
129 return -1;
130};
131
132/** Output of a list of all molecules.
133 * \param *out output stream
134 */
135void MoleculeListClass::Enumerate(ofstream *out)
136{
137 element* Elemental = NULL;
138 atom *Walker = NULL;
139 int Counts[MAX_ELEMENTS];
140 double size=0;
141 Vector Origin;
142
143 // header
144 Log() << Verbose(0) << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl;
145 Log() << Verbose(0) << "-----------------------------------------------" << endl;
146 if (ListOfMolecules.size() == 0)
147 Log() << Verbose(0) << "\tNone" << endl;
148 else {
149 Origin.Zero();
150 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
151 // reset element counts
152 for (int j = 0; j<MAX_ELEMENTS;j++)
153 Counts[j] = 0;
154 // count atoms per element and determine size of bounding sphere
155 size=0.;
156 Walker = (*ListRunner)->start;
157 while (Walker->next != (*ListRunner)->end) {
158 Walker = Walker->next;
159 Counts[Walker->type->Z]++;
160 if (Walker->x.DistanceSquared(&Origin) > size)
161 size = Walker->x.DistanceSquared(&Origin);
162 }
163 // output Index, Name, number of atoms, chemical formula
164 Log() << Verbose(0) << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->AtomCount << "\t";
165 Elemental = (*ListRunner)->elemente->end;
166 while(Elemental->previous != (*ListRunner)->elemente->start) {
167 Elemental = Elemental->previous;
168 if (Counts[Elemental->Z] != 0)
169 Log() << Verbose(0) << Elemental->symbol << Counts[Elemental->Z];
170 }
171 // Center and size
172 Log() << Verbose(0) << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl;
173 }
174 }
175};
176
177/** Returns the molecule with the given index \a index.
178 * \param index index of the desired molecule
179 * \return pointer to molecule structure, NULL if not found
180 */
181molecule * MoleculeListClass::ReturnIndex(int index)
182{
183 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
184 if ((*ListRunner)->IndexNr == index)
185 return (*ListRunner);
186 return NULL;
187};
188
189/** Simple merge of two molecules into one.
190 * \param *mol destination molecule
191 * \param *srcmol source molecule
192 * \return true - merge successful, false - merge failed (probably due to non-existant indices
193 */
194bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol)
195{
196 if (srcmol == NULL)
197 return false;
198
199 // put all molecules of src into mol
200 atom *Walker = srcmol->start;
201 atom *NextAtom = Walker->next;
202 while (NextAtom != srcmol->end) {
203 Walker = NextAtom;
204 NextAtom = Walker->next;
205 srcmol->UnlinkAtom(Walker);
206 mol->AddAtom(Walker);
207 }
208
209 // remove src
210 ListOfMolecules.remove(srcmol);
211 delete(srcmol);
212 return true;
213};
214
215/** Simple add of one molecules into another.
216 * \param *mol destination molecule
217 * \param *srcmol source molecule
218 * \return true - merge successful, false - merge failed (probably due to non-existant indices
219 */
220bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol)
221{
222 if (srcmol == NULL)
223 return false;
224
225 // put all molecules of src into mol
226 atom *Walker = srcmol->start;
227 atom *NextAtom = Walker->next;
228 while (NextAtom != srcmol->end) {
229 Walker = NextAtom;
230 NextAtom = Walker->next;
231 Walker = mol->AddCopyAtom(Walker);
232 Walker->father = Walker;
233 }
234
235 return true;
236};
237
238/** Simple merge of a given set of molecules into one.
239 * \param *mol destination molecule
240 * \param *src index of set of source molecule
241 * \param N number of source molecules
242 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
243 */
244bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N)
245{
246 bool status = true;
247 // check presence of all source molecules
248 for (int i=0;i<N;i++) {
249 molecule *srcmol = ReturnIndex(src[i]);
250 status = status && SimpleMerge(mol, srcmol);
251 }
252 return status;
253};
254
255/** Simple add of a given set of molecules into one.
256 * \param *mol destination molecule
257 * \param *src index of set of source molecule
258 * \param N number of source molecules
259 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
260 */
261bool MoleculeListClass::SimpleMultiAdd(molecule *mol, int *src, int N)
262{
263 bool status = true;
264 // check presence of all source molecules
265 for (int i=0;i<N;i++) {
266 molecule *srcmol = ReturnIndex(src[i]);
267 status = status && SimpleAdd(mol, srcmol);
268 }
269 return status;
270};
271
272/** Scatter merge of a given set of molecules into one.
273 * Scatter merge distributes the molecules in such a manner that they don't overlap.
274 * \param *mol destination molecule
275 * \param *src index of set of source molecule
276 * \param N number of source molecules
277 * \return true - merge successful, false - merge failed (probably due to non-existant indices
278 * \TODO find scatter center for each src molecule
279 */
280bool MoleculeListClass::ScatterMerge(molecule *mol, int *src, int N)
281{
282 // check presence of all source molecules
283 for (int i=0;i<N;i++) {
284 // get pointer to src molecule
285 molecule *srcmol = ReturnIndex(src[i]);
286 if (srcmol == NULL)
287 return false;
288 }
289 // adapt each Center
290 for (int i=0;i<N;i++) {
291 // get pointer to src molecule
292 molecule *srcmol = ReturnIndex(src[i]);
293 //srcmol->Center.Zero();
294 srcmol->Translate(&srcmol->Center);
295 }
296 // perform a simple multi merge
297 SimpleMultiMerge(mol, src, N);
298 return true;
299};
300
301/** Embedding merge of a given set of molecules into one.
302 * Embedding merge inserts one molecule into the other.
303 * \param *mol destination molecule (fixed one)
304 * \param *srcmol source molecule (variable one, where atoms are taken from)
305 * \return true - merge successful, false - merge failed (probably due to non-existant indices)
306 * \TODO linked cell dimensions for boundary points has to be as big as inner diameter!
307 */
308bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol)
309{
310 LinkedCell *LCList = NULL;
311 Tesselation *TesselStruct = NULL;
312 if ((srcmol == NULL) || (mol == NULL)) {
313 Log() << Verbose(1) << "ERROR: Either fixed or variable molecule is given as NULL." << endl;
314 return false;
315 }
316
317 // calculate envelope for *mol
318 LCList = new LinkedCell(mol, 8.);
319 FindNonConvexBorder(mol, TesselStruct, (const LinkedCell *&)LCList, 4., NULL);
320 if (TesselStruct == NULL) {
321 Log() << Verbose(1) << "ERROR: Could not tesselate the fixed molecule." << endl;
322 return false;
323 }
324 delete(LCList);
325 LCList = new LinkedCell(TesselStruct, 8.); // re-create with boundary points only!
326
327 // prepare index list for bonds
328 srcmol->CountAtoms();
329 atom ** CopyAtoms = new atom*[srcmol->AtomCount];
330 for(int i=0;i<srcmol->AtomCount;i++)
331 CopyAtoms[i] = NULL;
332
333 // for each of the source atoms check whether we are in- or outside and add copy atom
334 atom *Walker = srcmol->start;
335 int nr=0;
336 while (Walker->next != srcmol->end) {
337 Walker = Walker->next;
338 Log() << Verbose(2) << "INFO: Current Walker is " << *Walker << "." << endl;
339 if (!TesselStruct->IsInnerPoint(Walker->x, LCList)) {
340 CopyAtoms[Walker->nr] = new atom(Walker);
341 mol->AddAtom(CopyAtoms[Walker->nr]);
342 nr++;
343 } else {
344 // do nothing
345 }
346 }
347 Log() << Verbose(1) << nr << " of " << srcmol->AtomCount << " atoms have been merged.";
348
349 // go through all bonds and add as well
350 bond *Binder = srcmol->first;
351 while(Binder->next != srcmol->last) {
352 Binder = Binder->next;
353 Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
354 mol->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
355 }
356 delete(LCList);
357 return true;
358};
359
360/** Simple output of the pointers in ListOfMolecules.
361 * \param *out output stream
362 */
363void MoleculeListClass::Output(ofstream *out)
364{
365 Log() << Verbose(1) << "MoleculeList: ";
366 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
367 Log() << Verbose(0) << *ListRunner << "\t";
368 Log() << Verbose(0) << endl;
369};
370
371/** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones.
372 * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not
373 * bonded to the same atom, then we add for this pair a correction term constructed from a Morse
374 * potential function fit to QM calculations with respecting to the interatomic hydrogen distance.
375 * \param *out output stream for debugging
376 * \param *path path to file
377 */
378bool MoleculeListClass::AddHydrogenCorrection(char *path)
379{
380 atom *Walker = NULL;
381 atom *Runner = NULL;
382 bond *Binder = NULL;
383 double ***FitConstant = NULL, **correction = NULL;
384 int a, b;
385 ofstream output;
386 ifstream input;
387 string line;
388 stringstream zeile;
389 double distance;
390 char ParsedLine[1023];
391 double tmp;
392 char *FragmentNumber = NULL;
393
394 Log() << Verbose(1) << "Saving hydrogen saturation correction ... ";
395 // 0. parse in fit constant files that should have the same dimension as the final energy files
396 // 0a. find dimension of matrices with constants
397 line = path;
398 line.append("/");
399 line += FRAGMENTPREFIX;
400 line += "1";
401 line += FITCONSTANTSUFFIX;
402 input.open(line.c_str());
403 if (input == NULL) {
404 eLog() << Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?"
405 << endl;
406 return false;
407 }
408 a = 0;
409 b = -1; // we overcount by one
410 while (!input.eof()) {
411 input.getline(ParsedLine, 1023);
412 zeile.str(ParsedLine);
413 int i = 0;
414 while (!zeile.eof()) {
415 zeile >> distance;
416 i++;
417 }
418 if (i > a)
419 a = i;
420 b++;
421 }
422 Log() << Verbose(0) << "I recognized " << a << " columns and " << b << " rows, ";
423 input.close();
424
425 // 0b. allocate memory for constants
426 FitConstant = Calloc<double**>(3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
427 for (int k = 0; k < 3; k++) {
428 FitConstant[k] = Calloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
429 for (int i = a; i--;) {
430 FitConstant[k][i] = Calloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
431 }
432 }
433 // 0c. parse in constants
434 for (int i = 0; i < 3; i++) {
435 line = path;
436 line.append("/");
437 line += FRAGMENTPREFIX;
438 sprintf(ParsedLine, "%d", i + 1);
439 line += ParsedLine;
440 line += FITCONSTANTSUFFIX;
441 input.open(line.c_str());
442 if (input == NULL) {
443 eLog() << Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?" << endl;
444 return false;
445 }
446 int k = 0, l;
447 while ((!input.eof()) && (k < b)) {
448 input.getline(ParsedLine, 1023);
449 //Log() << Verbose(0) << "Current Line: " << ParsedLine << endl;
450 zeile.str(ParsedLine);
451 zeile.clear();
452 l = 0;
453 while ((!zeile.eof()) && (l < a)) {
454 zeile >> FitConstant[i][l][k];
455 //Log() << Verbose(0) << FitConstant[i][l][k] << "\t";
456 l++;
457 }
458 //Log() << Verbose(0) << endl;
459 k++;
460 }
461 input.close();
462 }
463 for (int k = 0; k < 3; k++) {
464 Log() << Verbose(0) << "Constants " << k << ":" << endl;
465 for (int j = 0; j < b; j++) {
466 for (int i = 0; i < a; i++) {
467 Log() << Verbose(0) << FitConstant[k][i][j] << "\t";
468 }
469 Log() << Verbose(0) << endl;
470 }
471 Log() << Verbose(0) << endl;
472 }
473
474 // 0d. allocate final correction matrix
475 correction = Calloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **correction");
476 for (int i = a; i--;)
477 correction[i] = Calloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *correction[]");
478
479 // 1a. go through every molecule in the list
480 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
481 // 1b. zero final correction matrix
482 for (int k = a; k--;)
483 for (int j = b; j--;)
484 correction[k][j] = 0.;
485 // 2. take every hydrogen that is a saturated one
486 Walker = (*ListRunner)->start;
487 while (Walker->next != (*ListRunner)->end) {
488 Walker = Walker->next;
489 //Log() << Verbose(1) << "Walker: " << *Walker << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
490 if ((Walker->type->Z == 1) && ((Walker->father == NULL)
491 || (Walker->father->type->Z != 1))) { // if it's a hydrogen
492 Runner = (*ListRunner)->start;
493 while (Runner->next != (*ListRunner)->end) {
494 Runner = Runner->next;
495 //Log() << Verbose(2) << "Runner: " << *Runner << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
496 // 3. take every other hydrogen that is the not the first and not bound to same bonding partner
497 Binder = *(Runner->ListOfBonds.begin());
498 if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && (Binder->GetOtherAtom(Runner) != Binder->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!)
499 // 4. evaluate the morse potential for each matrix component and add up
500 distance = Runner->x.Distance(&Walker->x);
501 //Log() << Verbose(0) << "Fragment " << (*ListRunner)->name << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl;
502 for (int k = 0; k < a; k++) {
503 for (int j = 0; j < b; j++) {
504 switch (k) {
505 case 1:
506 case 7:
507 case 11:
508 tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2);
509 break;
510 default:
511 tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j];
512 };
513 correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction)
514 //Log() << Verbose(0) << tmp << "\t";
515 }
516 //Log() << Verbose(0) << endl;
517 }
518 //Log() << Verbose(0) << endl;
519 }
520 }
521 }
522 }
523 // 5. write final matrix to file
524 line = path;
525 line.append("/");
526 line += FRAGMENTPREFIX;
527 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr);
528 line += FragmentNumber;
529 delete (FragmentNumber);
530 line += HCORRECTIONSUFFIX;
531 output.open(line.c_str());
532 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
533 for (int j = 0; j < b; j++) {
534 for (int i = 0; i < a; i++)
535 output << correction[i][j] << "\t";
536 output << endl;
537 }
538 output.close();
539 }
540 line = path;
541 line.append("/");
542 line += HCORRECTIONSUFFIX;
543 output.open(line.c_str());
544 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
545 for (int j = 0; j < b; j++) {
546 for (int i = 0; i < a; i++)
547 output << 0 << "\t";
548 output << endl;
549 }
550 output.close();
551 // 6. free memory of parsed matrices
552 for (int k = 0; k < 3; k++) {
553 for (int i = a; i--;) {
554 Free(&FitConstant[k][i]);
555 }
556 Free(&FitConstant[k]);
557 }
558 Free(&FitConstant);
559 Log() << Verbose(0) << "done." << endl;
560 return true;
561};
562
563/** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config.
564 * \param *out output stream for debugging
565 * \param *path path to file
566 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
567 * \return true - file written successfully, false - writing failed
568 */
569bool MoleculeListClass::StoreForcesFile(char *path,
570 int *SortIndex)
571{
572 bool status = true;
573 ofstream ForcesFile;
574 stringstream line;
575 atom *Walker = NULL;
576 element *runner = NULL;
577
578 // open file for the force factors
579 Log() << Verbose(1) << "Saving force factors ... ";
580 line << path << "/" << FRAGMENTPREFIX << FORCESFILE;
581 ForcesFile.open(line.str().c_str(), ios::out);
582 if (ForcesFile != NULL) {
583 //Log() << Verbose(1) << "Final AtomicForcesList: ";
584 //output << prefix << "Forces" << endl;
585 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
586 runner = (*ListRunner)->elemente->start;
587 while (runner->next != (*ListRunner)->elemente->end) { // go through every element
588 runner = runner->next;
589 if ((*ListRunner)->ElementsInMolecule[runner->Z]) { // if this element got atoms
590 Walker = (*ListRunner)->start;
591 while (Walker->next != (*ListRunner)->end) { // go through every atom of this element
592 Walker = Walker->next;
593 if (Walker->type->Z == runner->Z) {
594 if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea
595 //Log() << Verbose(0) << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it
596 ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t";
597 } else
598 // otherwise a -1 to indicate an added saturation hydrogen
599 ForcesFile << "-1\t";
600 }
601 }
602 }
603 }
604 ForcesFile << endl;
605 }
606 ForcesFile.close();
607 Log() << Verbose(1) << "done." << endl;
608 } else {
609 status = false;
610 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
611 }
612 ForcesFile.close();
613
614 return status;
615};
616
617/** Writes a config file for each molecule in the given \a **FragmentList.
618 * \param *out output stream for debugging
619 * \param *configuration standard configuration to attach atoms in fragment molecule to.
620 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
621 * \param DoPeriodic true - call ScanForPeriodicCorrection, false - don't
622 * \param DoCentering true - call molecule::CenterEdge(), false - don't
623 * \return true - success (each file was written), false - something went wrong.
624 */
625bool MoleculeListClass::OutputConfigForListOfFragments(config *configuration, int *SortIndex)
626{
627 ofstream outputFragment;
628 char FragmentName[MAXSTRINGSIZE];
629 char PathBackup[MAXSTRINGSIZE];
630 bool result = true;
631 bool intermediateResult = true;
632 atom *Walker = NULL;
633 Vector BoxDimension;
634 char *FragmentNumber = NULL;
635 char *path = NULL;
636 int FragmentCounter = 0;
637 ofstream output;
638
639 // store the fragments as config and as xyz
640 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
641 // save default path as it is changed for each fragment
642 path = configuration->GetDefaultPath();
643 if (path != NULL)
644 strcpy(PathBackup, path);
645 else
646 eLog() << Verbose(0) << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl;
647
648 // correct periodic
649 (*ListRunner)->ScanForPeriodicCorrection();
650
651 // output xyz file
652 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++);
653 sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
654 outputFragment.open(FragmentName, ios::out);
655 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ...";
656 if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment)))
657 Log() << Verbose(0) << " done." << endl;
658 else
659 Log() << Verbose(0) << " failed." << endl;
660 result = result && intermediateResult;
661 outputFragment.close();
662 outputFragment.clear();
663
664 // list atoms in fragment for debugging
665 Log() << Verbose(2) << "Contained atoms: ";
666 Walker = (*ListRunner)->start;
667 while (Walker->next != (*ListRunner)->end) {
668 Walker = Walker->next;
669 Log() << Verbose(0) << Walker->Name << " ";
670 }
671 Log() << Verbose(0) << endl;
672
673 // center on edge
674 (*ListRunner)->CenterEdge(&BoxDimension);
675 (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary
676 int j = -1;
677 for (int k = 0; k < NDIM; k++) {
678 j += k + 1;
679 BoxDimension.x[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem);
680 (*ListRunner)->cell_size[j] += BoxDimension.x[k] * 2.;
681 }
682 (*ListRunner)->Translate(&BoxDimension);
683
684 // also calculate necessary orbitals
685 (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment
686 (*ListRunner)->CalculateOrbitals(*configuration);
687
688 // change path in config
689 //strcpy(PathBackup, configuration->configpath);
690 sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber);
691 configuration->SetDefaultPath(FragmentName);
692
693 // and save as config
694 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
695 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ...";
696 if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner))))
697 Log() << Verbose(0) << " done." << endl;
698 else
699 Log() << Verbose(0) << " failed." << endl;
700 result = result && intermediateResult;
701
702 // restore old config
703 configuration->SetDefaultPath(PathBackup);
704
705 // and save as mpqc input file
706 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
707 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ...";
708 if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner))))
709 Log() << Verbose(2) << " done." << endl;
710 else
711 Log() << Verbose(0) << " failed." << endl;
712
713 result = result && intermediateResult;
714 //outputFragment.close();
715 //outputFragment.clear();
716 Free(&FragmentNumber);
717 }
718 Log() << Verbose(0) << " done." << endl;
719
720 // printing final number
721 Log() << Verbose(2) << "Final number of fragments: " << FragmentCounter << "." << endl;
722
723 return result;
724};
725
726/** Counts the number of molecules with the molecule::ActiveFlag set.
727 * \return number of molecules with ActiveFlag set to true.
728 */
729int MoleculeListClass::NumberOfActiveMolecules()
730{
731 int count = 0;
732 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
733 count += ((*ListRunner)->ActiveFlag ? 1 : 0);
734 return count;
735};
736
737/** Dissects given \a *mol into connected subgraphs and inserts them as new molecules but with old atoms into \a this.
738 * \param *out output stream for debugging
739 * \param *mol molecule with atoms to dissect
740 * \param *configuration config with BondGraph
741 */
742void MoleculeListClass::DissectMoleculeIntoConnectedSubgraphs(molecule * const mol, config * const configuration)
743{
744 // 1. dissect the molecule into connected subgraphs
745 configuration ->BG->ConstructBondGraph(mol);
746
747 // 2. scan for connected subgraphs
748 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
749 class StackClass<bond *> *BackEdgeStack = NULL;
750 Subgraphs = mol->DepthFirstSearchAnalysis(BackEdgeStack);
751 delete(BackEdgeStack);
752
753 // 3. dissect (the following construct is needed to have the atoms not in the order of the DFS, but in
754 // the original one as parsed in)
755 // TODO: Optimize this, when molecules just contain pointer list of global atoms!
756
757 // 4a. create array of molecules to fill
758 const int MolCount = Subgraphs->next->Count();
759 molecule **molecules = Malloc<molecule *>(MolCount, "config::Load() - **molecules");
760 for (int i=0;i<MolCount;i++) {
761 molecules[i] = (molecule*) new molecule(mol->elemente);
762 molecules[i]->ActiveFlag = true;
763 insert(molecules[i]);
764 }
765
766 // 4b. create and fill map of which atom is associated to which connected molecule (note, counting starts at 1)
767 int FragmentCounter = 0;
768 int *MolMap = Calloc<int>(mol->AtomCount, "config::Load() - *MolMap");
769 MoleculeLeafClass *MolecularWalker = Subgraphs;
770 atom *Walker = NULL;
771 while (MolecularWalker->next != NULL) {
772 MolecularWalker = MolecularWalker->next;
773 Walker = MolecularWalker->Leaf->start;
774 while (Walker->next != MolecularWalker->Leaf->end) {
775 Walker = Walker->next;
776 MolMap[Walker->GetTrueFather()->nr] = FragmentCounter+1;
777 }
778 FragmentCounter++;
779 }
780
781 // 4c. relocate atoms to new molecules and remove from Leafs
782 Walker = mol->start;
783 while (mol->start->next != mol->end) {
784 Walker = mol->start->next;
785 if ((Walker->nr <0) || (Walker->nr >= mol->AtomCount)) {
786 eLog() << Verbose(0) << "Index of atom " << *Walker << " is invalid!" << endl;
787 performCriticalExit();
788 }
789 FragmentCounter = MolMap[Walker->nr];
790 if (FragmentCounter != 0) {
791 Log() << Verbose(3) << "Re-linking " << *Walker << "..." << endl;
792 unlink(Walker);
793 molecules[FragmentCounter-1]->AddAtom(Walker); // counting starts at 1
794 } else {
795 eLog() << Verbose(0) << "Atom " << *Walker << " not associated to molecule!" << endl;
796 performCriticalExit();
797 }
798 }
799 // 4d. we don't need to redo bonds, as they are connected subgraphs and still maintained their ListOfBonds
800 // 4e. free Leafs
801 MolecularWalker = Subgraphs;
802 while (MolecularWalker->next != NULL) {
803 MolecularWalker = MolecularWalker->next;
804 delete(MolecularWalker->previous);
805 }
806 delete(MolecularWalker);
807 Free(&MolMap);
808 Free(&molecules);
809 Log() << Verbose(1) << "I scanned " << FragmentCounter << " molecules." << endl;
810};
811
812/******************************************* Class MoleculeLeafClass ************************************************/
813
814/** Constructor for MoleculeLeafClass root leaf.
815 * \param *Up Leaf on upper level
816 * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
817 */
818//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
819MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL)
820{
821 // if (Up != NULL)
822 // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
823 // Up->DownLeaf = this;
824 // UpLeaf = Up;
825 // DownLeaf = NULL;
826 Leaf = NULL;
827 previous = PreviousLeaf;
828 if (previous != NULL) {
829 MoleculeLeafClass *Walker = previous->next;
830 previous->next = this;
831 next = Walker;
832 } else {
833 next = NULL;
834 }
835};
836
837/** Destructor for MoleculeLeafClass.
838 */
839MoleculeLeafClass::~MoleculeLeafClass()
840{
841 // if (DownLeaf != NULL) {// drop leaves further down
842 // MoleculeLeafClass *Walker = DownLeaf;
843 // MoleculeLeafClass *Next;
844 // do {
845 // Next = Walker->NextLeaf;
846 // delete(Walker);
847 // Walker = Next;
848 // } while (Walker != NULL);
849 // // Last Walker sets DownLeaf automatically to NULL
850 // }
851 // remove the leaf itself
852 if (Leaf != NULL) {
853 delete (Leaf);
854 Leaf = NULL;
855 }
856 // remove this Leaf from level list
857 if (previous != NULL)
858 previous->next = next;
859 // } else { // we are first in list (connects to UpLeaf->DownLeaf)
860 // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
861 // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
862 // if (UpLeaf != NULL)
863 // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
864 // }
865 // UpLeaf = NULL;
866 if (next != NULL) // are we last in list
867 next->previous = previous;
868 next = NULL;
869 previous = NULL;
870};
871
872/** Adds \a molecule leaf to the tree.
873 * \param *ptr ptr to molecule to be added
874 * \param *Previous previous MoleculeLeafClass referencing level and which on the level
875 * \return true - success, false - something went wrong
876 */
877bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
878{
879 return false;
880};
881
882/** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule.
883 * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL.
884 * \param *out output stream for debugging
885 * \param *reference reference molecule with the bond structure to be copied
886 * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms
887 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled
888 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
889 * \return true - success, false - faoilure
890 */
891bool MoleculeLeafClass::FillBondStructureFromReference(const molecule * const reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList)
892{
893 atom *Walker = NULL;
894 atom *OtherWalker = NULL;
895 atom *Father = NULL;
896 bool status = true;
897 int AtomNo;
898
899 Log() << Verbose(1) << "Begin of FillBondStructureFromReference." << endl;
900 // fill ListOfLocalAtoms if NULL was given
901 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
902 Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
903 return false;
904 }
905
906 if (status) {
907 Log() << Verbose(1) << "Creating adjacency list for subgraph " << Leaf << "." << endl;
908 // remove every bond from the list
909 bond *Binder = NULL;
910 while (Leaf->last->previous != Leaf->first) {
911 Binder = Leaf->last->previous;
912 Binder->leftatom->UnregisterBond(Binder);
913 Binder->rightatom->UnregisterBond(Binder);
914 removewithoutcheck(Binder);
915 }
916
917 Walker = Leaf->start;
918 while (Walker->next != Leaf->end) {
919 Walker = Walker->next;
920 Father = Walker->GetTrueFather();
921 AtomNo = Father->nr; // global id of the current walker
922 for (BondList::const_iterator Runner = Father->ListOfBonds.begin(); Runner != Father->ListOfBonds.end(); (++Runner)) {
923 OtherWalker = ListOfLocalAtoms[FragmentCounter][(*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker
924 if (OtherWalker != NULL) {
925 if (OtherWalker->nr > Walker->nr)
926 Leaf->AddBond(Walker, OtherWalker, (*Runner)->BondDegree);
927 } else {
928 Log() << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << (*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl;
929 status = false;
930 }
931 }
932 }
933 }
934
935 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
936 // free the index lookup list
937 Free(&ListOfLocalAtoms[FragmentCounter]);
938 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
939 Free(&ListOfLocalAtoms);
940 }
941 Log() << Verbose(1) << "End of FillBondStructureFromReference." << endl;
942 return status;
943};
944
945/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
946 * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
947 * \param *out output stream for debugging
948 * \param *&RootStack stack to be filled
949 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site
950 * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
951 * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
952 */
953bool MoleculeLeafClass::FillRootStackForSubgraphs(KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter)
954{
955 atom *Walker = NULL, *Father = NULL;
956
957 if (RootStack != NULL) {
958 // find first root candidates
959 if (&(RootStack[FragmentCounter]) != NULL) {
960 RootStack[FragmentCounter].clear();
961 Walker = Leaf->start;
962 while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms
963 Walker = Walker->next;
964 Father = Walker->GetTrueFather();
965 if (AtomMask[Father->nr]) // apply mask
966#ifdef ADDHYDROGEN
967 if (Walker->type->Z != 1) // skip hydrogen
968#endif
969 RootStack[FragmentCounter].push_front(Walker->nr);
970 }
971 if (next != NULL)
972 next->FillRootStackForSubgraphs(RootStack, AtomMask, ++FragmentCounter);
973 } else {
974 Log() << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl;
975 return false;
976 }
977 FragmentCounter--;
978 return true;
979 } else {
980 Log() << Verbose(1) << "Rootstack is NULL." << endl;
981 return false;
982 }
983};
984
985/** Fills a lookup list of father's Atom::nr -> atom for each subgraph.
986 * \param *out output stream from debugging
987 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
988 * \param FragmentCounter counts the fragments as we move along the list
989 * \param GlobalAtomCount number of atoms in the complete molecule
990 * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
991 * \return true - success, false - failure
992 */
993bool MoleculeLeafClass::FillListOfLocalAtoms(atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList)
994{
995 bool status = true;
996
997 if (ListOfLocalAtoms == NULL) { // allocated initial pointer
998 // allocate and set each field to NULL
999 const int Counter = Count();
1000 ListOfLocalAtoms = Calloc<atom**>(Counter, "MoleculeLeafClass::FillListOfLocalAtoms - ***ListOfLocalAtoms");
1001 if (ListOfLocalAtoms == NULL) {
1002 FreeList = FreeList && false;
1003 status = false;
1004 }
1005 }
1006
1007 if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph
1008 status = status && CreateFatherLookupTable(Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount);
1009 FreeList = FreeList && true;
1010 }
1011
1012 return status;
1013};
1014
1015/** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList.
1016 * \param *out output stream fro debugging
1017 * \param *reference reference molecule with the bond structure to be copied
1018 * \param *KeySetList list with all keysets
1019 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1020 * \param **&FragmentList list to be allocated and returned
1021 * \param &FragmentCounter counts the fragments as we move along the list
1022 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1023 * \retuen true - success, false - failure
1024 */
1025bool MoleculeLeafClass::AssignKeySetsToFragment(molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList)
1026{
1027 bool status = true;
1028 int KeySetCounter = 0;
1029
1030 Log() << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl;
1031 // fill ListOfLocalAtoms if NULL was given
1032 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
1033 Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
1034 return false;
1035 }
1036
1037 // allocate fragment list
1038 if (FragmentList == NULL) {
1039 KeySetCounter = Count();
1040 FragmentList = Calloc<Graph*>(KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList");
1041 KeySetCounter = 0;
1042 }
1043
1044 if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all
1045 // assign scanned keysets
1046 if (FragmentList[FragmentCounter] == NULL)
1047 FragmentList[FragmentCounter] = new Graph;
1048 KeySet *TempSet = new KeySet;
1049 for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
1050 if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
1051 // translate keyset to local numbers
1052 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1053 TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr);
1054 // insert into FragmentList
1055 FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair<int, double> (KeySetCounter++, (*runner).second.second)));
1056 }
1057 TempSet->clear();
1058 }
1059 delete (TempSet);
1060 if (KeySetCounter == 0) {// if there are no keysets, delete the list
1061 Log() << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl;
1062 delete (FragmentList[FragmentCounter]);
1063 } else
1064 Log() << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl;
1065 FragmentCounter++;
1066 if (next != NULL)
1067 next->AssignKeySetsToFragment(reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
1068 FragmentCounter--;
1069 } else
1070 Log() << Verbose(1) << "KeySetList is NULL or empty." << endl;
1071
1072 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1073 // free the index lookup list
1074 Free(&ListOfLocalAtoms[FragmentCounter]);
1075 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1076 Free(&ListOfLocalAtoms);
1077 }
1078 Log() << Verbose(1) << "End of AssignKeySetsToFragment." << endl;
1079 return status;
1080};
1081
1082/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
1083 * \param *out output stream for debugging
1084 * \param **FragmentList Graph with local numbers per fragment
1085 * \param &FragmentCounter counts the fragments as we move along the list
1086 * \param &TotalNumberOfKeySets global key set counter
1087 * \param &TotalGraph Graph to be filled with global numbers
1088 */
1089void MoleculeLeafClass::TranslateIndicesToGlobalIDs(Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph)
1090{
1091 Log() << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl;
1092 KeySet *TempSet = new KeySet;
1093 if (FragmentList[FragmentCounter] != NULL) {
1094 for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
1095 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1096 TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
1097 TotalGraph.insert(GraphPair(*TempSet, pair<int, double> (TotalNumberOfKeySets++, (*runner).second.second)));
1098 TempSet->clear();
1099 }
1100 delete (TempSet);
1101 } else {
1102 Log() << Verbose(1) << "FragmentList is NULL." << endl;
1103 }
1104 if (next != NULL)
1105 next->TranslateIndicesToGlobalIDs(FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
1106 FragmentCounter--;
1107 Log() << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl;
1108};
1109
1110/** Simply counts the number of items in the list, from given MoleculeLeafClass.
1111 * \return number of items
1112 */
1113int MoleculeLeafClass::Count() const
1114{
1115 if (next != NULL)
1116 return next->Count() + 1;
1117 else
1118 return 1;
1119};
1120
Note: See TracBrowser for help on using the repository browser.