[0b990d] | 1 | //
|
---|
| 2 | // comp1e.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <stdlib.h>
|
---|
| 29 | #include <math.h>
|
---|
| 30 |
|
---|
| 31 | #include <util/misc/formio.h>
|
---|
| 32 | #include <util/misc/math.h>
|
---|
| 33 | #include <chemistry/qc/intv3/macros.h>
|
---|
| 34 | #include <chemistry/qc/intv3/fjt.h>
|
---|
| 35 | #include <chemistry/qc/intv3/utils.h>
|
---|
| 36 | #include <chemistry/qc/intv3/int1e.h>
|
---|
| 37 | #include <chemistry/qc/intv3/tformv3.h>
|
---|
| 38 |
|
---|
| 39 | using namespace std;
|
---|
| 40 | using namespace sc;
|
---|
| 41 |
|
---|
| 42 | #define IN(i,j) ((i)==(j)?1:0)
|
---|
| 43 | #define SELECT(x1,x2,x3,s) (((s)==0)?x1:(((s)==1)?(x2):(x3)))
|
---|
| 44 |
|
---|
| 45 | #define DEBUG_NUC_SHELL_DER 0
|
---|
| 46 | #define DEBUG_NUC_PRIM 0
|
---|
| 47 | #define DEBUG_NUC_SHELL 0
|
---|
| 48 |
|
---|
| 49 | #define DEBUG_EFIELD_PRIM 0
|
---|
| 50 |
|
---|
| 51 | /* ------------ Initialization of 1e routines. ------------------- */
|
---|
| 52 | /* This routine returns a buffer large enough to hold a shell doublet
|
---|
| 53 | * of integrals (if order == 0) or derivative integrals (if order == 1).
|
---|
| 54 | */
|
---|
| 55 | void
|
---|
| 56 | Int1eV3::int_initialize_1e(int flags, int order)
|
---|
| 57 | {
|
---|
| 58 | int jmax1,jmax2,jmax;
|
---|
| 59 | int scratchsize=0,nshell2;
|
---|
| 60 |
|
---|
| 61 | /* The efield routines look like derivatives so bump up order if
|
---|
| 62 | * it is zero to allow efield integrals to be computed.
|
---|
| 63 | */
|
---|
| 64 | if (order == 0) order = 1;
|
---|
| 65 |
|
---|
| 66 | jmax1 = bs1_->max_angular_momentum();
|
---|
| 67 | jmax2 = bs2_->max_angular_momentum();
|
---|
| 68 | jmax = jmax1 + jmax2;
|
---|
| 69 |
|
---|
| 70 | fjt_ = new FJT(jmax + 2*order);
|
---|
| 71 |
|
---|
| 72 | nshell2 = bs1_->max_ncartesian_in_shell()*bs2_->max_ncartesian_in_shell();
|
---|
| 73 |
|
---|
| 74 | if (order == 0) {
|
---|
| 75 | init_order = 0;
|
---|
| 76 | scratchsize = nshell2;
|
---|
| 77 | }
|
---|
| 78 | else if (order == 1) {
|
---|
| 79 | init_order = 1;
|
---|
| 80 | scratchsize = nshell2*3;
|
---|
| 81 | }
|
---|
| 82 | else {
|
---|
| 83 | ExEnv::errn() << scprintf("int_initialize_1e: invalid order: %d\n",order);
|
---|
| 84 | exit(1);
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | buff = new double[scratchsize];
|
---|
| 88 | cartesianbuffer = new double[scratchsize];
|
---|
| 89 | cartesianbuffer_scratch = new double[scratchsize];
|
---|
| 90 |
|
---|
| 91 | inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1);
|
---|
| 92 | efield_inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1);
|
---|
| 93 | int i,j,m;
|
---|
| 94 | for (i=0; i<=jmax1+order; i++) {
|
---|
| 95 | int sizei = INT_NCART_NN(i);
|
---|
| 96 | for (j=0; j<=jmax2+order; j++) {
|
---|
| 97 | int sizej = INT_NCART_NN(j);
|
---|
| 98 | for (m=0; m<=jmax+2*order-i-j; m++) {
|
---|
| 99 | inter(i,j,m) = new double[sizei*sizej];
|
---|
| 100 | efield_inter(i,j,m) = new double[sizei*sizej*3];
|
---|
| 101 | }
|
---|
| 102 | for (; m<=jmax+2*order; m++) {
|
---|
| 103 | inter(i,j,m) = 0;
|
---|
| 104 | efield_inter(i,j,m) = 0;
|
---|
| 105 | }
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | void
|
---|
| 112 | Int1eV3::int_done_1e()
|
---|
| 113 | {
|
---|
| 114 | init_order = -1;
|
---|
| 115 | delete[] buff;
|
---|
| 116 | delete[] cartesianbuffer;
|
---|
| 117 | delete[] cartesianbuffer_scratch;
|
---|
| 118 | buff = 0;
|
---|
| 119 | cartesianbuffer = 0;
|
---|
| 120 | inter.delete_data();
|
---|
| 121 | efield_inter.delete_data();
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 |
|
---|
| 125 | /* --------------------------------------------------------------- */
|
---|
| 126 | /* ------------- Routines for the overlap matrix ----------------- */
|
---|
| 127 | /* --------------------------------------------------------------- */
|
---|
| 128 |
|
---|
| 129 | /* This computes the overlap integrals between functions in two shells.
|
---|
| 130 | * The result is placed in the buffer.
|
---|
| 131 | */
|
---|
| 132 | void
|
---|
| 133 | Int1eV3::overlap(int ish, int jsh)
|
---|
| 134 | {
|
---|
| 135 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 136 | int gc1,gc2;
|
---|
| 137 | int index,index1,index2;
|
---|
| 138 |
|
---|
| 139 | c1 = bs1_->shell_to_center(ish);
|
---|
| 140 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 141 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 142 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 143 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 144 | }
|
---|
| 145 | gshell1 = &bs1_->shell(ish);
|
---|
| 146 | gshell2 = &bs2_->shell(jsh);
|
---|
| 147 | index = 0;
|
---|
| 148 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
| 149 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
| 150 | cartesianbuffer[index] = comp_shell_overlap(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 151 | index++;
|
---|
| 152 | END_FOR_GCCART_GS(index2)
|
---|
| 153 | END_FOR_GCCART_GS(index1)
|
---|
| 154 |
|
---|
| 155 | transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | /* This computes the overlap ints between functions in two shells.
|
---|
| 159 | * The result is placed in the buffer.
|
---|
| 160 | */
|
---|
| 161 | void
|
---|
| 162 | Int1eV3::overlap_1der(int ish, int jsh,
|
---|
| 163 | int idercs, int centernum)
|
---|
| 164 | {
|
---|
| 165 | int i;
|
---|
| 166 | int c1,c2;
|
---|
| 167 | int ni,nj;
|
---|
| 168 |
|
---|
| 169 | if (!(init_order >= 0)) {
|
---|
| 170 | ExEnv::errn() << scprintf("int_shell_overlap: one electron routines are not init'ed\n");
|
---|
| 171 | exit(1);
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | Ref<GaussianBasisSet> dercs;
|
---|
| 175 | if (idercs == 0) dercs = bs1_;
|
---|
| 176 | else dercs = bs2_;
|
---|
| 177 |
|
---|
| 178 | c1 = bs1_->shell_to_center(ish);
|
---|
| 179 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 180 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 181 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 182 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 183 | }
|
---|
| 184 | gshell1 = &bs1_->shell(ish);
|
---|
| 185 | gshell2 = &bs2_->shell(jsh);
|
---|
| 186 |
|
---|
| 187 | ni = gshell1->nfunction();
|
---|
| 188 | nj = gshell2->nfunction();
|
---|
| 189 |
|
---|
| 190 | #if 0
|
---|
| 191 | ExEnv::outn() << scprintf("zeroing %d*%d*3 elements of buff\n",ni,nj);
|
---|
| 192 | #endif
|
---|
| 193 | for (i=0; i<ni*nj*3; i++) {
|
---|
| 194 | buff[i] = 0.0;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | int_accum_shell_overlap_1der(ish,jsh,dercs,centernum);
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | /* This computes the overlap derivative integrals between functions
|
---|
| 201 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 202 | * atom 0 x, y, z, atom 1, ... .
|
---|
| 203 | */
|
---|
| 204 | void
|
---|
| 205 | Int1eV3::int_accum_shell_overlap_1der(int ish, int jsh,
|
---|
| 206 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
| 207 | {
|
---|
| 208 | accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_overlap);
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | /* Compute the overlap for the shell. The arguments are the
|
---|
| 212 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
| 213 | * globals are used. */
|
---|
| 214 | double
|
---|
| 215 | Int1eV3::comp_shell_overlap(int gc1, int i1, int j1, int k1,
|
---|
| 216 | int gc2, int i2, int j2, int k2)
|
---|
| 217 | {
|
---|
| 218 | double exp1,exp2;
|
---|
| 219 | int i,j,xyz;
|
---|
| 220 | double result;
|
---|
| 221 | double Pi;
|
---|
| 222 | double oozeta;
|
---|
| 223 | double AmB,AmB2;
|
---|
| 224 | double tmp;
|
---|
| 225 |
|
---|
| 226 | if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return 0.0;
|
---|
| 227 |
|
---|
| 228 | /* Loop over the primitives in the shells. */
|
---|
| 229 | result = 0.0;
|
---|
| 230 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 231 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 232 |
|
---|
| 233 | /* Compute the intermediates. */
|
---|
| 234 | exp1 = gshell1->exponent(i);
|
---|
| 235 | exp2 = gshell2->exponent(j);
|
---|
| 236 | oozeta = 1.0/(exp1 + exp2);
|
---|
| 237 | oo2zeta = 0.5*oozeta;
|
---|
| 238 | AmB2 = 0.0;
|
---|
| 239 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 240 | Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]);
|
---|
| 241 | PmA[xyz] = Pi - A[xyz];
|
---|
| 242 | PmB[xyz] = Pi - B[xyz];
|
---|
| 243 | AmB = A[xyz] - B[xyz];
|
---|
| 244 | AmB2 += AmB*AmB;
|
---|
| 245 | }
|
---|
| 246 | ss = pow(M_PI/(exp1+exp2),1.5)
|
---|
| 247 | * exp(- oozeta * exp1 * exp2 * AmB2);
|
---|
| 248 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
| 249 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
| 250 | * comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 251 | if (exponent_weighted == 0) tmp *= exp1;
|
---|
| 252 | else if (exponent_weighted == 1) tmp *= exp2;
|
---|
| 253 | result += tmp;
|
---|
| 254 | }
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | return result;
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | /* Compute the overlap between two primitive functions. */
|
---|
| 261 | #if 0
|
---|
| 262 | double
|
---|
| 263 | Int1eV3::int_prim_overlap(shell_t *pshell1, shell_t *pshell2,
|
---|
| 264 | double *pA, double *pB,
|
---|
| 265 | int prim1, int prim2,
|
---|
| 266 | int i1, int j1, int k1,
|
---|
| 267 | int i2, int j2, int k2)
|
---|
| 268 | {
|
---|
| 269 | int xyz;
|
---|
| 270 | double Pi;
|
---|
| 271 | double oozeta;
|
---|
| 272 | double AmB,AmB2;
|
---|
| 273 |
|
---|
| 274 | /* Compute the intermediates. */
|
---|
| 275 | oozeta = 1.0/(gshell1->exponent(prim1) + gshell2->exponent(prim2));
|
---|
| 276 | oo2zeta = 0.5*oozeta;
|
---|
| 277 | AmB2 = 0.0;
|
---|
| 278 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 279 | Pi = oozeta*(gshell1->exponent(prim1) * A[xyz]
|
---|
| 280 | + gshell2->exponent(prim2) * B[xyz]);
|
---|
| 281 | PmA[xyz] = Pi - A[xyz];
|
---|
| 282 | PmB[xyz] = Pi - B[xyz];
|
---|
| 283 | AmB = A[xyz] - B[xyz];
|
---|
| 284 | AmB2 += AmB*AmB;
|
---|
| 285 | }
|
---|
| 286 | ss = pow(M_PI/(gshell1->exponent(prim1)
|
---|
| 287 | +gshell2->exponent(prim2)),1.5)
|
---|
| 288 | * exp(- oozeta * gshell1->exponent(prim1)
|
---|
| 289 | * gshell2->exponent(prim2) * AmB2);
|
---|
| 290 | return comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 291 | }
|
---|
| 292 | #endif
|
---|
| 293 |
|
---|
| 294 | double
|
---|
| 295 | Int1eV3::comp_prim_overlap(int i1, int j1, int k1,
|
---|
| 296 | int i2, int j2, int k2)
|
---|
| 297 | {
|
---|
| 298 | double result;
|
---|
| 299 |
|
---|
| 300 | if (i1) {
|
---|
| 301 | result = PmA[0] * comp_prim_overlap(i1-1,j1,k1,i2,j2,k2);
|
---|
| 302 | if (i1>1) result += oo2zeta*(i1-1) * comp_prim_overlap(i1-2,j1,k1,i2,j2,k2);
|
---|
| 303 | if (i2>0) result += oo2zeta*i2 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2);
|
---|
| 304 | return result;
|
---|
| 305 | }
|
---|
| 306 | if (j1) {
|
---|
| 307 | result = PmA[1] * comp_prim_overlap(i1,j1-1,k1,i2,j2,k2);
|
---|
| 308 | if (j1>1) result += oo2zeta*(j1-1) * comp_prim_overlap(i1,j1-2,k1,i2,j2,k2);
|
---|
| 309 | if (j2>0) result += oo2zeta*j2 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2);
|
---|
| 310 | return result;
|
---|
| 311 | }
|
---|
| 312 | if (k1) {
|
---|
| 313 | result = PmA[2] * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2);
|
---|
| 314 | if (k1>1) result += oo2zeta*(k1-1) * comp_prim_overlap(i1,j1,k1-2,i2,j2,k2);
|
---|
| 315 | if (k2>0) result += oo2zeta*k2 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1);
|
---|
| 316 | return result;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | if (i2) {
|
---|
| 320 | result = PmB[0] * comp_prim_overlap(i1,j1,k1,i2-1,j2,k2);
|
---|
| 321 | if (i2>1) result += oo2zeta*(i2-1) * comp_prim_overlap(i1,j1,k1,i2-2,j2,k2);
|
---|
| 322 | if (i1>0) result += oo2zeta*i1 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2);
|
---|
| 323 | return result;
|
---|
| 324 | }
|
---|
| 325 | if (j2) {
|
---|
| 326 | result = PmB[1] * comp_prim_overlap(i1,j1,k1,i2,j2-1,k2);
|
---|
| 327 | if (j2>1) result += oo2zeta*(j2-1) * comp_prim_overlap(i1,j1,k1,i2,j2-2,k2);
|
---|
| 328 | if (j1>0) result += oo2zeta*j1 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2);
|
---|
| 329 | return result;
|
---|
| 330 | }
|
---|
| 331 | if (k2) {
|
---|
| 332 | result = PmB[2] * comp_prim_overlap(i1,j1,k1,i2,j2,k2-1);
|
---|
| 333 | if (k2>1) result += oo2zeta*(k2-1) * comp_prim_overlap(i1,j1,k1,i2,j2,k2-2);
|
---|
| 334 | if (k1>0) result += oo2zeta*k1 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1);
|
---|
| 335 | return result;
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | return ss;
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | /* --------------------------------------------------------------- */
|
---|
| 342 | /* ------------- Routines for the kinetic energy ----------------- */
|
---|
| 343 | /* --------------------------------------------------------------- */
|
---|
| 344 |
|
---|
| 345 | /* This computes the kinetic energy integrals between functions in two shells.
|
---|
| 346 | * The result is placed in the buffer.
|
---|
| 347 | */
|
---|
| 348 | void
|
---|
| 349 | Int1eV3::kinetic(int ish, int jsh)
|
---|
| 350 | {
|
---|
| 351 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 352 | int cart1,cart2;
|
---|
| 353 | int index;
|
---|
| 354 | int gc1,gc2;
|
---|
| 355 |
|
---|
| 356 | c1 = bs1_->shell_to_center(ish);
|
---|
| 357 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 358 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 359 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 360 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 361 | }
|
---|
| 362 | gshell1 = &bs1_->shell(ish);
|
---|
| 363 | gshell2 = &bs2_->shell(jsh);
|
---|
| 364 | index = 0;
|
---|
| 365 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
| 366 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
| 367 | cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 368 | index++;
|
---|
| 369 | END_FOR_GCCART_GS(cart2)
|
---|
| 370 | END_FOR_GCCART_GS(cart1)
|
---|
| 371 |
|
---|
| 372 | transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 373 | }
|
---|
| 374 |
|
---|
| 375 | void
|
---|
| 376 | Int1eV3::int_accum_shell_kinetic(int ish, int jsh)
|
---|
| 377 | {
|
---|
| 378 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 379 | int cart1,cart2;
|
---|
| 380 | int index;
|
---|
| 381 | int gc1,gc2;
|
---|
| 382 |
|
---|
| 383 | c1 = bs1_->shell_to_center(ish);
|
---|
| 384 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 385 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 386 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 387 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 388 | }
|
---|
| 389 | gshell1 = &bs1_->shell(ish);
|
---|
| 390 | gshell2 = &bs2_->shell(jsh);
|
---|
| 391 | index = 0;
|
---|
| 392 |
|
---|
| 393 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
| 394 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
| 395 | cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 396 | index++;
|
---|
| 397 | END_FOR_GCCART_GS(cart2)
|
---|
| 398 | END_FOR_GCCART_GS(cart1)
|
---|
| 399 | accum_transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 400 | }
|
---|
| 401 |
|
---|
| 402 | /* This computes the kinetic energy derivative integrals between functions
|
---|
| 403 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 404 | * atom 0 x, y, z, atom 1, ... .
|
---|
| 405 | */
|
---|
| 406 | void
|
---|
| 407 | Int1eV3::int_accum_shell_kinetic_1der(int ish, int jsh,
|
---|
| 408 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
| 409 | {
|
---|
| 410 | accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_kinetic);
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | /* This computes the basis function part of
|
---|
| 414 | * generic derivative integrals between functions
|
---|
| 415 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 416 | * atom 0 x, y, z, atom 1, ... .
|
---|
| 417 | * The function used to compute the nonderivative integrals is shell_function.
|
---|
| 418 | */
|
---|
| 419 | void
|
---|
| 420 | Int1eV3::accum_shell_1der(double *buff, int ish, int jsh,
|
---|
| 421 | Ref<GaussianBasisSet> dercs, int centernum,
|
---|
| 422 | double (Int1eV3::*shell_function)
|
---|
| 423 | (int,int,int,int,int,int,int,int))
|
---|
| 424 | {
|
---|
| 425 | int i;
|
---|
| 426 | int gc1,gc2;
|
---|
| 427 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 428 | int index1,index2;
|
---|
| 429 | double tmp[3];
|
---|
| 430 | double *ctmp = cartesianbuffer;
|
---|
| 431 |
|
---|
| 432 | c1 = bs1_->shell_to_center(ish);
|
---|
| 433 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 434 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 435 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 436 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 437 | }
|
---|
| 438 | gshell1 = &bs1_->shell(ish);
|
---|
| 439 | gshell2 = &bs2_->shell(jsh);
|
---|
| 440 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
| 441 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
| 442 | if ((bs1_==bs2_)&&(c1==c2)) {
|
---|
| 443 | if ( three_center
|
---|
| 444 | && !((bs1_==third_centers)&&(c1==third_centernum))
|
---|
| 445 | && ((bs1_==dercs)&&(c1==centernum))) {
|
---|
| 446 | for (i=0; i<3; i++) {
|
---|
| 447 | /* Derivative wrt first shell. */
|
---|
| 448 | exponent_weighted = 0;
|
---|
| 449 | tmp[i] = 2.0 *
|
---|
| 450 | (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2);
|
---|
| 451 | exponent_weighted = -1;
|
---|
| 452 | if (SELECT(i1,j1,k1,i)) {
|
---|
| 453 | tmp[i] -= SELECT(i1,j1,k1,i) *
|
---|
| 454 | (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2);
|
---|
| 455 | }
|
---|
| 456 | /* Derviative wrt second shell. */
|
---|
| 457 | exponent_weighted = 1;
|
---|
| 458 | tmp[i] += 2.0 *
|
---|
| 459 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2));
|
---|
| 460 | exponent_weighted = -1;
|
---|
| 461 | if (SELECT(i2,j2,k2,i)) {
|
---|
| 462 | tmp[i] -= SELECT(i2,j2,k2,i) *
|
---|
| 463 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2));
|
---|
| 464 | }
|
---|
| 465 | }
|
---|
| 466 | }
|
---|
| 467 | else {
|
---|
| 468 | /* If there are two centers and they are the same, then we
|
---|
| 469 | * use translational invariance to get a net contrib of 0.0 */
|
---|
| 470 | for (i=0; i<3; i++) tmp[i] = 0.0;
|
---|
| 471 | }
|
---|
| 472 | }
|
---|
| 473 | else if ((bs1_==dercs)&&(c1==centernum)) {
|
---|
| 474 | for (i=0; i<3; i++) {
|
---|
| 475 | exponent_weighted = 0;
|
---|
| 476 | tmp[i] = 2.0 *
|
---|
| 477 | (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2);
|
---|
| 478 | exponent_weighted = -1;
|
---|
| 479 | if (SELECT(i1,j1,k1,i)) {
|
---|
| 480 | tmp[i] -= SELECT(i1,j1,k1,i) *
|
---|
| 481 | (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2);
|
---|
| 482 | }
|
---|
| 483 | }
|
---|
| 484 | }
|
---|
| 485 | else if ((bs2_==dercs)&&(c2==centernum)) {
|
---|
| 486 | for (i=0; i<3; i++) {
|
---|
| 487 | exponent_weighted = 1;
|
---|
| 488 | tmp[i] = 2.0 *
|
---|
| 489 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2));
|
---|
| 490 | exponent_weighted = -1;
|
---|
| 491 | if (SELECT(i2,j2,k2,i)) {
|
---|
| 492 | tmp[i] -= SELECT(i2,j2,k2,i) *
|
---|
| 493 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2));
|
---|
| 494 | }
|
---|
| 495 | }
|
---|
| 496 | }
|
---|
| 497 | else {
|
---|
| 498 | for (i=0; i<3; i++) tmp[i] = 0.0;
|
---|
| 499 | }
|
---|
| 500 |
|
---|
| 501 | if (scale_shell_result) {
|
---|
| 502 | for (i=0; i<3; i++) tmp[i] *= result_scale_factor;
|
---|
| 503 | }
|
---|
| 504 |
|
---|
| 505 | for (i=0; i<3; i++) ctmp[i] = tmp[i];
|
---|
| 506 |
|
---|
| 507 | /* Increment the pointer to the xyz for the next atom. */
|
---|
| 508 | ctmp += 3;
|
---|
| 509 | END_FOR_GCCART_GS(index2)
|
---|
| 510 | END_FOR_GCCART_GS(index1)
|
---|
| 511 |
|
---|
| 512 | accum_transform_1e_xyz(integral_,
|
---|
| 513 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 514 | }
|
---|
| 515 |
|
---|
| 516 | /* This computes the basis function part of
|
---|
| 517 | * generic derivative integrals between functions
|
---|
| 518 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 519 | * atom 0 x, y, z, atom 1, ... .
|
---|
| 520 | * The function used to compute the nonderivative integrals is shell_function.
|
---|
| 521 | */
|
---|
| 522 | void
|
---|
| 523 | Int1eV3::accum_shell_block_1der(double *buff, int ish, int jsh,
|
---|
| 524 | Ref<GaussianBasisSet> dercs, int centernum,
|
---|
| 525 | void (Int1eV3::*shell_block_function)
|
---|
| 526 | (int gc1, int a, int gc2, int b,
|
---|
| 527 | int gcsize2, int gcoff1, int gcoff2,
|
---|
| 528 | double coef, double *buffer))
|
---|
| 529 | {
|
---|
| 530 | int i;
|
---|
| 531 | int gc1,gc2;
|
---|
| 532 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 533 | int index1,index2;
|
---|
| 534 |
|
---|
| 535 | c1 = bs1_->shell_to_center(ish);
|
---|
| 536 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 537 |
|
---|
| 538 | int docenter1=0, docenter2=0;
|
---|
| 539 | int equiv12 = (bs1_==bs2_)&&(c1==c2);
|
---|
| 540 | int der1 = (bs1_==dercs)&&(c1==centernum);
|
---|
| 541 | int der2 = (bs2_==dercs)&&(c2==centernum);
|
---|
| 542 | if (!equiv12) {
|
---|
| 543 | docenter1 = der1;
|
---|
| 544 | docenter2 = der2;
|
---|
| 545 | }
|
---|
| 546 | else if (three_center) {
|
---|
| 547 | int equiv123 = (bs1_==third_centers)&&(c1==third_centernum);
|
---|
| 548 | if (!equiv123) {
|
---|
| 549 | docenter1 = der1;
|
---|
| 550 | docenter2 = der2;
|
---|
| 551 | }
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | gshell1 = &bs1_->shell(ish);
|
---|
| 555 | gshell2 = &bs2_->shell(jsh);
|
---|
| 556 | int gcsize1 = gshell1->ncartesian();
|
---|
| 557 | int gcsize2 = gshell2->ncartesian();
|
---|
| 558 | memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3);
|
---|
| 559 |
|
---|
| 560 | if (!docenter1 && !docenter2) return;
|
---|
| 561 |
|
---|
| 562 | double coef;
|
---|
| 563 | if (scale_shell_result) {
|
---|
| 564 | coef = result_scale_factor;
|
---|
| 565 | }
|
---|
| 566 | else coef = 1.0;
|
---|
| 567 |
|
---|
| 568 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 569 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 570 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 571 | }
|
---|
| 572 | int gcoff1 = 0;
|
---|
| 573 | for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
|
---|
| 574 | int a = gshell1->am(gc1);
|
---|
| 575 | int sizea = INT_NCART_NN(a);
|
---|
| 576 | int sizeap1 = INT_NCART_NN(a+1);
|
---|
| 577 | int sizeam1 = INT_NCART(a-1);
|
---|
| 578 | int gcoff2 = 0;
|
---|
| 579 | for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
|
---|
| 580 | int b = gshell2->am(gc2);
|
---|
| 581 | int sizeb = INT_NCART_NN(b);
|
---|
| 582 | int sizebp1 = INT_NCART_NN(b+1);
|
---|
| 583 | int sizebm1 = INT_NCART(b-1);
|
---|
| 584 | /* Derivative wrt first shell. */
|
---|
| 585 | if (docenter1) {
|
---|
| 586 | exponent_weighted = 0;
|
---|
| 587 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizeap1*sizeb);
|
---|
| 588 | (this->*shell_block_function)(gc1, a+1, gc2, b,
|
---|
| 589 | sizeb, 0, 0,
|
---|
| 590 | coef, cartesianbuffer_scratch);
|
---|
| 591 | index1=0;
|
---|
| 592 | FOR_CART(i1,j1,k1,a) {
|
---|
| 593 | index2=0;
|
---|
| 594 | FOR_CART(i2,j2,k2,b) {
|
---|
| 595 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
| 596 | +index2+gcoff2)*3];
|
---|
| 597 | for (i=0; i<3; i++) {
|
---|
| 598 | int ind = INT_CARTINDEX(a+1,i1+IN(i,0),j1+IN(i,1));
|
---|
| 599 | *ctmp++ += 2.0*cartesianbuffer_scratch[ind*sizeb+index2];
|
---|
| 600 | }
|
---|
| 601 | index2++;
|
---|
| 602 | } END_FOR_CART;
|
---|
| 603 | index1++;
|
---|
| 604 | } END_FOR_CART;
|
---|
| 605 |
|
---|
| 606 | if (a) {
|
---|
| 607 | exponent_weighted = -1;
|
---|
| 608 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizeam1*sizeb);
|
---|
| 609 | (this->*shell_block_function)(gc1, a-1, gc2, b,
|
---|
| 610 | sizeb, 0, 0,
|
---|
| 611 | coef, cartesianbuffer_scratch);
|
---|
| 612 | index1=0;
|
---|
| 613 | FOR_CART(i1,j1,k1,a) {
|
---|
| 614 | index2=0;
|
---|
| 615 | FOR_CART(i2,j2,k2,b) {
|
---|
| 616 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
| 617 | +index2+gcoff2)*3];
|
---|
| 618 | for (i=0; i<3; i++) {
|
---|
| 619 | int sel = SELECT(i1,j1,k1,i);
|
---|
| 620 | if (sel) {
|
---|
| 621 | int ind = INT_CARTINDEX(a-1,i1-IN(i,0),j1-IN(i,1));
|
---|
| 622 | ctmp[i] -= sel * cartesianbuffer_scratch[ind*sizeb+index2];
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 | index2++;
|
---|
| 626 | } END_FOR_CART;
|
---|
| 627 | index1++;
|
---|
| 628 | } END_FOR_CART;
|
---|
| 629 | }
|
---|
| 630 | }
|
---|
| 631 | if (docenter2) {
|
---|
| 632 | /* Derviative wrt second shell. */
|
---|
| 633 | exponent_weighted = 1;
|
---|
| 634 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebp1);
|
---|
| 635 | (this->*shell_block_function)(gc1, a, gc2, b+1,
|
---|
| 636 | sizebp1, 0, 0,
|
---|
| 637 | coef, cartesianbuffer_scratch);
|
---|
| 638 | index1=0;
|
---|
| 639 | FOR_CART(i1,j1,k1,a) {
|
---|
| 640 | index2=0;
|
---|
| 641 | FOR_CART(i2,j2,k2,b) {
|
---|
| 642 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
| 643 | +index2+gcoff2)*3];
|
---|
| 644 | for (i=0; i<3; i++) {
|
---|
| 645 | int ind = INT_CARTINDEX(b+1,i2+IN(i,0),j2+IN(i,1));
|
---|
| 646 | *ctmp++ += 2.0*cartesianbuffer_scratch[index1*sizebp1+ind];
|
---|
| 647 | }
|
---|
| 648 | index2++;
|
---|
| 649 | } END_FOR_CART;
|
---|
| 650 | index1++;
|
---|
| 651 | } END_FOR_CART;
|
---|
| 652 |
|
---|
| 653 | if (b) {
|
---|
| 654 | exponent_weighted = -1;
|
---|
| 655 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebm1);
|
---|
| 656 | (this->*shell_block_function)(gc1, a, gc2, b-1,
|
---|
| 657 | sizebm1, 0, 0,
|
---|
| 658 | coef, cartesianbuffer_scratch);
|
---|
| 659 | index1=0;
|
---|
| 660 | FOR_CART(i1,j1,k1,a) {
|
---|
| 661 | index2=0;
|
---|
| 662 | FOR_CART(i2,j2,k2,b) {
|
---|
| 663 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
| 664 | +index2+gcoff2)*3];
|
---|
| 665 | for (i=0; i<3; i++) {
|
---|
| 666 | int sel = SELECT(i2,j2,k2,i);
|
---|
| 667 | if (sel) {
|
---|
| 668 | int ind = INT_CARTINDEX(b-1,i2-IN(i,0),j2-IN(i,1));
|
---|
| 669 | ctmp[i] -= sel * cartesianbuffer_scratch[index1*sizebm1+ind];
|
---|
| 670 | }
|
---|
| 671 | }
|
---|
| 672 | index2++;
|
---|
| 673 | } END_FOR_CART;
|
---|
| 674 | index1++;
|
---|
| 675 | } END_FOR_CART;
|
---|
| 676 | }
|
---|
| 677 | }
|
---|
| 678 | gcoff2 += INT_NCART_NN(b);
|
---|
| 679 | }
|
---|
| 680 | gcoff1 += INT_NCART_NN(a);
|
---|
| 681 | }
|
---|
| 682 |
|
---|
| 683 | accum_transform_1e_xyz(integral_,
|
---|
| 684 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 685 |
|
---|
| 686 | #if DEBUG_NUC_SHELL_DER
|
---|
| 687 | double *fastbuff = cartesianbuffer;
|
---|
| 688 | cartesianbuffer = new double[gcsize1*gcsize2*3];
|
---|
| 689 | double *junkbuff = new double[gcsize1*gcsize2*3];
|
---|
| 690 | memset(junkbuff,0,sizeof(double)*gcsize1*gcsize2*3);
|
---|
| 691 | accum_shell_1der(junkbuff,ish,jsh,dercs,centernum,
|
---|
| 692 | &Int1eV3::comp_shell_nuclear);
|
---|
| 693 | delete[] junkbuff;
|
---|
| 694 | int index = 0;
|
---|
| 695 | for (i=0; i<gcsize1; i++) {
|
---|
| 696 | for (int j=0; j<gcsize2; j++, index++) {
|
---|
| 697 | ExEnv::outn() << scprintf(" (%d %d): % 18.15f % 18.15f",
|
---|
| 698 | i,j,cartesianbuffer[index],fastbuff[index]);
|
---|
| 699 | if (fabs(cartesianbuffer[index]-fastbuff[index])>1.0e-12) {
|
---|
| 700 | ExEnv::outn() << " **";
|
---|
| 701 | }
|
---|
| 702 | ExEnv::outn() << endl;
|
---|
| 703 | }
|
---|
| 704 | }
|
---|
| 705 | delete[] cartesianbuffer;
|
---|
| 706 | cartesianbuffer = fastbuff;
|
---|
| 707 | #endif
|
---|
| 708 | }
|
---|
| 709 |
|
---|
| 710 | /* Compute the kinetic energy for the shell. The arguments are the
|
---|
| 711 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
| 712 | * globals are used. */
|
---|
| 713 | double
|
---|
| 714 | Int1eV3::comp_shell_kinetic(int gc1, int i1, int j1, int k1,
|
---|
| 715 | int gc2, int i2, int j2, int k2)
|
---|
| 716 | {
|
---|
| 717 | int i,j,xyz;
|
---|
| 718 | double result;
|
---|
| 719 | double Pi;
|
---|
| 720 | double oozeta;
|
---|
| 721 | double AmB,AmB2;
|
---|
| 722 | double tmp;
|
---|
| 723 |
|
---|
| 724 | /* Loop over the primitives in the shells. */
|
---|
| 725 | result = 0.0;
|
---|
| 726 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 727 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 728 |
|
---|
| 729 | /* Compute the intermediates. */
|
---|
| 730 | oo2zeta_a = 0.5/gshell1->exponent(i);
|
---|
| 731 | oo2zeta_b = 0.5/gshell2->exponent(j);
|
---|
| 732 | oozeta = 1.0/(gshell1->exponent(i) + gshell2->exponent(j));
|
---|
| 733 | oo2zeta = 0.5*oozeta;
|
---|
| 734 | xi = oozeta * gshell1->exponent(i) * gshell2->exponent(j);
|
---|
| 735 | AmB2 = 0.0;
|
---|
| 736 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 737 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
| 738 | + gshell2->exponent(j) * B[xyz]);
|
---|
| 739 | PmA[xyz] = Pi - A[xyz];
|
---|
| 740 | PmB[xyz] = Pi - B[xyz];
|
---|
| 741 | AmB = A[xyz] - B[xyz];
|
---|
| 742 | AmB2 += AmB*AmB;
|
---|
| 743 | }
|
---|
| 744 | /* The s integral kinetic energy. */
|
---|
| 745 | ss = pow(M_PI/(gshell1->exponent(i)
|
---|
| 746 | +gshell2->exponent(j)),1.5)
|
---|
| 747 | * exp(- xi * AmB2);
|
---|
| 748 | sTs = ss
|
---|
| 749 | * xi
|
---|
| 750 | * (3.0 - 2.0 * xi * AmB2);
|
---|
| 751 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
| 752 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
| 753 | * comp_prim_kinetic(i1,j1,k1,i2,j2,k2);
|
---|
| 754 | if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
|
---|
| 755 | else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
|
---|
| 756 | result += tmp;
|
---|
| 757 | }
|
---|
| 758 | }
|
---|
| 759 |
|
---|
| 760 | return result;
|
---|
| 761 | }
|
---|
| 762 |
|
---|
| 763 | double
|
---|
| 764 | Int1eV3::comp_prim_kinetic(int i1, int j1, int k1,
|
---|
| 765 | int i2, int j2, int k2)
|
---|
| 766 | {
|
---|
| 767 | double tmp;
|
---|
| 768 | double result;
|
---|
| 769 |
|
---|
| 770 | if (i1) {
|
---|
| 771 | result = PmA[0] * comp_prim_kinetic(i1-1,j1,k1,i2,j2,k2);
|
---|
| 772 | if (i1>1) result += oo2zeta*(i1-1)*comp_prim_kinetic(i1-2,j1,k1,i2,j2,k2);
|
---|
| 773 | if (i2) result += oo2zeta*i2*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2);
|
---|
| 774 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 775 | if (i1>1) tmp -= oo2zeta_a*(i1-1)*comp_prim_overlap(i1-2,j1,k1,i2,j2,k2);
|
---|
| 776 | result += 2.0 * xi * tmp;
|
---|
| 777 | return result;
|
---|
| 778 | }
|
---|
| 779 | if (j1) {
|
---|
| 780 | result = PmA[1] * comp_prim_kinetic(i1,j1-1,k1,i2,j2,k2);
|
---|
| 781 | if (j1>1) result += oo2zeta*(j1-1)*comp_prim_kinetic(i1,j1-2,k1,i2,j2,k2);
|
---|
| 782 | if (j2) result += oo2zeta*j2*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2);
|
---|
| 783 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 784 | if (j1>1) tmp -= oo2zeta_a*(j1-1)*comp_prim_overlap(i1,j1-2,k1,i2,j2,k2);
|
---|
| 785 | result += 2.0 * xi * tmp;
|
---|
| 786 | return result;
|
---|
| 787 | }
|
---|
| 788 | if (k1) {
|
---|
| 789 | result = PmA[2] * comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2);
|
---|
| 790 | if (k1>1) result += oo2zeta*(k1-1)*comp_prim_kinetic(i1,j1,k1-2,i2,j2,k2);
|
---|
| 791 | if (k2) result += oo2zeta*k2*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1);
|
---|
| 792 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 793 | if (k1>1) tmp -= oo2zeta_a*(k1-1)*comp_prim_overlap(i1,j1,k1-2,i2,j2,k2);
|
---|
| 794 | result += 2.0 * xi * tmp;
|
---|
| 795 | return result;
|
---|
| 796 | }
|
---|
| 797 | if (i2) {
|
---|
| 798 | result = PmB[0] * comp_prim_kinetic(i1,j1,k1,i2-1,j2,k2);
|
---|
| 799 | if (i2>1) result += oo2zeta*(i2-1)*comp_prim_kinetic(i1,j1,k1,i2-2,j2,k2);
|
---|
| 800 | if (i1) result += oo2zeta*i1*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2);
|
---|
| 801 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 802 | if (i2>1) tmp -= oo2zeta_b*(i2-1)*comp_prim_overlap(i1,j1,k1,i2-2,j2,k2);
|
---|
| 803 | result += 2.0 * xi * tmp;
|
---|
| 804 | return result;
|
---|
| 805 | }
|
---|
| 806 | if (j2) {
|
---|
| 807 | result = PmB[1] * comp_prim_kinetic(i1,j1,k1,i2,j2-1,k2);
|
---|
| 808 | if (j2>1) result += oo2zeta*(j2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2-2,k2);
|
---|
| 809 | if (j1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2);
|
---|
| 810 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 811 | if (j2>1) tmp -= oo2zeta_b*(j2-1)*comp_prim_overlap(i1,j1,k1,i2,j2-2,k2);
|
---|
| 812 | result += 2.0 * xi * tmp;
|
---|
| 813 | return result;
|
---|
| 814 | }
|
---|
| 815 | if (k2) {
|
---|
| 816 | result = PmB[2] * comp_prim_kinetic(i1,j1,k1,i2,j2,k2-1);
|
---|
| 817 | if (k2>1) result += oo2zeta*(k2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2,k2-2);
|
---|
| 818 | if (k1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1);
|
---|
| 819 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
| 820 | if (k2>1) tmp -= oo2zeta_b*(k2-1)*comp_prim_overlap(i1,j1,k1,i2,j2,k2-2);
|
---|
| 821 | result += 2.0 * xi * tmp;
|
---|
| 822 | return result;
|
---|
| 823 | }
|
---|
| 824 |
|
---|
| 825 | return sTs;
|
---|
| 826 | }
|
---|
| 827 |
|
---|
| 828 | /* --------------------------------------------------------------- */
|
---|
| 829 | /* ------------- Routines for the nuclear attraction ------------- */
|
---|
| 830 | /* --------------------------------------------------------------- */
|
---|
| 831 |
|
---|
| 832 | /* This computes the nuclear attraction derivative integrals between functions
|
---|
| 833 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 834 | * atom 0 x, y, z, atom 1, ... .
|
---|
| 835 | */
|
---|
| 836 | void
|
---|
| 837 | Int1eV3::int_accum_shell_nuclear_1der(int ish, int jsh,
|
---|
| 838 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
| 839 | {
|
---|
| 840 | int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum);
|
---|
| 841 | int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum);
|
---|
| 842 | }
|
---|
| 843 |
|
---|
| 844 | /* A correction to the Hellman-Feynman part is computed which
|
---|
| 845 | * is not included in the original HF routine. This is only needed
|
---|
| 846 | * if the real Hellman-Feynman forces are desired, because the sum
|
---|
| 847 | * of the hf_1der and nonhf_1der forces are still correct.
|
---|
| 848 | */
|
---|
| 849 | void
|
---|
| 850 | Int1eV3::int_accum_shell_nuclear_hfc_1der(int ish, int jsh,
|
---|
| 851 | Ref<GaussianBasisSet> dercs,
|
---|
| 852 | int centernum)
|
---|
| 853 | {
|
---|
| 854 | /* If both ish and jsh are not on the der center,
|
---|
| 855 | * then there's no correction. */
|
---|
| 856 | if (!( (bs1_==dercs)
|
---|
| 857 | &&(bs2_==dercs)
|
---|
| 858 | &&(bs1_->shell_to_center(ish)==centernum)
|
---|
| 859 | &&(bs2_->shell_to_center(jsh)==centernum))) {
|
---|
| 860 | return;
|
---|
| 861 | }
|
---|
| 862 |
|
---|
| 863 | /* Compute the nuc attr part of the nuclear derivative for three equal
|
---|
| 864 | * centers. */
|
---|
| 865 | scale_shell_result = 1;
|
---|
| 866 | result_scale_factor = -bs1_->molecule()->charge(centernum);
|
---|
| 867 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 868 | C[xyz] = bs1_->r(centernum,xyz);
|
---|
| 869 | }
|
---|
| 870 | accum_shell_efield(buff,ish,jsh);
|
---|
| 871 | scale_shell_result = 0;
|
---|
| 872 |
|
---|
| 873 | }
|
---|
| 874 |
|
---|
| 875 | /* This computes the nuclear attraction derivative integrals between functions
|
---|
| 876 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 877 | * atom 0 x, y, z, atom 1, ... . Only the Hellman-Feynman part is computed.
|
---|
| 878 | */
|
---|
| 879 | void
|
---|
| 880 | Int1eV3::int_accum_shell_nuclear_hf_1der(int ish, int jsh,
|
---|
| 881 | Ref<GaussianBasisSet> dercs,
|
---|
| 882 | int centernum)
|
---|
| 883 | {
|
---|
| 884 |
|
---|
| 885 | /* If both ish and jsh are on the der center, then the contrib is zero. */
|
---|
| 886 | if ( (bs1_==dercs)
|
---|
| 887 | &&(bs2_==dercs)
|
---|
| 888 | &&(bs1_->shell_to_center(ish)==centernum)
|
---|
| 889 | &&(bs2_->shell_to_center(jsh)==centernum)) {
|
---|
| 890 | return;
|
---|
| 891 | }
|
---|
| 892 |
|
---|
| 893 | /* Compute the nuc attr part of the nuclear derivative. */
|
---|
| 894 | if (bs1_ == dercs) {
|
---|
| 895 | scale_shell_result = 1;
|
---|
| 896 | result_scale_factor= -bs1_->molecule()->charge(centernum);
|
---|
| 897 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 898 | C[xyz] = bs1_->r(centernum,xyz);
|
---|
| 899 | }
|
---|
| 900 | //accum_shell_efield(buff,ish,jsh);
|
---|
| 901 | accum_shell_block_efield(buff,ish,jsh);
|
---|
| 902 | scale_shell_result = 0;
|
---|
| 903 | }
|
---|
| 904 | else if (bs2_ == dercs) {
|
---|
| 905 | scale_shell_result = 1;
|
---|
| 906 | result_scale_factor= -bs2_->molecule()->charge(centernum);
|
---|
| 907 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 908 | C[xyz] = bs2_->r(centernum,xyz);
|
---|
| 909 | }
|
---|
| 910 | //accum_shell_efield(buff,ish,jsh);
|
---|
| 911 | accum_shell_block_efield(buff,ish,jsh);
|
---|
| 912 | scale_shell_result = 0;
|
---|
| 913 | }
|
---|
| 914 |
|
---|
| 915 | }
|
---|
| 916 |
|
---|
| 917 | /* This computes the nuclear attraction derivative integrals between functions
|
---|
| 918 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
| 919 | * atom 0 x, y, z, atom 1, ... . Only the non Hellman-Feynman part is computed.
|
---|
| 920 | */
|
---|
| 921 | void
|
---|
| 922 | Int1eV3::int_accum_shell_nuclear_nonhf_1der(int ish, int jsh,
|
---|
| 923 | Ref<GaussianBasisSet> dercs,
|
---|
| 924 | int centernum)
|
---|
| 925 | {
|
---|
| 926 | int i;
|
---|
| 927 |
|
---|
| 928 | /* Get the basis function part of the nuclear derivative. */
|
---|
| 929 | three_center = 1;
|
---|
| 930 | third_centers = bs1_;
|
---|
| 931 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
| 932 | third_centernum = i;
|
---|
| 933 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 934 | C[xyz] = bs1_->r(i,xyz);
|
---|
| 935 | }
|
---|
| 936 | scale_shell_result = 1;
|
---|
| 937 | result_scale_factor = -bs1_->molecule()->charge(i);
|
---|
| 938 | //accum_shell_1der(buff,ish,jsh,dercs,centernum,
|
---|
| 939 | // &Int1eV3::comp_shell_nuclear);
|
---|
| 940 | accum_shell_block_1der(buff,ish,jsh,dercs,centernum,
|
---|
| 941 | &Int1eV3::comp_shell_block_nuclear);
|
---|
| 942 | scale_shell_result = 0;
|
---|
| 943 | }
|
---|
| 944 | if (bs2_!=bs1_) {
|
---|
| 945 | third_centers = bs2_;
|
---|
| 946 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
| 947 | third_centernum = i;
|
---|
| 948 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 949 | C[xyz] = bs2_->r(i,xyz);
|
---|
| 950 | }
|
---|
| 951 | scale_shell_result = 1;
|
---|
| 952 | result_scale_factor = -bs2_->molecule()->charge(i);
|
---|
| 953 | //accum_shell_1der(buff,ish,jsh,dercs,centernum,
|
---|
| 954 | // &Int1eV3::comp_shell_nuclear);
|
---|
| 955 | accum_shell_block_1der(buff,ish,jsh,dercs,centernum,
|
---|
| 956 | &Int1eV3::comp_shell_block_nuclear);
|
---|
| 957 | scale_shell_result = 0;
|
---|
| 958 | }
|
---|
| 959 | }
|
---|
| 960 | three_center = 0;
|
---|
| 961 |
|
---|
| 962 | }
|
---|
| 963 |
|
---|
| 964 | /* This computes the efield integrals between functions in two shells.
|
---|
| 965 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
| 966 | * x y z, etc.
|
---|
| 967 | */
|
---|
| 968 | void
|
---|
| 969 | Int1eV3::int_accum_shell_efield(int ish, int jsh,
|
---|
| 970 | double *position)
|
---|
| 971 | {
|
---|
| 972 | scale_shell_result = 0;
|
---|
| 973 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 974 | C[xyz] = position[xyz];
|
---|
| 975 | }
|
---|
| 976 | accum_shell_efield(buff,ish,jsh);
|
---|
| 977 | }
|
---|
| 978 |
|
---|
| 979 | /* This computes the efield integrals between functions in two shells.
|
---|
| 980 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
| 981 | * x y z, etc. The globals scale_shell_result, result_scale_factor,
|
---|
| 982 | * and C must be set before this is called.
|
---|
| 983 | */
|
---|
| 984 | void
|
---|
| 985 | Int1eV3::accum_shell_efield(double *buff, int ish, int jsh)
|
---|
| 986 | {
|
---|
| 987 | int i;
|
---|
| 988 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 989 | double efield[3];
|
---|
| 990 | int gc1,gc2;
|
---|
| 991 | int index1,index2;
|
---|
| 992 | double *tmp = cartesianbuffer;
|
---|
| 993 |
|
---|
| 994 | if (!(init_order >= 1)) {
|
---|
| 995 | ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n");
|
---|
| 996 | exit(1);
|
---|
| 997 | }
|
---|
| 998 |
|
---|
| 999 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1000 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1001 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1002 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1003 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1004 | }
|
---|
| 1005 | gshell1 = &bs1_->shell(ish);
|
---|
| 1006 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1007 |
|
---|
| 1008 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
| 1009 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
| 1010 | comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 1011 | if (scale_shell_result) {
|
---|
| 1012 | for (i=0; i<3; i++) efield[i] *= result_scale_factor;
|
---|
| 1013 | }
|
---|
| 1014 | for (i=0; i<3; i++) tmp[i] = efield[i];
|
---|
| 1015 | tmp += 3;
|
---|
| 1016 | END_FOR_GCCART_GS(index2)
|
---|
| 1017 | END_FOR_GCCART_GS(index1)
|
---|
| 1018 |
|
---|
| 1019 | accum_transform_1e_xyz(integral_,
|
---|
| 1020 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1021 | }
|
---|
| 1022 |
|
---|
| 1023 | /* This computes the efield integrals between functions in two shells.
|
---|
| 1024 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
| 1025 | * x y z, etc. The globals scale_shell_result, result_scale_factor,
|
---|
| 1026 | * and C must be set before this is called.
|
---|
| 1027 | */
|
---|
| 1028 | void
|
---|
| 1029 | Int1eV3::accum_shell_block_efield(double *buff, int ish, int jsh)
|
---|
| 1030 | {
|
---|
| 1031 | int c1,c2;
|
---|
| 1032 | int gc1,gc2;
|
---|
| 1033 |
|
---|
| 1034 | if (!(init_order >= 1)) {
|
---|
| 1035 | ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n");
|
---|
| 1036 | exit(1);
|
---|
| 1037 | }
|
---|
| 1038 |
|
---|
| 1039 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1040 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1041 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1042 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1043 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1044 | }
|
---|
| 1045 | gshell1 = &bs1_->shell(ish);
|
---|
| 1046 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1047 |
|
---|
| 1048 | double coef;
|
---|
| 1049 | if (scale_shell_result) coef = result_scale_factor;
|
---|
| 1050 | else coef = 1.0;
|
---|
| 1051 |
|
---|
| 1052 | int gcsize1 = gshell1->ncartesian();
|
---|
| 1053 | int gcsize2 = gshell2->ncartesian();
|
---|
| 1054 | memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3);
|
---|
| 1055 | int gcoff1 = 0;
|
---|
| 1056 | for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
|
---|
| 1057 | int a = gshell1->am(gc1);
|
---|
| 1058 | int sizea = INT_NCART_NN(a);
|
---|
| 1059 | int gcoff2 = 0;
|
---|
| 1060 | for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
|
---|
| 1061 | int b = gshell2->am(gc2);
|
---|
| 1062 | int sizeb = INT_NCART_NN(b);
|
---|
| 1063 | comp_shell_block_efield(gc1,a,gc2,b,
|
---|
| 1064 | gcsize2, gcoff1, gcoff2,
|
---|
| 1065 | coef, cartesianbuffer);
|
---|
| 1066 | gcoff2 += sizeb;
|
---|
| 1067 | }
|
---|
| 1068 | gcoff1 += sizea;
|
---|
| 1069 | }
|
---|
| 1070 |
|
---|
| 1071 | accum_transform_1e_xyz(integral_,
|
---|
| 1072 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1073 | }
|
---|
| 1074 |
|
---|
| 1075 | /* This computes the efield integrals between functions in two shells.
|
---|
| 1076 | * The result is placed in the buffer in the form bf1 x y z, bf2
|
---|
| 1077 | * x y z, etc.
|
---|
| 1078 | */
|
---|
| 1079 | void
|
---|
| 1080 | Int1eV3::efield(int ish, int jsh, double *position)
|
---|
| 1081 | {
|
---|
| 1082 | scale_shell_result = 0;
|
---|
| 1083 | int xyz;
|
---|
| 1084 |
|
---|
| 1085 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 1086 | C[xyz] = position[xyz];
|
---|
| 1087 | }
|
---|
| 1088 |
|
---|
| 1089 | int i;
|
---|
| 1090 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 1091 | double efield[3];
|
---|
| 1092 | int gc1,gc2;
|
---|
| 1093 | int index1,index2;
|
---|
| 1094 | double *tmp = cartesianbuffer;
|
---|
| 1095 |
|
---|
| 1096 | if (!(init_order >= 1)) {
|
---|
| 1097 | ExEnv::errn() << scprintf("Int1eV3::efield one electron routines are not ready\n");
|
---|
| 1098 | exit(1);
|
---|
| 1099 | }
|
---|
| 1100 |
|
---|
| 1101 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1102 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1103 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 1104 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1105 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1106 | }
|
---|
| 1107 | gshell1 = &bs1_->shell(ish);
|
---|
| 1108 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1109 |
|
---|
| 1110 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
| 1111 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
| 1112 | comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 1113 | if (scale_shell_result) {
|
---|
| 1114 | for (i=0; i<3; i++) efield[i] *= result_scale_factor;
|
---|
| 1115 | }
|
---|
| 1116 | for (i=0; i<3; i++) tmp[i] = efield[i];
|
---|
| 1117 | tmp += 3;
|
---|
| 1118 | END_FOR_GCCART_GS(index2)
|
---|
| 1119 | END_FOR_GCCART_GS(index1)
|
---|
| 1120 |
|
---|
| 1121 | transform_1e_xyz(integral_,
|
---|
| 1122 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1123 | }
|
---|
| 1124 |
|
---|
| 1125 | /* This slowly computes the nuc rep energy integrals between functions in
|
---|
| 1126 | * two shells. The result is placed in the buffer. */
|
---|
| 1127 | void
|
---|
| 1128 | Int1eV3::nuclear_slow(int ish, int jsh)
|
---|
| 1129 | {
|
---|
| 1130 | int i;
|
---|
| 1131 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 1132 | int index;
|
---|
| 1133 | int gc1,gc2;
|
---|
| 1134 | int cart1,cart2;
|
---|
| 1135 |
|
---|
| 1136 | if (!(init_order >= 0)) {
|
---|
| 1137 | ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
|
---|
| 1138 | exit(1);
|
---|
| 1139 | }
|
---|
| 1140 |
|
---|
| 1141 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1142 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1143 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1144 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1145 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1146 | }
|
---|
| 1147 | gshell1 = &bs1_->shell(ish);
|
---|
| 1148 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1149 | index = 0;
|
---|
| 1150 |
|
---|
| 1151 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
| 1152 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
| 1153 | cartesianbuffer[index] = 0.0;
|
---|
| 1154 | /* Loop thru the centers on bs1_. */
|
---|
| 1155 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
| 1156 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1157 | C[xyz] = bs1_->r(i,xyz);
|
---|
| 1158 | }
|
---|
| 1159 | cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
| 1160 | * bs1_->molecule()->charge(i);
|
---|
| 1161 | }
|
---|
| 1162 | /* Loop thru the centers on bs2_ if necessary. */
|
---|
| 1163 | if (bs2_ != bs1_) {
|
---|
| 1164 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
| 1165 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1166 | C[xyz] = bs2_->r(i,xyz);
|
---|
| 1167 | }
|
---|
| 1168 | cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
| 1169 | * bs2_->molecule()->charge(i);
|
---|
| 1170 | }
|
---|
| 1171 | }
|
---|
| 1172 | index++;
|
---|
| 1173 | END_FOR_GCCART_GS(cart2)
|
---|
| 1174 | END_FOR_GCCART_GS(cart1)
|
---|
| 1175 |
|
---|
| 1176 | transform_1e(integral_,
|
---|
| 1177 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1178 | }
|
---|
| 1179 |
|
---|
| 1180 | /* This computes the nuc rep energy integrals between functions in two
|
---|
| 1181 | * shells. The result is placed in the buffer. */
|
---|
| 1182 | void
|
---|
| 1183 | Int1eV3::nuclear(int ish, int jsh)
|
---|
| 1184 | {
|
---|
| 1185 | int i;
|
---|
| 1186 | int c1,c2;
|
---|
| 1187 | int gc1,gc2;
|
---|
| 1188 |
|
---|
| 1189 | if (!(init_order >= 0)) {
|
---|
| 1190 | ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
|
---|
| 1191 | exit(1);
|
---|
| 1192 | }
|
---|
| 1193 |
|
---|
| 1194 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1195 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1196 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1197 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1198 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1199 | }
|
---|
| 1200 | gshell1 = &bs1_->shell(ish);
|
---|
| 1201 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1202 |
|
---|
| 1203 | int ni = gshell1->ncartesian();
|
---|
| 1204 | int nj = gshell2->ncartesian();
|
---|
| 1205 | memset(cartesianbuffer,0,sizeof(double)*ni*nj);
|
---|
| 1206 |
|
---|
| 1207 | int offi = 0;
|
---|
| 1208 | for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
|
---|
| 1209 | int a = gshell1->am(gc1);
|
---|
| 1210 | int offj = 0;
|
---|
| 1211 | for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
|
---|
| 1212 | int b = gshell2->am(gc2);
|
---|
| 1213 | /* Loop thru the centers on bs1_. */
|
---|
| 1214 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
| 1215 | double charge = bs1_->molecule()->charge(i);
|
---|
| 1216 | for (int xyz=0; xyz<3; xyz++) C[xyz] = bs1_->r(i,xyz);
|
---|
| 1217 | comp_shell_block_nuclear(gc1, a, gc2, b,
|
---|
| 1218 | nj, offi, offj,
|
---|
| 1219 | -charge, cartesianbuffer);
|
---|
| 1220 | }
|
---|
| 1221 | /* Loop thru the centers on bs2_ if necessary. */
|
---|
| 1222 | if (bs2_ != bs1_) {
|
---|
| 1223 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
| 1224 | double charge = bs2_->molecule()->charge(i);
|
---|
| 1225 | for (int xyz=0; xyz<3; xyz++) C[xyz] = bs2_->r(i,xyz);
|
---|
| 1226 | comp_shell_block_nuclear(gc1, a, gc2, b,
|
---|
| 1227 | nj, offi, offj,
|
---|
| 1228 | -charge, cartesianbuffer);
|
---|
| 1229 | }
|
---|
| 1230 | }
|
---|
| 1231 | offj += INT_NCART_NN(b);
|
---|
| 1232 | }
|
---|
| 1233 | offi += INT_NCART_NN(a);
|
---|
| 1234 | }
|
---|
| 1235 |
|
---|
| 1236 | #if DEBUG_NUC_SHELL
|
---|
| 1237 | double *fastbuf = new double[ni*nj];
|
---|
| 1238 | memcpy(fastbuf,cartesianbuffer,sizeof(double)*ni*nj);
|
---|
| 1239 | nuclear_slow(ish,jsh);
|
---|
| 1240 |
|
---|
| 1241 | index = 0;
|
---|
| 1242 | int cart1, cart2;
|
---|
| 1243 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) {
|
---|
| 1244 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) {
|
---|
| 1245 | double fast = fastbuf[index];
|
---|
| 1246 | double slow = cartesianbuffer[index];
|
---|
| 1247 | if (fabs(fast-slow)>1.0e-12) {
|
---|
| 1248 | ExEnv::outn() << scprintf("NUC SHELL FINAL: %d (%d %d %d) %d (%d %d %d): ",
|
---|
| 1249 | gc1, i1,j1,k1, gc2, i2,j2,k2)
|
---|
| 1250 | << scprintf(" % 20.15f % 20.15f",
|
---|
| 1251 | fast, slow)
|
---|
| 1252 | << endl;
|
---|
| 1253 | }
|
---|
| 1254 | index++;
|
---|
| 1255 | } END_FOR_GCCART_GS(cart2);
|
---|
| 1256 | } END_FOR_GCCART_GS(cart1);
|
---|
| 1257 |
|
---|
| 1258 | memcpy(cartesianbuffer,fastbuf,sizeof(double)*ni*nj);
|
---|
| 1259 | delete[] fastbuf;
|
---|
| 1260 | #endif
|
---|
| 1261 |
|
---|
| 1262 | transform_1e(integral_,
|
---|
| 1263 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1264 | }
|
---|
| 1265 |
|
---|
| 1266 | /* This computes the integrals between functions in two shells for
|
---|
| 1267 | * a point charge interaction operator.
|
---|
| 1268 | * The result is placed in the buffer.
|
---|
| 1269 | */
|
---|
| 1270 | void
|
---|
| 1271 | Int1eV3::int_accum_shell_point_charge(int ish, int jsh,
|
---|
| 1272 | int ncharge, const double* charge,
|
---|
| 1273 | const double*const* position)
|
---|
| 1274 | {
|
---|
| 1275 | int i;
|
---|
| 1276 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 1277 | int index;
|
---|
| 1278 | int gc1,gc2;
|
---|
| 1279 | int cart1,cart2;
|
---|
| 1280 | double tmp;
|
---|
| 1281 |
|
---|
| 1282 | if (!(init_order >= 0)) {
|
---|
| 1283 | ExEnv::errn() << scprintf("int_shell_pointcharge: one electron routines are not init'ed\n");
|
---|
| 1284 | exit(1);
|
---|
| 1285 | }
|
---|
| 1286 |
|
---|
| 1287 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1288 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1289 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1290 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1291 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1292 | }
|
---|
| 1293 | gshell1 = &bs1_->shell(ish);
|
---|
| 1294 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1295 | index = 0;
|
---|
| 1296 |
|
---|
| 1297 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
| 1298 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
| 1299 | /* Loop thru the point charges. */
|
---|
| 1300 | tmp = 0.0;
|
---|
| 1301 | for (i=0; i<ncharge; i++) {
|
---|
| 1302 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1303 | C[xyz] = position[i][xyz];
|
---|
| 1304 | }
|
---|
| 1305 | tmp -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
| 1306 | * charge[i];
|
---|
| 1307 | }
|
---|
| 1308 | cartesianbuffer[index] = tmp;
|
---|
| 1309 | index++;
|
---|
| 1310 | END_FOR_GCCART_GS(cart2)
|
---|
| 1311 | END_FOR_GCCART_GS(cart1)
|
---|
| 1312 |
|
---|
| 1313 | accum_transform_1e(integral_,
|
---|
| 1314 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1315 | }
|
---|
| 1316 |
|
---|
| 1317 | /* This computes the integrals between functions in two shells for
|
---|
| 1318 | * a point charge interaction operator.
|
---|
| 1319 | * The result is placed in the buffer.
|
---|
| 1320 | */
|
---|
| 1321 | void
|
---|
| 1322 | Int1eV3::point_charge(int ish, int jsh,
|
---|
| 1323 | int ncharge,
|
---|
| 1324 | const double* charge, const double*const* position)
|
---|
| 1325 | {
|
---|
| 1326 | int i;
|
---|
| 1327 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 1328 | int index;
|
---|
| 1329 | int gc1,gc2;
|
---|
| 1330 | int cart1,cart2;
|
---|
| 1331 |
|
---|
| 1332 | if (!(init_order >= 0)) {
|
---|
| 1333 | ExEnv::errn() << scprintf("Int1eV3::point_charge: one electron routines are not init'ed\n");
|
---|
| 1334 | exit(1);
|
---|
| 1335 | }
|
---|
| 1336 |
|
---|
| 1337 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1338 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1339 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1340 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1341 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1342 | }
|
---|
| 1343 | gshell1 = &bs1_->shell(ish);
|
---|
| 1344 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1345 | index = 0;
|
---|
| 1346 |
|
---|
| 1347 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
| 1348 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
| 1349 | cartesianbuffer[index] = 0.0;
|
---|
| 1350 | /* Loop thru the point charges. */
|
---|
| 1351 | for (i=0; i<ncharge; i++) {
|
---|
| 1352 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1353 | C[xyz] = position[i][xyz];
|
---|
| 1354 | }
|
---|
| 1355 | cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
| 1356 | * charge[i];
|
---|
| 1357 | }
|
---|
| 1358 | index++;
|
---|
| 1359 | END_FOR_GCCART_GS(cart2)
|
---|
| 1360 | END_FOR_GCCART_GS(cart1)
|
---|
| 1361 |
|
---|
| 1362 | transform_1e(integral_,
|
---|
| 1363 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1364 | }
|
---|
| 1365 |
|
---|
| 1366 |
|
---|
| 1367 | /* This computes the 1e Hamiltonian integrals between functions in two shells.
|
---|
| 1368 | * The result is placed in the buffer.
|
---|
| 1369 | */
|
---|
| 1370 | void
|
---|
| 1371 | Int1eV3::hcore(int ish, int jsh)
|
---|
| 1372 | {
|
---|
| 1373 | int i;
|
---|
| 1374 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 1375 | int index;
|
---|
| 1376 | int cart1,cart2;
|
---|
| 1377 | int gc1,gc2;
|
---|
| 1378 |
|
---|
| 1379 | if (!(init_order >= 0)) {
|
---|
| 1380 | ExEnv::errn() << scprintf("hcore: one electron routines are not init'ed\n");
|
---|
| 1381 | exit(1);
|
---|
| 1382 | }
|
---|
| 1383 |
|
---|
| 1384 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1385 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1386 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1387 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1388 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1389 | }
|
---|
| 1390 | gshell1 = &bs1_->shell(ish);
|
---|
| 1391 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1392 |
|
---|
| 1393 | index = 0;
|
---|
| 1394 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
| 1395 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
| 1396 | cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 1397 | /* Loop thru the centers on bs1_. */
|
---|
| 1398 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
| 1399 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1400 | C[xyz] = bs1_->r(i,xyz);
|
---|
| 1401 | }
|
---|
| 1402 | cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
| 1403 | * bs1_->molecule()->charge(i);
|
---|
| 1404 | }
|
---|
| 1405 | /* Loop thru the centers on bs2_ if necessary. */
|
---|
| 1406 | if (bs2_ != bs1_) {
|
---|
| 1407 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
| 1408 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1409 | C[xyz] = bs2_->r(i,xyz);
|
---|
| 1410 | }
|
---|
| 1411 | cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
| 1412 | * bs2_->molecule()->charge(i);
|
---|
| 1413 | }
|
---|
| 1414 | }
|
---|
| 1415 | index++;
|
---|
| 1416 | END_FOR_GCCART_GS(cart2)
|
---|
| 1417 | END_FOR_GCCART_GS(cart1)
|
---|
| 1418 |
|
---|
| 1419 | transform_1e(integral_,
|
---|
| 1420 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 1421 | }
|
---|
| 1422 |
|
---|
| 1423 | /* This computes the 1e Hamiltonian deriv ints between functions in two shells.
|
---|
| 1424 | * The result is placed in the buffer.
|
---|
| 1425 | */
|
---|
| 1426 | void
|
---|
| 1427 | Int1eV3::hcore_1der(int ish, int jsh,
|
---|
| 1428 | int idercs, int centernum)
|
---|
| 1429 | {
|
---|
| 1430 | int i;
|
---|
| 1431 | int c1,c2;
|
---|
| 1432 | int ni,nj;
|
---|
| 1433 |
|
---|
| 1434 | if (!(init_order >= 0)) {
|
---|
| 1435 | ExEnv::errn() << scprintf("int_shell_hcore: one electron routines are not init'ed\n");
|
---|
| 1436 | exit(1);
|
---|
| 1437 | }
|
---|
| 1438 |
|
---|
| 1439 | Ref<GaussianBasisSet> dercs;
|
---|
| 1440 | if (idercs == 0) dercs = bs1_;
|
---|
| 1441 | else dercs = bs2_;
|
---|
| 1442 |
|
---|
| 1443 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1444 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1445 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1446 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1447 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1448 | }
|
---|
| 1449 | gshell1 = &bs1_->shell(ish);
|
---|
| 1450 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1451 |
|
---|
| 1452 | ni = gshell1->nfunction();
|
---|
| 1453 | nj = gshell2->nfunction();
|
---|
| 1454 |
|
---|
| 1455 | for (i=0; i<ni*nj*3; i++) {
|
---|
| 1456 | buff[i] = 0.0;
|
---|
| 1457 | }
|
---|
| 1458 |
|
---|
| 1459 | int_accum_shell_nuclear_1der(ish,jsh,dercs,centernum);
|
---|
| 1460 | int_accum_shell_kinetic_1der(ish,jsh,dercs,centernum);
|
---|
| 1461 | }
|
---|
| 1462 |
|
---|
| 1463 | /* This computes the kinetic deriv ints between functions in two shells.
|
---|
| 1464 | * The result is placed in the buffer.
|
---|
| 1465 | */
|
---|
| 1466 | void
|
---|
| 1467 | Int1eV3::kinetic_1der(int ish, int jsh,
|
---|
| 1468 | int idercs, int centernum)
|
---|
| 1469 | {
|
---|
| 1470 | int i;
|
---|
| 1471 | int c1,c2;
|
---|
| 1472 | int ni,nj;
|
---|
| 1473 |
|
---|
| 1474 | if (!(init_order >= 0)) {
|
---|
| 1475 | ExEnv::errn() << scprintf("int_shell_kinetic: one electron routines are not init'ed\n");
|
---|
| 1476 | exit(1);
|
---|
| 1477 | }
|
---|
| 1478 |
|
---|
| 1479 | Ref<GaussianBasisSet> dercs;
|
---|
| 1480 | if (idercs == 0) dercs = bs1_;
|
---|
| 1481 | else dercs = bs2_;
|
---|
| 1482 |
|
---|
| 1483 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1484 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1485 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1486 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1487 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1488 | }
|
---|
| 1489 | gshell1 = &bs1_->shell(ish);
|
---|
| 1490 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1491 |
|
---|
| 1492 | ni = gshell1->nfunction();
|
---|
| 1493 | nj = gshell2->nfunction();
|
---|
| 1494 |
|
---|
| 1495 | for (i=0; i<ni*nj*3; i++) {
|
---|
| 1496 | buff[i] = 0.0;
|
---|
| 1497 | }
|
---|
| 1498 |
|
---|
| 1499 | int_accum_shell_kinetic_1der(ish,jsh,dercs,centernum);
|
---|
| 1500 | }
|
---|
| 1501 |
|
---|
| 1502 | /* This computes the nuclear deriv ints between functions in two shells.
|
---|
| 1503 | * The result is placed in the buffer.
|
---|
| 1504 | */
|
---|
| 1505 | void
|
---|
| 1506 | Int1eV3::nuclear_1der(int ish, int jsh, int idercs, int centernum)
|
---|
| 1507 | {
|
---|
| 1508 | int i;
|
---|
| 1509 | int c1,c2;
|
---|
| 1510 | int ni,nj;
|
---|
| 1511 |
|
---|
| 1512 | if (!(init_order >= 0)) {
|
---|
| 1513 | ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
|
---|
| 1514 | exit(1);
|
---|
| 1515 | }
|
---|
| 1516 |
|
---|
| 1517 | Ref<GaussianBasisSet> dercs;
|
---|
| 1518 | if (idercs == 0) dercs = bs1_;
|
---|
| 1519 | else dercs = bs2_;
|
---|
| 1520 |
|
---|
| 1521 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1522 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1523 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1524 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1525 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1526 | }
|
---|
| 1527 | gshell1 = &bs1_->shell(ish);
|
---|
| 1528 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1529 |
|
---|
| 1530 | ni = gshell1->nfunction();
|
---|
| 1531 | nj = gshell2->nfunction();
|
---|
| 1532 |
|
---|
| 1533 | for (i=0; i<ni*nj*3; i++) {
|
---|
| 1534 | buff[i] = 0.0;
|
---|
| 1535 | }
|
---|
| 1536 |
|
---|
| 1537 | int_accum_shell_nuclear_1der(ish,jsh,dercs,centernum);
|
---|
| 1538 | }
|
---|
| 1539 |
|
---|
| 1540 | /* This computes the nuclear deriv ints between functions in two shells.
|
---|
| 1541 | * Only the Hellman-Feynman part is computed.
|
---|
| 1542 | * The result is placed in the buffer.
|
---|
| 1543 | */
|
---|
| 1544 | void
|
---|
| 1545 | Int1eV3::int_shell_nuclear_hf_1der(int ish, int jsh,
|
---|
| 1546 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
| 1547 | {
|
---|
| 1548 | int i;
|
---|
| 1549 | int c1,c2;
|
---|
| 1550 | int ni,nj;
|
---|
| 1551 |
|
---|
| 1552 | if (!(init_order >= 0)) {
|
---|
| 1553 | ExEnv::errn() << scprintf("int_shell_nuclear_hf_1der: one electron routines are not init'ed\n");
|
---|
| 1554 | exit(1);
|
---|
| 1555 | }
|
---|
| 1556 |
|
---|
| 1557 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1558 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1559 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1560 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1561 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1562 | }
|
---|
| 1563 | gshell1 = &bs1_->shell(ish);
|
---|
| 1564 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1565 |
|
---|
| 1566 | ni = gshell1->nfunction();
|
---|
| 1567 | nj = gshell2->nfunction();
|
---|
| 1568 |
|
---|
| 1569 | for (i=0; i<ni*nj*3; i++) {
|
---|
| 1570 | buff[i] = 0.0;
|
---|
| 1571 | }
|
---|
| 1572 |
|
---|
| 1573 | int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum);
|
---|
| 1574 | }
|
---|
| 1575 |
|
---|
| 1576 | /* This computes the nuclear deriv ints between functions in two shells.
|
---|
| 1577 | * Only the non Hellman-Feynman part is computed.
|
---|
| 1578 | * The result is placed in the buffer.
|
---|
| 1579 | */
|
---|
| 1580 | void
|
---|
| 1581 | Int1eV3::int_shell_nuclear_nonhf_1der(int ish, int jsh,
|
---|
| 1582 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
| 1583 | {
|
---|
| 1584 | int i;
|
---|
| 1585 | int c1,c2;
|
---|
| 1586 | int ni,nj;
|
---|
| 1587 |
|
---|
| 1588 | if (!(init_order >= 0)) {
|
---|
| 1589 | ExEnv::errn() << scprintf("int_shell_nuclear_nonhf_1der: one electron routines are not init'ed\n");
|
---|
| 1590 | exit(1);
|
---|
| 1591 | }
|
---|
| 1592 |
|
---|
| 1593 | c1 = bs1_->shell_to_center(ish);
|
---|
| 1594 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 1595 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 1596 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 1597 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 1598 | }
|
---|
| 1599 | gshell1 = &bs1_->shell(ish);
|
---|
| 1600 | gshell2 = &bs2_->shell(jsh);
|
---|
| 1601 |
|
---|
| 1602 | ni = gshell1->nfunction();
|
---|
| 1603 | nj = gshell2->nfunction();
|
---|
| 1604 |
|
---|
| 1605 | #if 0
|
---|
| 1606 | ExEnv::outn() << scprintf("int_shell_nuclear_nonhf_1der: zeroing %d doubles in buff\n",ni*nj*3);
|
---|
| 1607 | #endif
|
---|
| 1608 | for (i=0; i<ni*nj*3; i++) {
|
---|
| 1609 | buff[i] = 0.0;
|
---|
| 1610 | }
|
---|
| 1611 |
|
---|
| 1612 | int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum);
|
---|
| 1613 | }
|
---|
| 1614 |
|
---|
| 1615 | /* Compute the nuclear attraction for the shell. The arguments are the
|
---|
| 1616 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
| 1617 | * globals are used. */
|
---|
| 1618 | double
|
---|
| 1619 | Int1eV3::comp_shell_nuclear(int gc1, int i1, int j1, int k1,
|
---|
| 1620 | int gc2, int i2, int j2, int k2)
|
---|
| 1621 | {
|
---|
| 1622 | int i,j,k,xyz;
|
---|
| 1623 | double result;
|
---|
| 1624 | double Pi;
|
---|
| 1625 | double oozeta;
|
---|
| 1626 | double AmB,AmB2;
|
---|
| 1627 | double PmC2;
|
---|
| 1628 | double auxcoef;
|
---|
| 1629 | int am;
|
---|
| 1630 | double tmp;
|
---|
| 1631 |
|
---|
| 1632 | am = i1+j1+k1+i2+j2+k2;
|
---|
| 1633 |
|
---|
| 1634 | /* Loop over the primitives in the shells. */
|
---|
| 1635 | result = 0.0;
|
---|
| 1636 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 1637 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 1638 |
|
---|
| 1639 | /* Compute the intermediates. */
|
---|
| 1640 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
| 1641 | oozeta = 1.0/zeta;
|
---|
| 1642 | oo2zeta = 0.5*oozeta;
|
---|
| 1643 | AmB2 = 0.0;
|
---|
| 1644 | PmC2 = 0.0;
|
---|
| 1645 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 1646 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
| 1647 | + gshell2->exponent(j) * B[xyz]);
|
---|
| 1648 | PmA[xyz] = Pi - A[xyz];
|
---|
| 1649 | PmB[xyz] = Pi - B[xyz];
|
---|
| 1650 | PmC[xyz] = Pi - C[xyz];
|
---|
| 1651 | AmB = A[xyz] - B[xyz];
|
---|
| 1652 | AmB2 += AmB*AmB;
|
---|
| 1653 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
| 1654 | }
|
---|
| 1655 |
|
---|
| 1656 | /* The auxillary integral coeficients. */
|
---|
| 1657 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
| 1658 | +gshell2->exponent(j))
|
---|
| 1659 | * exp(- oozeta * gshell1->exponent(i)
|
---|
| 1660 | * gshell2->exponent(j) * AmB2);
|
---|
| 1661 |
|
---|
| 1662 | /* The Fm(U) intermediates. */
|
---|
| 1663 | fjttable_ = fjt_->values(am,zeta*PmC2);
|
---|
| 1664 |
|
---|
| 1665 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
| 1666 | * nuclear attraction integrals. */
|
---|
| 1667 | for (k=0; k<=am; k++) {
|
---|
| 1668 | fjttable_[k] *= auxcoef;
|
---|
| 1669 | }
|
---|
| 1670 |
|
---|
| 1671 | /* Compute the nuclear attraction integral. */
|
---|
| 1672 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
| 1673 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
| 1674 | * comp_prim_nuclear(i1,j1,k1,i2,j2,k2,0);
|
---|
| 1675 |
|
---|
| 1676 | if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
|
---|
| 1677 | else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
|
---|
| 1678 |
|
---|
| 1679 | result += tmp;
|
---|
| 1680 | }
|
---|
| 1681 | }
|
---|
| 1682 |
|
---|
| 1683 | /* printf("comp_shell_nuclear(%d,%d,%d,%d,%d,%d): result = % 12.8lf\n",
|
---|
| 1684 | * i1,j1,k1,i2,j2,k2,result);
|
---|
| 1685 | */
|
---|
| 1686 | return result;
|
---|
| 1687 | }
|
---|
| 1688 |
|
---|
| 1689 | /* Compute the nuclear attraction for the shell. The arguments are the
|
---|
| 1690 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
| 1691 | * globals are used. */
|
---|
| 1692 | void
|
---|
| 1693 | Int1eV3::comp_shell_block_nuclear(int gc1, int a, int gc2, int b,
|
---|
| 1694 | int gcsize2, int gcoff1, int gcoff2,
|
---|
| 1695 | double coef, double *buffer)
|
---|
| 1696 | {
|
---|
| 1697 | int i,j,k,xyz;
|
---|
| 1698 | double Pi;
|
---|
| 1699 | double oozeta;
|
---|
| 1700 | double AmB,AmB2;
|
---|
| 1701 | double PmC2;
|
---|
| 1702 | double auxcoef;
|
---|
| 1703 | double tmp;
|
---|
| 1704 | int am = a + b;
|
---|
| 1705 | int size1 = INT_NCART_NN(a);
|
---|
| 1706 | int size2 = INT_NCART_NN(b);
|
---|
| 1707 |
|
---|
| 1708 | #if DEBUG_NUC_SHELL
|
---|
| 1709 | double *shellints = new double[size1*size2];
|
---|
| 1710 | memset(shellints,0,sizeof(double)*size1*size2);
|
---|
| 1711 | #endif
|
---|
| 1712 |
|
---|
| 1713 | /* Loop over the primitives in the shells. */
|
---|
| 1714 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 1715 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 1716 |
|
---|
| 1717 | /* Compute the intermediates. */
|
---|
| 1718 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
| 1719 | oozeta = 1.0/zeta;
|
---|
| 1720 | oo2zeta = 0.5*oozeta;
|
---|
| 1721 | AmB2 = 0.0;
|
---|
| 1722 | PmC2 = 0.0;
|
---|
| 1723 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 1724 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
| 1725 | + gshell2->exponent(j) * B[xyz]);
|
---|
| 1726 | PmA[xyz] = Pi - A[xyz];
|
---|
| 1727 | PmB[xyz] = Pi - B[xyz];
|
---|
| 1728 | PmC[xyz] = Pi - C[xyz];
|
---|
| 1729 | AmB = A[xyz] - B[xyz];
|
---|
| 1730 | AmB2 += AmB*AmB;
|
---|
| 1731 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
| 1732 | }
|
---|
| 1733 |
|
---|
| 1734 | /* The auxillary integral coeficients. */
|
---|
| 1735 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
| 1736 | +gshell2->exponent(j))
|
---|
| 1737 | * exp(- oozeta * gshell1->exponent(i)
|
---|
| 1738 | * gshell2->exponent(j) * AmB2);
|
---|
| 1739 |
|
---|
| 1740 | /* The Fm(U) intermediates. */
|
---|
| 1741 | fjttable_ = fjt_->values(am,zeta*PmC2);
|
---|
| 1742 |
|
---|
| 1743 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
| 1744 | * nuclear attraction integrals. */
|
---|
| 1745 | for (k=0; k<=am; k++) {
|
---|
| 1746 | fjttable_[k] *= auxcoef;
|
---|
| 1747 | }
|
---|
| 1748 |
|
---|
| 1749 | /* Compute the primitive nuclear attraction integral. */
|
---|
| 1750 | comp_prim_block_nuclear(a,b);
|
---|
| 1751 |
|
---|
| 1752 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
| 1753 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
| 1754 | * coef;
|
---|
| 1755 |
|
---|
| 1756 | if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
|
---|
| 1757 | else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
|
---|
| 1758 |
|
---|
| 1759 | #if DEBUG_NUC_SHELL
|
---|
| 1760 | double *tprimbuffer = inter(a,b,0);
|
---|
| 1761 | double *tmpshellints = shellints;
|
---|
| 1762 | for (int ip=0; ip<size1; ip++) {
|
---|
| 1763 | for (int jp=0; jp<size2; jp++) {
|
---|
| 1764 | *tmpshellints++ += tmp * *tprimbuffer++ / coef;
|
---|
| 1765 | }
|
---|
| 1766 | }
|
---|
| 1767 | #endif
|
---|
| 1768 | double *primbuffer = inter(a,b,0);
|
---|
| 1769 | for (int ip=0; ip<size1; ip++) {
|
---|
| 1770 | for (int jp=0; jp<size2; jp++) {
|
---|
| 1771 | //ExEnv::outn() << scprintf("buffer[%d] += %18.15f",
|
---|
| 1772 | // (ip+gcoff1)*gcsize2+jp+gcoff2,
|
---|
| 1773 | // tmp * *primbuffer)
|
---|
| 1774 | // << endl;
|
---|
| 1775 | buffer[(ip+gcoff1)*gcsize2+jp+gcoff2] += tmp * *primbuffer++;
|
---|
| 1776 | }
|
---|
| 1777 | }
|
---|
| 1778 | }
|
---|
| 1779 | }
|
---|
| 1780 |
|
---|
| 1781 | #if DEBUG_NUC_SHELL
|
---|
| 1782 | # if DEBUG_NUC_SHELL > 1
|
---|
| 1783 | ExEnv::outn() << scprintf("GC = (%d %d), A = %d, B = %d", gc1, gc2, a, b)
|
---|
| 1784 | << endl;
|
---|
| 1785 | # endif
|
---|
| 1786 | int i1,j1,k1;
|
---|
| 1787 | int i2,j2,k2;
|
---|
| 1788 | int ip = 0;
|
---|
| 1789 | double *tmpshellints = shellints;
|
---|
| 1790 | FOR_CART(i1,j1,k1,a) {
|
---|
| 1791 | int jp = 0;
|
---|
| 1792 | FOR_CART(i2,j2,k2,b) {
|
---|
| 1793 | double fast = *tmpshellints++;
|
---|
| 1794 | double slow = comp_shell_nuclear(gc1, i1, j1, k1,
|
---|
| 1795 | gc2, i2, j2, k2);
|
---|
| 1796 | int bad = fabs(fast-slow)>1.0e-12;
|
---|
| 1797 | if (DEBUG_NUC_SHELL > 1 || bad) {
|
---|
| 1798 | ExEnv::outn() << scprintf("NUC SHELL: (%d %d %d) (%d %d %d): ",
|
---|
| 1799 | i1,j1,k1, i2,j2,k2)
|
---|
| 1800 | << scprintf(" % 20.15f % 20.15f",
|
---|
| 1801 | fast, slow);
|
---|
| 1802 | }
|
---|
| 1803 | if (bad) {
|
---|
| 1804 | ExEnv::outn() << " ****" << endl;
|
---|
| 1805 | }
|
---|
| 1806 | else if (DEBUG_NUC_SHELL > 1) {
|
---|
| 1807 | ExEnv::outn() << endl;
|
---|
| 1808 | }
|
---|
| 1809 | jp++;
|
---|
| 1810 | } END_FOR_CART;
|
---|
| 1811 | ip++;
|
---|
| 1812 | } END_FOR_CART;
|
---|
| 1813 | delete[] shellints;
|
---|
| 1814 | #endif
|
---|
| 1815 | }
|
---|
| 1816 |
|
---|
| 1817 | void
|
---|
| 1818 | Int1eV3::comp_prim_block_nuclear(int a, int b)
|
---|
| 1819 | {
|
---|
| 1820 | int im, ia, ib;
|
---|
| 1821 | int l = a + b;
|
---|
| 1822 |
|
---|
| 1823 | // fill in the ia+ib=0 integrals
|
---|
| 1824 | for (im=0; im<=l; im++) {
|
---|
| 1825 | #if DEBUG_NUC_PRIM > 1
|
---|
| 1826 | ExEnv::outn() << "BUILD: M = " << im
|
---|
| 1827 | << " A = " << 0
|
---|
| 1828 | << " B = " << 0
|
---|
| 1829 | << endl;
|
---|
| 1830 | #endif
|
---|
| 1831 | inter(0,0,im)[0] = fjttable_[im];
|
---|
| 1832 | }
|
---|
| 1833 |
|
---|
| 1834 | for (im=l-1; im>=0; im--) {
|
---|
| 1835 | int lm = l-im;
|
---|
| 1836 | // build the integrals for a = 0
|
---|
| 1837 | for (ib=1; ib<=lm && ib<=b; ib++) {
|
---|
| 1838 | #if DEBUG_NUC_PRIM > 1
|
---|
| 1839 | ExEnv::outn() << "BUILD: M = " << im
|
---|
| 1840 | << " A = " << 0
|
---|
| 1841 | << " B = " << ib
|
---|
| 1842 | << endl;
|
---|
| 1843 | #endif
|
---|
| 1844 | comp_prim_block_nuclear_build_b(ib,im);
|
---|
| 1845 | }
|
---|
| 1846 | for (ia=1; ia<=lm && ia<=a; ia++) {
|
---|
| 1847 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
| 1848 | #if DEBUG_NUC_PRIM > 1
|
---|
| 1849 | ExEnv::outn() << "BUILD: M = " << im
|
---|
| 1850 | << " A = " << ia
|
---|
| 1851 | << " B = " << ib
|
---|
| 1852 | << endl;
|
---|
| 1853 | #endif
|
---|
| 1854 | comp_prim_block_nuclear_build_a(ia,ib,im);
|
---|
| 1855 | }
|
---|
| 1856 | }
|
---|
| 1857 | }
|
---|
| 1858 |
|
---|
| 1859 | #if DEBUG_NUC_PRIM
|
---|
| 1860 | for (im=0; im<=l; im++) {
|
---|
| 1861 | int lm = l-im;
|
---|
| 1862 | for (ia=0; ia<=lm && ia<=a; ia++) {
|
---|
| 1863 | int na = INT_NCART_NN(a);
|
---|
| 1864 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
| 1865 | int nb = INT_NCART_NN(b);
|
---|
| 1866 | #if DEBUG_NUC_PRIM > 1
|
---|
| 1867 | ExEnv::outn() << "M = " << im
|
---|
| 1868 | << " A = " << ia
|
---|
| 1869 | << " B = " << ib
|
---|
| 1870 | << endl;
|
---|
| 1871 | #endif
|
---|
| 1872 | double *buf = inter(ia,ib,im);
|
---|
| 1873 | int i1,j1,k1, i2,j2,k2;
|
---|
| 1874 | FOR_CART(i1,j1,k1,ia) {
|
---|
| 1875 | FOR_CART(i2,j2,k2,ib) {
|
---|
| 1876 | double fast = *buf++;
|
---|
| 1877 | double slow = comp_prim_nuclear(i1, j1, k1,
|
---|
| 1878 | i2, j2, k2, im);
|
---|
| 1879 | if (fast > 999.0) fast = 999.0;
|
---|
| 1880 | if (fast < -999.0) fast = -999.0;
|
---|
| 1881 | if (fabs(fast-slow)>1.0e-12) {
|
---|
| 1882 | ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ",
|
---|
| 1883 | i1,j1,k1, i2,j2,k2, im)
|
---|
| 1884 | << scprintf(" % 20.15f % 20.15f",
|
---|
| 1885 | fast, slow)
|
---|
| 1886 | << endl;
|
---|
| 1887 | }
|
---|
| 1888 | } END_FOR_CART;
|
---|
| 1889 | } END_FOR_CART;
|
---|
| 1890 | }
|
---|
| 1891 | }
|
---|
| 1892 | }
|
---|
| 1893 | #endif
|
---|
| 1894 | }
|
---|
| 1895 |
|
---|
| 1896 | void
|
---|
| 1897 | Int1eV3::comp_prim_block_nuclear_build_a(int a, int b, int m)
|
---|
| 1898 | {
|
---|
| 1899 | double *I000 = inter(a,b,m);
|
---|
| 1900 | double *I100 = inter(a-1,b,m);
|
---|
| 1901 | double *I101 = inter(a-1,b,m+1);
|
---|
| 1902 | double *I200 = (a>1?inter(a-2,b,m):0);
|
---|
| 1903 | double *I201 = (a>1?inter(a-2,b,m+1):0);
|
---|
| 1904 | double *I110 = (b?inter(a-1,b-1,m):0);
|
---|
| 1905 | double *I111 = (b?inter(a-1,b-1,m+1):0);
|
---|
| 1906 | int i1,j1,k1;
|
---|
| 1907 | int i2,j2,k2;
|
---|
| 1908 | int carta=0;
|
---|
| 1909 | int sizeb = INT_NCART_NN(b);
|
---|
| 1910 | int sizebm1 = INT_NCART_DEC(b,sizeb);
|
---|
| 1911 | FOR_CART(i1,j1,k1,a) {
|
---|
| 1912 | int cartb=0;
|
---|
| 1913 | FOR_CART(i2,j2,k2,b) {
|
---|
| 1914 | double result = 0.0;
|
---|
| 1915 | if (i1) {
|
---|
| 1916 | int am1 = INT_CARTINDEX(a-1,i1-1,j1);
|
---|
| 1917 | result = PmA[0] * I100[am1*sizeb+cartb];
|
---|
| 1918 | result -= PmC[0] * I101[am1*sizeb+cartb];
|
---|
| 1919 | if (i1>1) {
|
---|
| 1920 | int am2 = INT_CARTINDEX(a-2,i1-2,j1);
|
---|
| 1921 | result += oo2zeta * (i1-1)
|
---|
| 1922 | *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
|
---|
| 1923 | }
|
---|
| 1924 | if (i2) {
|
---|
| 1925 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
| 1926 | result += oo2zeta * i2
|
---|
| 1927 | *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
|
---|
| 1928 | }
|
---|
| 1929 | }
|
---|
| 1930 | else if (j1) {
|
---|
| 1931 | int am1 = INT_CARTINDEX(a-1,i1,j1-1);
|
---|
| 1932 | result = PmA[1] * I100[am1*sizeb+cartb];
|
---|
| 1933 | result -= PmC[1] * I101[am1*sizeb+cartb];
|
---|
| 1934 | if (j1>1) {
|
---|
| 1935 | int am2 = INT_CARTINDEX(a-2,i1,j1-2);
|
---|
| 1936 | result += oo2zeta * (j1-1)
|
---|
| 1937 | *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
|
---|
| 1938 | }
|
---|
| 1939 | if (j2) {
|
---|
| 1940 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
| 1941 | result += oo2zeta * j2
|
---|
| 1942 | *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
|
---|
| 1943 | }
|
---|
| 1944 | }
|
---|
| 1945 | else if (k1) {
|
---|
| 1946 | int am1 = INT_CARTINDEX(a-1,i1,j1);
|
---|
| 1947 | result = PmA[2] * I100[am1*sizeb+cartb];
|
---|
| 1948 | result -= PmC[2] * I101[am1*sizeb+cartb];
|
---|
| 1949 | if (k1>1) {
|
---|
| 1950 | int am2 = INT_CARTINDEX(a-2,i1,j1);
|
---|
| 1951 | result += oo2zeta * (k1-1)
|
---|
| 1952 | *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
|
---|
| 1953 | }
|
---|
| 1954 | if (k2) {
|
---|
| 1955 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
| 1956 | result += oo2zeta * k2
|
---|
| 1957 | *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
|
---|
| 1958 | }
|
---|
| 1959 | }
|
---|
| 1960 | I000[carta*sizeb+cartb] = result;
|
---|
| 1961 | cartb++;
|
---|
| 1962 | } END_FOR_CART;
|
---|
| 1963 | carta++;
|
---|
| 1964 | } END_FOR_CART;
|
---|
| 1965 | }
|
---|
| 1966 |
|
---|
| 1967 | void
|
---|
| 1968 | Int1eV3::comp_prim_block_nuclear_build_b(int b, int m)
|
---|
| 1969 | {
|
---|
| 1970 | double *I000 = inter(0,b,m);
|
---|
| 1971 | double *I010 = inter(0,b-1,m);
|
---|
| 1972 | double *I011 = inter(0,b-1,m+1);
|
---|
| 1973 | double *I020 = (b>1?inter(0,b-2,m):0);
|
---|
| 1974 | double *I021 = (b>1?inter(0,b-2,m+1):0);
|
---|
| 1975 | int i2,j2,k2;
|
---|
| 1976 | int cartb=0;
|
---|
| 1977 | FOR_CART(i2,j2,k2,b) {
|
---|
| 1978 | double result = 0.0;
|
---|
| 1979 |
|
---|
| 1980 | if (i2) {
|
---|
| 1981 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
| 1982 | result = PmB[0] * I010[bm1];
|
---|
| 1983 | result -= PmC[0] * I011[bm1];
|
---|
| 1984 | if (i2>1) {
|
---|
| 1985 | int bm2 = INT_CARTINDEX(b-2,i2-2,j2);
|
---|
| 1986 | result += oo2zeta * (i2-1) * (I020[bm2] - I021[bm2]);
|
---|
| 1987 | }
|
---|
| 1988 | }
|
---|
| 1989 | else if (j2) {
|
---|
| 1990 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
| 1991 | result = PmB[1] * I010[bm1];
|
---|
| 1992 | result -= PmC[1] * I011[bm1];
|
---|
| 1993 | if (j2>1) {
|
---|
| 1994 | int bm2 = INT_CARTINDEX(b-2,i2,j2-2);
|
---|
| 1995 | result += oo2zeta * (j2-1) * (I020[bm2] - I021[bm2]);
|
---|
| 1996 | }
|
---|
| 1997 | }
|
---|
| 1998 | else if (k2) {
|
---|
| 1999 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
| 2000 | result = PmB[2] * I010[bm1];
|
---|
| 2001 | result -= PmC[2] * I011[bm1];
|
---|
| 2002 | if (k2>1) {
|
---|
| 2003 | int bm2 = INT_CARTINDEX(b-2,i2,j2);
|
---|
| 2004 | result += oo2zeta * (k2-1) * (I020[bm2] - I021[bm2]);
|
---|
| 2005 | }
|
---|
| 2006 | }
|
---|
| 2007 |
|
---|
| 2008 | I000[cartb] = result;
|
---|
| 2009 | cartb++;
|
---|
| 2010 | } END_FOR_CART;
|
---|
| 2011 | }
|
---|
| 2012 |
|
---|
| 2013 | double
|
---|
| 2014 | Int1eV3::comp_prim_nuclear(int i1, int j1, int k1,
|
---|
| 2015 | int i2, int j2, int k2, int m)
|
---|
| 2016 | {
|
---|
| 2017 | double result;
|
---|
| 2018 |
|
---|
| 2019 | if (i1) {
|
---|
| 2020 | result = PmA[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m);
|
---|
| 2021 | result -= PmC[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1);
|
---|
| 2022 | if (i1>1) result += oo2zeta * (i1-1)
|
---|
| 2023 | * ( comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m)
|
---|
| 2024 | - comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m+1));
|
---|
| 2025 | if (i2) result += oo2zeta * i2
|
---|
| 2026 | * ( comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
| 2027 | - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
| 2028 | }
|
---|
| 2029 | else if (j1) {
|
---|
| 2030 | result = PmA[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m);
|
---|
| 2031 | result -= PmC[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1);
|
---|
| 2032 | if (j1>1) result += oo2zeta * (j1-1)
|
---|
| 2033 | * ( comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m)
|
---|
| 2034 | - comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m+1));
|
---|
| 2035 | if (j2) result += oo2zeta * j2
|
---|
| 2036 | * ( comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
| 2037 | - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
| 2038 | }
|
---|
| 2039 | else if (k1) {
|
---|
| 2040 | result = PmA[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m);
|
---|
| 2041 | result -= PmC[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1);
|
---|
| 2042 | if (k1>1) result += oo2zeta * (k1-1)
|
---|
| 2043 | * ( comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m)
|
---|
| 2044 | - comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m+1));
|
---|
| 2045 | if (k2) result += oo2zeta * k2
|
---|
| 2046 | * ( comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
| 2047 | - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
| 2048 | }
|
---|
| 2049 | else if (i2) {
|
---|
| 2050 | result = PmB[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m);
|
---|
| 2051 | result -= PmC[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1);
|
---|
| 2052 | if (i2>1) result += oo2zeta * (i2-1)
|
---|
| 2053 | * ( comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m)
|
---|
| 2054 | - comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m+1));
|
---|
| 2055 | if (i1) result += oo2zeta * i1
|
---|
| 2056 | * ( comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
| 2057 | - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
| 2058 | }
|
---|
| 2059 | else if (j2) {
|
---|
| 2060 | result = PmB[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m);
|
---|
| 2061 | result -= PmC[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1);
|
---|
| 2062 | if (j2>1) result += oo2zeta * (j2-1)
|
---|
| 2063 | * ( comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m)
|
---|
| 2064 | - comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m+1));
|
---|
| 2065 | if (j1) result += oo2zeta * j1
|
---|
| 2066 | * ( comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
| 2067 | - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
| 2068 | }
|
---|
| 2069 | else if (k2) {
|
---|
| 2070 | result = PmB[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m);
|
---|
| 2071 | result -= PmC[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1);
|
---|
| 2072 | if (k2>1) result += oo2zeta * (k2-1)
|
---|
| 2073 | * ( comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m)
|
---|
| 2074 | - comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m+1));
|
---|
| 2075 | if (k1) result += oo2zeta * k1
|
---|
| 2076 | * ( comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
| 2077 | - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
| 2078 | }
|
---|
| 2079 | else result = fjttable_[m];
|
---|
| 2080 |
|
---|
| 2081 | return result;
|
---|
| 2082 | }
|
---|
| 2083 |
|
---|
| 2084 | /* Compute the electric field integral for the shell. The arguments are the
|
---|
| 2085 | * the electric field vector, the
|
---|
| 2086 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
| 2087 | * globals are used. */
|
---|
| 2088 | void
|
---|
| 2089 | Int1eV3::comp_shell_efield(double *efield,
|
---|
| 2090 | int gc1, int i1, int j1, int k1,
|
---|
| 2091 | int gc2, int i2, int j2, int k2)
|
---|
| 2092 | {
|
---|
| 2093 | int i,j,k,xyz;
|
---|
| 2094 | double result[3];
|
---|
| 2095 | double Pi;
|
---|
| 2096 | double oozeta;
|
---|
| 2097 | double AmB,AmB2;
|
---|
| 2098 | double PmC2;
|
---|
| 2099 | double auxcoef;
|
---|
| 2100 | int am;
|
---|
| 2101 |
|
---|
| 2102 | am = i1+j1+k1+i2+j2+k2;
|
---|
| 2103 |
|
---|
| 2104 | /* Loop over the primitives in the shells. */
|
---|
| 2105 | for (xyz=0; xyz<3; xyz++) result[xyz] = 0.0;
|
---|
| 2106 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 2107 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 2108 |
|
---|
| 2109 | /* Compute the intermediates. */
|
---|
| 2110 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
| 2111 | oozeta = 1.0/zeta;
|
---|
| 2112 | oo2zeta = 0.5*oozeta;
|
---|
| 2113 | AmB2 = 0.0;
|
---|
| 2114 | PmC2 = 0.0;
|
---|
| 2115 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2116 | Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]);
|
---|
| 2117 | PmA[xyz] = Pi - A[xyz];
|
---|
| 2118 | PmB[xyz] = Pi - B[xyz];
|
---|
| 2119 | PmC[xyz] = Pi - C[xyz];
|
---|
| 2120 | AmB = A[xyz] - B[xyz];
|
---|
| 2121 | AmB2 += AmB*AmB;
|
---|
| 2122 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
| 2123 | }
|
---|
| 2124 |
|
---|
| 2125 | /* The auxillary integral coeficients. */
|
---|
| 2126 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
| 2127 | +gshell2->exponent(j))
|
---|
| 2128 | * exp(- oozeta * gshell1->exponent(i)
|
---|
| 2129 | * gshell2->exponent(j) * AmB2);
|
---|
| 2130 |
|
---|
| 2131 | /* The Fm(U) intermediates. */
|
---|
| 2132 | fjttable_ = fjt_->values(am+1,zeta*PmC2);
|
---|
| 2133 |
|
---|
| 2134 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
| 2135 | * nuclear attraction integrals. */
|
---|
| 2136 | for (k=0; k<=am+1; k++) {
|
---|
| 2137 | fjttable_[k] *= auxcoef;
|
---|
| 2138 | }
|
---|
| 2139 |
|
---|
| 2140 | /* Compute the nuclear attraction integral. */
|
---|
| 2141 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2142 | result[xyz] += gshell1->coefficient_unnorm(gc1,i)
|
---|
| 2143 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
| 2144 | * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2,0);
|
---|
| 2145 | }
|
---|
| 2146 | }
|
---|
| 2147 | }
|
---|
| 2148 |
|
---|
| 2149 | for (xyz=0; xyz<3; xyz++) efield[xyz] = result[xyz];
|
---|
| 2150 |
|
---|
| 2151 | }
|
---|
| 2152 |
|
---|
| 2153 | /* Compute the electric field integral for the shell. The arguments are the
|
---|
| 2154 | * the electric field vector, the
|
---|
| 2155 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
| 2156 | * globals are used. */
|
---|
| 2157 | void
|
---|
| 2158 | Int1eV3::comp_shell_block_efield(int gc1, int a, int gc2, int b,
|
---|
| 2159 | int gcsize2, int gcoff1, int gcoff2,
|
---|
| 2160 | double coef, double *buffer)
|
---|
| 2161 | {
|
---|
| 2162 | int i,j,k,xyz;
|
---|
| 2163 | double Pi;
|
---|
| 2164 | double oozeta;
|
---|
| 2165 | double AmB,AmB2;
|
---|
| 2166 | double PmC2;
|
---|
| 2167 | double auxcoef;
|
---|
| 2168 | int am = a + b;
|
---|
| 2169 | int size1 = INT_NCART_NN(a);
|
---|
| 2170 | int size2 = INT_NCART_NN(b);
|
---|
| 2171 |
|
---|
| 2172 | /* Loop over the primitives in the shells. */
|
---|
| 2173 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 2174 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 2175 |
|
---|
| 2176 | /* Compute the intermediates. */
|
---|
| 2177 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
| 2178 | oozeta = 1.0/zeta;
|
---|
| 2179 | oo2zeta = 0.5*oozeta;
|
---|
| 2180 | AmB2 = 0.0;
|
---|
| 2181 | PmC2 = 0.0;
|
---|
| 2182 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2183 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
| 2184 | + gshell2->exponent(j) * B[xyz]);
|
---|
| 2185 | PmA[xyz] = Pi - A[xyz];
|
---|
| 2186 | PmB[xyz] = Pi - B[xyz];
|
---|
| 2187 | PmC[xyz] = Pi - C[xyz];
|
---|
| 2188 | AmB = A[xyz] - B[xyz];
|
---|
| 2189 | AmB2 += AmB*AmB;
|
---|
| 2190 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
| 2191 | }
|
---|
| 2192 |
|
---|
| 2193 | /* The auxillary integral coeficients. */
|
---|
| 2194 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
| 2195 | +gshell2->exponent(j))
|
---|
| 2196 | * exp(- oozeta * gshell1->exponent(i)
|
---|
| 2197 | * gshell2->exponent(j) * AmB2);
|
---|
| 2198 |
|
---|
| 2199 | /* The Fm(U) intermediates. */
|
---|
| 2200 | fjttable_ = fjt_->values(am+1,zeta*PmC2);
|
---|
| 2201 |
|
---|
| 2202 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
| 2203 | * nuclear attraction integrals. */
|
---|
| 2204 | for (k=0; k<=am+1; k++) {
|
---|
| 2205 | fjttable_[k] *= auxcoef;
|
---|
| 2206 | }
|
---|
| 2207 |
|
---|
| 2208 | double tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
| 2209 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
| 2210 | * coef;
|
---|
| 2211 |
|
---|
| 2212 | /* Compute the nuclear attraction integral. */
|
---|
| 2213 | comp_prim_block_efield(a,b);
|
---|
| 2214 |
|
---|
| 2215 | double *primbuffer = efield_inter(a,b,0);
|
---|
| 2216 | for (int ip=0; ip<size1; ip++) {
|
---|
| 2217 | for (int jp=0; jp<size2; jp++) {
|
---|
| 2218 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2219 | buffer[((ip+gcoff1)*gcsize2+jp+gcoff2)*3+xyz]
|
---|
| 2220 | += tmp * *primbuffer++;
|
---|
| 2221 | }
|
---|
| 2222 | }
|
---|
| 2223 | }
|
---|
| 2224 | }
|
---|
| 2225 | }
|
---|
| 2226 |
|
---|
| 2227 | }
|
---|
| 2228 |
|
---|
| 2229 | void
|
---|
| 2230 | Int1eV3::comp_prim_block_efield(int a, int b)
|
---|
| 2231 | {
|
---|
| 2232 | int xyz;
|
---|
| 2233 | int im, ia, ib;
|
---|
| 2234 | int l = a + b;
|
---|
| 2235 |
|
---|
| 2236 | // Fill in the nuclear integrals which are needed as intermediates.
|
---|
| 2237 | // m=0 is not needed.
|
---|
| 2238 |
|
---|
| 2239 | // fill in the ia+ib=0 integrals, skipping m=0
|
---|
| 2240 | for (im=1; im<=l; im++) {
|
---|
| 2241 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2242 | ExEnv::outn() << "BUILD NUC: M = " << im
|
---|
| 2243 | << " A = " << 0
|
---|
| 2244 | << " B = " << 0
|
---|
| 2245 | << endl;
|
---|
| 2246 | #endif
|
---|
| 2247 | inter(0,0,im)[0] = fjttable_[im];
|
---|
| 2248 | }
|
---|
| 2249 |
|
---|
| 2250 | // skipping m=0
|
---|
| 2251 | for (im=l-1; im>0; im--) {
|
---|
| 2252 | int lm = l-im;
|
---|
| 2253 | // build the integrals for a = 0
|
---|
| 2254 | for (ib=1; ib<=lm && ib<=b; ib++) {
|
---|
| 2255 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2256 | ExEnv::outn() << "BUILD NUC: M = " << im
|
---|
| 2257 | << " A = " << 0
|
---|
| 2258 | << " B = " << ib
|
---|
| 2259 | << endl;
|
---|
| 2260 | #endif
|
---|
| 2261 | comp_prim_block_nuclear_build_b(ib,im);
|
---|
| 2262 | }
|
---|
| 2263 | for (ia=1; ia<=lm && ia<=a; ia++) {
|
---|
| 2264 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
| 2265 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2266 | ExEnv::outn() << "BUILD NUC: M = " << im
|
---|
| 2267 | << " A = " << ia
|
---|
| 2268 | << " B = " << ib
|
---|
| 2269 | << endl;
|
---|
| 2270 | #endif
|
---|
| 2271 | comp_prim_block_nuclear_build_a(ia,ib,im);
|
---|
| 2272 | }
|
---|
| 2273 | }
|
---|
| 2274 | }
|
---|
| 2275 |
|
---|
| 2276 | // now complete the efield integrals
|
---|
| 2277 |
|
---|
| 2278 | // fill in the ia+ib=0 integrals
|
---|
| 2279 | for (im=0; im<=l; im++) {
|
---|
| 2280 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2281 | ExEnv::outn() << "BUILD EFIELD: M = " << im
|
---|
| 2282 | << " A = " << 0
|
---|
| 2283 | << " B = " << 0
|
---|
| 2284 | << endl;
|
---|
| 2285 | #endif
|
---|
| 2286 | double *tmp = efield_inter(0,0,im);
|
---|
| 2287 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2288 | *tmp++ = 2.0 * zeta * PmC[xyz] * fjttable_[im+1];
|
---|
| 2289 | }
|
---|
| 2290 | }
|
---|
| 2291 |
|
---|
| 2292 | for (im=l-1; im>=0; im--) {
|
---|
| 2293 | int lm = l-im;
|
---|
| 2294 | // build the integrals for a = 0
|
---|
| 2295 | for (ib=1; ib<=lm && ib<=b; ib++) {
|
---|
| 2296 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2297 | ExEnv::outn() << "BUILD EFIELD: M = " << im
|
---|
| 2298 | << " A = " << 0
|
---|
| 2299 | << " B = " << ib
|
---|
| 2300 | << endl;
|
---|
| 2301 | #endif
|
---|
| 2302 | comp_prim_block_efield_build_b(ib,im);
|
---|
| 2303 | }
|
---|
| 2304 | for (ia=1; ia<=lm && ia<=a; ia++) {
|
---|
| 2305 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
| 2306 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2307 | ExEnv::outn() << "BUILD EFIELD: M = " << im
|
---|
| 2308 | << " A = " << ia
|
---|
| 2309 | << " B = " << ib
|
---|
| 2310 | << endl;
|
---|
| 2311 | #endif
|
---|
| 2312 | comp_prim_block_efield_build_a(ia,ib,im);
|
---|
| 2313 | }
|
---|
| 2314 | }
|
---|
| 2315 | }
|
---|
| 2316 |
|
---|
| 2317 | #if DEBUG_EFIELD_PRIM
|
---|
| 2318 | for (im=0; im<=l; im++) {
|
---|
| 2319 | int lm = l-im;
|
---|
| 2320 | for (ia=0; ia<=lm && ia<=a; ia++) {
|
---|
| 2321 | int na = INT_NCART_NN(a);
|
---|
| 2322 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
| 2323 | int nb = INT_NCART_NN(b);
|
---|
| 2324 | #if DEBUG_EFIELD_PRIM > 1
|
---|
| 2325 | ExEnv::outn() << "M = " << im
|
---|
| 2326 | << " A = " << ia
|
---|
| 2327 | << " B = " << ib
|
---|
| 2328 | << endl;
|
---|
| 2329 | #endif
|
---|
| 2330 | double *buf = efield_inter(ia,ib,im);
|
---|
| 2331 | int i1,j1,k1, i2,j2,k2;
|
---|
| 2332 | FOR_CART(i1,j1,k1,ia) {
|
---|
| 2333 | FOR_CART(i2,j2,k2,ib) {
|
---|
| 2334 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2335 | double fast = *buf++;
|
---|
| 2336 | double slow = comp_prim_efield(xyz, i1, j1, k1,
|
---|
| 2337 | i2, j2, k2, im);
|
---|
| 2338 | if (fast > 999.0) fast = 999.0;
|
---|
| 2339 | if (fast < -999.0) fast = -999.0;
|
---|
| 2340 | if (fabs(fast-slow)>1.0e-12) {
|
---|
| 2341 | ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ",
|
---|
| 2342 | i1,j1,k1, i2,j2,k2, im)
|
---|
| 2343 | << scprintf(" % 20.15f % 20.15f",
|
---|
| 2344 | fast, slow)
|
---|
| 2345 | << endl;
|
---|
| 2346 | }
|
---|
| 2347 | }
|
---|
| 2348 | } END_FOR_CART;
|
---|
| 2349 | } END_FOR_CART;
|
---|
| 2350 | }
|
---|
| 2351 | }
|
---|
| 2352 | }
|
---|
| 2353 | #endif
|
---|
| 2354 | }
|
---|
| 2355 |
|
---|
| 2356 | void
|
---|
| 2357 | Int1eV3::comp_prim_block_efield_build_a(int a, int b, int m)
|
---|
| 2358 | {
|
---|
| 2359 | double *I000 = efield_inter(a,b,m);
|
---|
| 2360 | double *I100 = efield_inter(a-1,b,m);
|
---|
| 2361 | double *I101 = efield_inter(a-1,b,m+1);
|
---|
| 2362 | double *I200 = (a>1?efield_inter(a-2,b,m):0);
|
---|
| 2363 | double *I201 = (a>1?efield_inter(a-2,b,m+1):0);
|
---|
| 2364 | double *I110 = (b?efield_inter(a-1,b-1,m):0);
|
---|
| 2365 | double *I111 = (b?efield_inter(a-1,b-1,m+1):0);
|
---|
| 2366 | double *nucI101 = inter(a-1,b,m+1);
|
---|
| 2367 | int i1,j1,k1;
|
---|
| 2368 | int i2,j2,k2;
|
---|
| 2369 | int xyz;
|
---|
| 2370 | int carta=0;
|
---|
| 2371 | int sizeb = INT_NCART_NN(b);
|
---|
| 2372 | int sizebm1 = INT_NCART_DEC(b,sizeb);
|
---|
| 2373 | FOR_CART(i1,j1,k1,a) {
|
---|
| 2374 | int cartb=0;
|
---|
| 2375 | FOR_CART(i2,j2,k2,b) {
|
---|
| 2376 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2377 | double result = 0.0;
|
---|
| 2378 | if (i1) {
|
---|
| 2379 | int am1 = INT_CARTINDEX(a-1,i1-1,j1);
|
---|
| 2380 | result = PmA[0] * I100[(am1*sizeb+cartb)*3+xyz];
|
---|
| 2381 | result -= PmC[0] * I101[(am1*sizeb+cartb)*3+xyz];
|
---|
| 2382 | if (i1>1) {
|
---|
| 2383 | int am2 = INT_CARTINDEX(a-2,i1-2,j1);
|
---|
| 2384 | result += oo2zeta * (i1-1)
|
---|
| 2385 | *(I200[(am2*sizeb+cartb)*3+xyz]
|
---|
| 2386 | - I201[(am2*sizeb+cartb)*3+xyz]);
|
---|
| 2387 | }
|
---|
| 2388 | if (i2) {
|
---|
| 2389 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
| 2390 | result += oo2zeta * i2
|
---|
| 2391 | *(I110[(am1*sizebm1+bm1)*3+xyz]
|
---|
| 2392 | - I111[(am1*sizebm1+bm1)*3+xyz]);
|
---|
| 2393 | }
|
---|
| 2394 | if (xyz==0) result += nucI101[am1*sizeb+cartb];
|
---|
| 2395 | }
|
---|
| 2396 | else if (j1) {
|
---|
| 2397 | int am1 = INT_CARTINDEX(a-1,i1,j1-1);
|
---|
| 2398 | result = PmA[1] * I100[(am1*sizeb+cartb)*3+xyz];
|
---|
| 2399 | result -= PmC[1] * I101[(am1*sizeb+cartb)*3+xyz];
|
---|
| 2400 | if (j1>1) {
|
---|
| 2401 | int am2 = INT_CARTINDEX(a-2,i1,j1-2);
|
---|
| 2402 | result += oo2zeta * (j1-1)
|
---|
| 2403 | *(I200[(am2*sizeb+cartb)*3+xyz]
|
---|
| 2404 | - I201[(am2*sizeb+cartb)*3+xyz]);
|
---|
| 2405 | }
|
---|
| 2406 | if (j2) {
|
---|
| 2407 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
| 2408 | result += oo2zeta * j2
|
---|
| 2409 | *(I110[(am1*sizebm1+bm1)*3+xyz]
|
---|
| 2410 | - I111[(am1*sizebm1+bm1)*3+xyz]);
|
---|
| 2411 | }
|
---|
| 2412 | if (xyz==1) result += nucI101[am1*sizeb+cartb];
|
---|
| 2413 | }
|
---|
| 2414 | else if (k1) {
|
---|
| 2415 | int am1 = INT_CARTINDEX(a-1,i1,j1);
|
---|
| 2416 | result = PmA[2] * I100[(am1*sizeb+cartb)*3+xyz];
|
---|
| 2417 | result -= PmC[2] * I101[(am1*sizeb+cartb)*3+xyz];
|
---|
| 2418 | if (k1>1) {
|
---|
| 2419 | int am2 = INT_CARTINDEX(a-2,i1,j1);
|
---|
| 2420 | result += oo2zeta * (k1-1)
|
---|
| 2421 | *(I200[(am2*sizeb+cartb)*3+xyz]
|
---|
| 2422 | - I201[(am2*sizeb+cartb)*3+xyz]);
|
---|
| 2423 | }
|
---|
| 2424 | if (k2) {
|
---|
| 2425 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
| 2426 | result += oo2zeta * k2
|
---|
| 2427 | *(I110[(am1*sizebm1+bm1)*3+xyz]
|
---|
| 2428 | - I111[(am1*sizebm1+bm1)*3+xyz]);
|
---|
| 2429 | }
|
---|
| 2430 | if (xyz==2) result += nucI101[am1*sizeb+cartb];
|
---|
| 2431 | }
|
---|
| 2432 | I000[(carta*sizeb+cartb)*3+xyz] = result;
|
---|
| 2433 | }
|
---|
| 2434 | cartb++;
|
---|
| 2435 | } END_FOR_CART;
|
---|
| 2436 | carta++;
|
---|
| 2437 | } END_FOR_CART;
|
---|
| 2438 | }
|
---|
| 2439 |
|
---|
| 2440 | void
|
---|
| 2441 | Int1eV3::comp_prim_block_efield_build_b(int b, int m)
|
---|
| 2442 | {
|
---|
| 2443 | double *I000 = efield_inter(0,b,m);
|
---|
| 2444 | double *I010 = efield_inter(0,b-1,m);
|
---|
| 2445 | double *I011 = efield_inter(0,b-1,m+1);
|
---|
| 2446 | double *I020 = (b>1?efield_inter(0,b-2,m):0);
|
---|
| 2447 | double *I021 = (b>1?efield_inter(0,b-2,m+1):0);
|
---|
| 2448 | double *nucI011 = inter(0,b-1,m+1);
|
---|
| 2449 | int xyz;
|
---|
| 2450 | int i2,j2,k2;
|
---|
| 2451 | int cartb=0;
|
---|
| 2452 | FOR_CART(i2,j2,k2,b) {
|
---|
| 2453 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2454 | double result = 0.0;
|
---|
| 2455 |
|
---|
| 2456 | if (i2) {
|
---|
| 2457 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
| 2458 | result = PmB[0] * I010[(bm1)*3+xyz];
|
---|
| 2459 | result -= PmC[0] * I011[(bm1)*3+xyz];
|
---|
| 2460 | if (i2>1) {
|
---|
| 2461 | int bm2 = INT_CARTINDEX(b-2,i2-2,j2);
|
---|
| 2462 | result += oo2zeta * (i2-1) * (I020[(bm2)*3+xyz]
|
---|
| 2463 | - I021[(bm2)*3+xyz]);
|
---|
| 2464 | }
|
---|
| 2465 | if (xyz==0) result += nucI011[bm1];
|
---|
| 2466 | }
|
---|
| 2467 | else if (j2) {
|
---|
| 2468 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
| 2469 | result = PmB[1] * I010[(bm1)*3+xyz];
|
---|
| 2470 | result -= PmC[1] * I011[(bm1)*3+xyz];
|
---|
| 2471 | if (j2>1) {
|
---|
| 2472 | int bm2 = INT_CARTINDEX(b-2,i2,j2-2);
|
---|
| 2473 | result += oo2zeta * (j2-1) * (I020[(bm2)*3+xyz]
|
---|
| 2474 | - I021[(bm2)*3+xyz]);
|
---|
| 2475 | }
|
---|
| 2476 | if (xyz==1) result += nucI011[bm1];
|
---|
| 2477 | }
|
---|
| 2478 | else if (k2) {
|
---|
| 2479 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
| 2480 | result = PmB[2] * I010[(bm1)*3+xyz];
|
---|
| 2481 | result -= PmC[2] * I011[(bm1)*3+xyz];
|
---|
| 2482 | if (k2>1) {
|
---|
| 2483 | int bm2 = INT_CARTINDEX(b-2,i2,j2);
|
---|
| 2484 | result += oo2zeta * (k2-1) * (I020[(bm2)*3+xyz]
|
---|
| 2485 | - I021[(bm2)*3+xyz]);
|
---|
| 2486 | }
|
---|
| 2487 | if (xyz==2) result += nucI011[bm1];
|
---|
| 2488 | }
|
---|
| 2489 |
|
---|
| 2490 | I000[(cartb)*3+xyz] = result;
|
---|
| 2491 | }
|
---|
| 2492 | cartb++;
|
---|
| 2493 | } END_FOR_CART;
|
---|
| 2494 | }
|
---|
| 2495 |
|
---|
| 2496 | double
|
---|
| 2497 | Int1eV3::comp_prim_efield(int xyz, int i1, int j1, int k1,
|
---|
| 2498 | int i2, int j2, int k2, int m)
|
---|
| 2499 | {
|
---|
| 2500 | double result;
|
---|
| 2501 |
|
---|
| 2502 | /* if ((xyz != 0) || (i1 != 1)) return 0.0; */
|
---|
| 2503 |
|
---|
| 2504 | if (i1) {
|
---|
| 2505 | result = PmA[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m);
|
---|
| 2506 | result -= PmC[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m+1);
|
---|
| 2507 | if (i1>1) result += oo2zeta * (i1-1)
|
---|
| 2508 | * ( comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m)
|
---|
| 2509 | - comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m+1));
|
---|
| 2510 | if (i2) result += oo2zeta * i2
|
---|
| 2511 | * ( comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
| 2512 | - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
| 2513 | if (xyz==0) result += comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1);
|
---|
| 2514 | }
|
---|
| 2515 | else if (j1) {
|
---|
| 2516 | result = PmA[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m);
|
---|
| 2517 | result -= PmC[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m+1);
|
---|
| 2518 | if (j1>1) result += oo2zeta * (j1-1)
|
---|
| 2519 | * ( comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m)
|
---|
| 2520 | - comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m+1));
|
---|
| 2521 | if (j2) result += oo2zeta * j2
|
---|
| 2522 | * ( comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
| 2523 | - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
| 2524 | if (xyz==1) result += comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1);
|
---|
| 2525 | }
|
---|
| 2526 | else if (k1) {
|
---|
| 2527 | result = PmA[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m);
|
---|
| 2528 | result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m+1);
|
---|
| 2529 | if (k1>1) result += oo2zeta * (k1-1)
|
---|
| 2530 | * ( comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m)
|
---|
| 2531 | - comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m+1));
|
---|
| 2532 | if (k2) result += oo2zeta * k2
|
---|
| 2533 | * ( comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
| 2534 | - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
| 2535 | if (xyz==2) result += comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1);
|
---|
| 2536 | }
|
---|
| 2537 | else if (i2) {
|
---|
| 2538 | result = PmB[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m);
|
---|
| 2539 | result -= PmC[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m+1);
|
---|
| 2540 | if (i2>1) result += oo2zeta * (i2-1)
|
---|
| 2541 | * ( comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m)
|
---|
| 2542 | - comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m+1));
|
---|
| 2543 | if (i1) result += oo2zeta * i1
|
---|
| 2544 | * ( comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
| 2545 | - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
| 2546 | if (xyz==0) result += comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1);
|
---|
| 2547 | }
|
---|
| 2548 | else if (j2) {
|
---|
| 2549 | result = PmB[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m);
|
---|
| 2550 | result -= PmC[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m+1);
|
---|
| 2551 | if (j2>1) result += oo2zeta * (j2-1)
|
---|
| 2552 | * ( comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m)
|
---|
| 2553 | - comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m+1));
|
---|
| 2554 | if (j1) result += oo2zeta * j1
|
---|
| 2555 | * ( comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
| 2556 | - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
| 2557 | if (xyz==1) result += comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1);
|
---|
| 2558 | }
|
---|
| 2559 | else if (k2) {
|
---|
| 2560 | result = PmB[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m);
|
---|
| 2561 | result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m+1);
|
---|
| 2562 | if (k2>1) result += oo2zeta * (k2-1)
|
---|
| 2563 | * ( comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m)
|
---|
| 2564 | - comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m+1));
|
---|
| 2565 | if (k1) result += oo2zeta * k1
|
---|
| 2566 | * ( comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
| 2567 | - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
| 2568 | if (xyz==2) result += comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1);
|
---|
| 2569 | }
|
---|
| 2570 | else {
|
---|
| 2571 | /* We arrive here if we have a (s| |s) type efield integral.
|
---|
| 2572 | * The fjttable contains the standard (s| |s) nuc attr integrals.
|
---|
| 2573 | */
|
---|
| 2574 | result = 2.0 * zeta * PmC[xyz] * fjttable_[m+1];
|
---|
| 2575 | }
|
---|
| 2576 |
|
---|
| 2577 | return result;
|
---|
| 2578 | }
|
---|
| 2579 |
|
---|
| 2580 |
|
---|
| 2581 | /* --------------------------------------------------------------- */
|
---|
| 2582 | /* ------------- Routines for dipole moment integrals ------------ */
|
---|
| 2583 | /* --------------------------------------------------------------- */
|
---|
| 2584 |
|
---|
| 2585 | /* This computes the dipole integrals between functions in two shells.
|
---|
| 2586 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
| 2587 | * x y z, etc. The last arg, com, is the origin of the coordinate
|
---|
| 2588 | * system used to compute the dipole moment.
|
---|
| 2589 | */
|
---|
| 2590 | void
|
---|
| 2591 | Int1eV3::int_accum_shell_dipole(int ish, int jsh,
|
---|
| 2592 | double *com)
|
---|
| 2593 | {
|
---|
| 2594 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 2595 | int gc1,gc2;
|
---|
| 2596 | int index,index1,index2;
|
---|
| 2597 | double dipole[3];
|
---|
| 2598 | int xyz;
|
---|
| 2599 |
|
---|
| 2600 | for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz];
|
---|
| 2601 |
|
---|
| 2602 | c1 = bs1_->shell_to_center(ish);
|
---|
| 2603 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 2604 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2605 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 2606 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 2607 | }
|
---|
| 2608 | gshell1 = &bs1_->shell(ish);
|
---|
| 2609 | gshell2 = &bs2_->shell(jsh);
|
---|
| 2610 | index = 0;
|
---|
| 2611 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
| 2612 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
| 2613 | comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 2614 | for(mu=0; mu < 3; mu++) {
|
---|
| 2615 | cartesianbuffer[index] = dipole[mu];
|
---|
| 2616 | index++;
|
---|
| 2617 | }
|
---|
| 2618 | END_FOR_GCCART_GS(index2)
|
---|
| 2619 | END_FOR_GCCART_GS(index1)
|
---|
| 2620 | accum_transform_1e_xyz(integral_,
|
---|
| 2621 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 2622 | }
|
---|
| 2623 |
|
---|
| 2624 | /* This computes the dipole integrals between functions in two shells.
|
---|
| 2625 | * The result is placed in the buffer in the form bf1 x y z, bf2
|
---|
| 2626 | * x y z, etc. The last arg, com, is the origin of the coordinate
|
---|
| 2627 | * system used to compute the dipole moment.
|
---|
| 2628 | */
|
---|
| 2629 | void
|
---|
| 2630 | Int1eV3::dipole(int ish, int jsh, double *com)
|
---|
| 2631 | {
|
---|
| 2632 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
| 2633 | int gc1,gc2;
|
---|
| 2634 | int index,index1,index2;
|
---|
| 2635 | double dipole[3];
|
---|
| 2636 | int xyz;
|
---|
| 2637 |
|
---|
| 2638 | for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz];
|
---|
| 2639 |
|
---|
| 2640 | c1 = bs1_->shell_to_center(ish);
|
---|
| 2641 | c2 = bs2_->shell_to_center(jsh);
|
---|
| 2642 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2643 | A[xyz] = bs1_->r(c1,xyz);
|
---|
| 2644 | B[xyz] = bs2_->r(c2,xyz);
|
---|
| 2645 | }
|
---|
| 2646 | gshell1 = &bs1_->shell(ish);
|
---|
| 2647 | gshell2 = &bs2_->shell(jsh);
|
---|
| 2648 | index = 0;
|
---|
| 2649 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
| 2650 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
| 2651 | comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
| 2652 | for(mu=0; mu < 3; mu++) {
|
---|
| 2653 | cartesianbuffer[index] = dipole[mu];
|
---|
| 2654 | index++;
|
---|
| 2655 | }
|
---|
| 2656 | END_FOR_GCCART_GS(index2)
|
---|
| 2657 | END_FOR_GCCART_GS(index1)
|
---|
| 2658 | transform_1e_xyz(integral_,
|
---|
| 2659 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
| 2660 | }
|
---|
| 2661 |
|
---|
| 2662 | void
|
---|
| 2663 | Int1eV3::comp_shell_dipole(double* dipole,
|
---|
| 2664 | int gc1, int i1, int j1, int k1,
|
---|
| 2665 | int gc2, int i2, int j2, int k2)
|
---|
| 2666 | {
|
---|
| 2667 | double exp1,exp2;
|
---|
| 2668 | int i,j,xyz;
|
---|
| 2669 | double Pi;
|
---|
| 2670 | double oozeta;
|
---|
| 2671 | double AmB,AmB2;
|
---|
| 2672 | double tmp;
|
---|
| 2673 |
|
---|
| 2674 | dipole[0] = dipole[1] = dipole[2] = 0.0;
|
---|
| 2675 |
|
---|
| 2676 | if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return;
|
---|
| 2677 |
|
---|
| 2678 | /* Loop over the primitives in the shells. */
|
---|
| 2679 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
| 2680 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
| 2681 |
|
---|
| 2682 | /* Compute the intermediates. */
|
---|
| 2683 | exp1 = gshell1->exponent(i);
|
---|
| 2684 | exp2 = gshell2->exponent(j);
|
---|
| 2685 | oozeta = 1.0/(exp1 + exp2);
|
---|
| 2686 | oo2zeta = 0.5*oozeta;
|
---|
| 2687 | AmB2 = 0.0;
|
---|
| 2688 | for (xyz=0; xyz<3; xyz++) {
|
---|
| 2689 | Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]);
|
---|
| 2690 | PmA[xyz] = Pi - A[xyz];
|
---|
| 2691 | PmB[xyz] = Pi - B[xyz];
|
---|
| 2692 | PmC[xyz] = Pi - C[xyz];
|
---|
| 2693 | AmB = A[xyz] - B[xyz];
|
---|
| 2694 | AmB2 += AmB*AmB;
|
---|
| 2695 | }
|
---|
| 2696 | ss = pow(M_PI/(exp1+exp2),1.5)
|
---|
| 2697 | * exp(- oozeta * exp1 * exp2 * AmB2);
|
---|
| 2698 | for (mu=0; mu<3; mu++) sMus[mu] = ss * PmC[mu];
|
---|
| 2699 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
| 2700 | * gshell2->coefficient_unnorm(gc2,j);
|
---|
| 2701 | if (exponent_weighted == 0) tmp *= exp1;
|
---|
| 2702 | else if (exponent_weighted == 1) tmp *= exp2;
|
---|
| 2703 | dipole[0] += tmp * comp_prim_dipole(0,i1,j1,k1,i2,j2,k2);
|
---|
| 2704 | dipole[1] += tmp * comp_prim_dipole(1,i1,j1,k1,i2,j2,k2);
|
---|
| 2705 | dipole[2] += tmp * comp_prim_dipole(2,i1,j1,k1,i2,j2,k2);
|
---|
| 2706 | }
|
---|
| 2707 | }
|
---|
| 2708 |
|
---|
| 2709 | }
|
---|
| 2710 |
|
---|
| 2711 | double
|
---|
| 2712 | Int1eV3::comp_prim_dipole(int axis,
|
---|
| 2713 | int i1, int j1, int k1,
|
---|
| 2714 | int i2, int j2, int k2)
|
---|
| 2715 | {
|
---|
| 2716 | double result;
|
---|
| 2717 |
|
---|
| 2718 | if (i1) {
|
---|
| 2719 | result = PmA[0] * comp_prim_dipole(axis,i1-1,j1,k1,i2,j2,k2);
|
---|
| 2720 | if (i2)
|
---|
| 2721 | result += oo2zeta*i2*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2);
|
---|
| 2722 | if (i1>1)
|
---|
| 2723 | result += oo2zeta*(i1-1)*comp_prim_dipole(axis,i1-2,j1,k1,i2,j2,k2);
|
---|
| 2724 | if(axis==0) result += oo2zeta*comp_prim_overlap(i1-1,j1,k1,i2,j2,k2);
|
---|
| 2725 | return result;
|
---|
| 2726 | }
|
---|
| 2727 | if (j1) {
|
---|
| 2728 | result = PmA[1] * comp_prim_dipole(axis,i1,j1-1,k1,i2,j2,k2);
|
---|
| 2729 | if (j2)
|
---|
| 2730 | result += oo2zeta*j2*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2);
|
---|
| 2731 | if (j1>1)
|
---|
| 2732 | result += oo2zeta*(j1-1)*comp_prim_dipole(axis,i1,j1-2,k1,i2,j2,k2);
|
---|
| 2733 | if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1-1,k1,i2,j2,k2);
|
---|
| 2734 | return result;
|
---|
| 2735 | }
|
---|
| 2736 | if (k1) {
|
---|
| 2737 | result = PmA[2] * comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2);
|
---|
| 2738 | if (k2)
|
---|
| 2739 | result += oo2zeta*k2*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1);
|
---|
| 2740 | if (k1>1)
|
---|
| 2741 | result += oo2zeta*(k1-1)*comp_prim_dipole(axis,i1,j1,k1-2,i2,j2,k2);
|
---|
| 2742 | if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1-1,i2,j2,k2);
|
---|
| 2743 | return result;
|
---|
| 2744 | }
|
---|
| 2745 | if (i2) {
|
---|
| 2746 | result = PmB[0] * comp_prim_dipole(axis,i1,j1,k1,i2-1,j2,k2);
|
---|
| 2747 | if (i1)
|
---|
| 2748 | result += oo2zeta*i1*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2);
|
---|
| 2749 | if (i2>1)
|
---|
| 2750 | result += oo2zeta*(i2-1)*comp_prim_dipole(axis,i1,j1,k1,i2-2,j2,k2);
|
---|
| 2751 | if(axis==0) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2-1,j2,k2);
|
---|
| 2752 | return result;
|
---|
| 2753 | }
|
---|
| 2754 | if (j2) {
|
---|
| 2755 | result = PmB[1] * comp_prim_dipole(axis,i1,j1,k1,i2,j2-1,k2);
|
---|
| 2756 | if (j1)
|
---|
| 2757 | result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2);
|
---|
| 2758 | if (j2>1)
|
---|
| 2759 | result += oo2zeta*(j2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2-2,k2);
|
---|
| 2760 | if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2-1,k2);
|
---|
| 2761 | return result;
|
---|
| 2762 | }
|
---|
| 2763 | if (k2) {
|
---|
| 2764 | result = PmB[2] * comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-1);
|
---|
| 2765 | if (k1)
|
---|
| 2766 | result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1);
|
---|
| 2767 | if (k2>1)
|
---|
| 2768 | result += oo2zeta*(k2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-2);
|
---|
| 2769 | if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2,k2-1);
|
---|
| 2770 | return result;
|
---|
| 2771 | }
|
---|
| 2772 |
|
---|
| 2773 | return sMus[axis];
|
---|
| 2774 | }
|
---|
| 2775 |
|
---|
| 2776 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 2777 |
|
---|
| 2778 | // Local Variables:
|
---|
| 2779 | // mode: c++
|
---|
| 2780 | // c-file-style: "CLJ-CONDENSED"
|
---|
| 2781 | // End:
|
---|