// // comp1e.cc // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Curtis Janssen // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #include #include #include #include #include #include #include #include #include using namespace std; using namespace sc; #define IN(i,j) ((i)==(j)?1:0) #define SELECT(x1,x2,x3,s) (((s)==0)?x1:(((s)==1)?(x2):(x3))) #define DEBUG_NUC_SHELL_DER 0 #define DEBUG_NUC_PRIM 0 #define DEBUG_NUC_SHELL 0 #define DEBUG_EFIELD_PRIM 0 /* ------------ Initialization of 1e routines. ------------------- */ /* This routine returns a buffer large enough to hold a shell doublet * of integrals (if order == 0) or derivative integrals (if order == 1). */ void Int1eV3::int_initialize_1e(int flags, int order) { int jmax1,jmax2,jmax; int scratchsize=0,nshell2; /* The efield routines look like derivatives so bump up order if * it is zero to allow efield integrals to be computed. */ if (order == 0) order = 1; jmax1 = bs1_->max_angular_momentum(); jmax2 = bs2_->max_angular_momentum(); jmax = jmax1 + jmax2; fjt_ = new FJT(jmax + 2*order); nshell2 = bs1_->max_ncartesian_in_shell()*bs2_->max_ncartesian_in_shell(); if (order == 0) { init_order = 0; scratchsize = nshell2; } else if (order == 1) { init_order = 1; scratchsize = nshell2*3; } else { ExEnv::errn() << scprintf("int_initialize_1e: invalid order: %d\n",order); exit(1); } buff = new double[scratchsize]; cartesianbuffer = new double[scratchsize]; cartesianbuffer_scratch = new double[scratchsize]; inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1); efield_inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1); int i,j,m; for (i=0; i<=jmax1+order; i++) { int sizei = INT_NCART_NN(i); for (j=0; j<=jmax2+order; j++) { int sizej = INT_NCART_NN(j); for (m=0; m<=jmax+2*order-i-j; m++) { inter(i,j,m) = new double[sizei*sizej]; efield_inter(i,j,m) = new double[sizei*sizej*3]; } for (; m<=jmax+2*order; m++) { inter(i,j,m) = 0; efield_inter(i,j,m) = 0; } } } } void Int1eV3::int_done_1e() { init_order = -1; delete[] buff; delete[] cartesianbuffer; delete[] cartesianbuffer_scratch; buff = 0; cartesianbuffer = 0; inter.delete_data(); efield_inter.delete_data(); } /* --------------------------------------------------------------- */ /* ------------- Routines for the overlap matrix ----------------- */ /* --------------------------------------------------------------- */ /* This computes the overlap integrals between functions in two shells. * The result is placed in the buffer. */ void Int1eV3::overlap(int ish, int jsh) { int c1,i1,j1,k1,c2,i2,j2,k2; int gc1,gc2; int index,index1,index2; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2) cartesianbuffer[index] = comp_shell_overlap(gc1,i1,j1,k1,gc2,i2,j2,k2); index++; END_FOR_GCCART_GS(index2) END_FOR_GCCART_GS(index1) transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the overlap ints between functions in two shells. * The result is placed in the buffer. */ void Int1eV3::overlap_1der(int ish, int jsh, int idercs, int centernum) { int i; int c1,c2; int ni,nj; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_overlap: one electron routines are not init'ed\n"); exit(1); } Ref dercs; if (idercs == 0) dercs = bs1_; else dercs = bs2_; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); ni = gshell1->nfunction(); nj = gshell2->nfunction(); #if 0 ExEnv::outn() << scprintf("zeroing %d*%d*3 elements of buff\n",ni,nj); #endif for (i=0; i dercs, int centernum) { accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_overlap); } /* Compute the overlap for the shell. The arguments are the * cartesian exponents for centers 1 and 2. The shell1 and shell2 * globals are used. */ double Int1eV3::comp_shell_overlap(int gc1, int i1, int j1, int k1, int gc2, int i2, int j2, int k2) { double exp1,exp2; int i,j,xyz; double result; double Pi; double oozeta; double AmB,AmB2; double tmp; if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return 0.0; /* Loop over the primitives in the shells. */ result = 0.0; for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ exp1 = gshell1->exponent(i); exp2 = gshell2->exponent(j); oozeta = 1.0/(exp1 + exp2); oo2zeta = 0.5*oozeta; AmB2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; } ss = pow(M_PI/(exp1+exp2),1.5) * exp(- oozeta * exp1 * exp2 * AmB2); tmp = gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j) * comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (exponent_weighted == 0) tmp *= exp1; else if (exponent_weighted == 1) tmp *= exp2; result += tmp; } } return result; } /* Compute the overlap between two primitive functions. */ #if 0 double Int1eV3::int_prim_overlap(shell_t *pshell1, shell_t *pshell2, double *pA, double *pB, int prim1, int prim2, int i1, int j1, int k1, int i2, int j2, int k2) { int xyz; double Pi; double oozeta; double AmB,AmB2; /* Compute the intermediates. */ oozeta = 1.0/(gshell1->exponent(prim1) + gshell2->exponent(prim2)); oo2zeta = 0.5*oozeta; AmB2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(gshell1->exponent(prim1) * A[xyz] + gshell2->exponent(prim2) * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; } ss = pow(M_PI/(gshell1->exponent(prim1) +gshell2->exponent(prim2)),1.5) * exp(- oozeta * gshell1->exponent(prim1) * gshell2->exponent(prim2) * AmB2); return comp_prim_overlap(i1,j1,k1,i2,j2,k2); } #endif double Int1eV3::comp_prim_overlap(int i1, int j1, int k1, int i2, int j2, int k2) { double result; if (i1) { result = PmA[0] * comp_prim_overlap(i1-1,j1,k1,i2,j2,k2); if (i1>1) result += oo2zeta*(i1-1) * comp_prim_overlap(i1-2,j1,k1,i2,j2,k2); if (i2>0) result += oo2zeta*i2 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2); return result; } if (j1) { result = PmA[1] * comp_prim_overlap(i1,j1-1,k1,i2,j2,k2); if (j1>1) result += oo2zeta*(j1-1) * comp_prim_overlap(i1,j1-2,k1,i2,j2,k2); if (j2>0) result += oo2zeta*j2 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2); return result; } if (k1) { result = PmA[2] * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2); if (k1>1) result += oo2zeta*(k1-1) * comp_prim_overlap(i1,j1,k1-2,i2,j2,k2); if (k2>0) result += oo2zeta*k2 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1); return result; } if (i2) { result = PmB[0] * comp_prim_overlap(i1,j1,k1,i2-1,j2,k2); if (i2>1) result += oo2zeta*(i2-1) * comp_prim_overlap(i1,j1,k1,i2-2,j2,k2); if (i1>0) result += oo2zeta*i1 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2); return result; } if (j2) { result = PmB[1] * comp_prim_overlap(i1,j1,k1,i2,j2-1,k2); if (j2>1) result += oo2zeta*(j2-1) * comp_prim_overlap(i1,j1,k1,i2,j2-2,k2); if (j1>0) result += oo2zeta*j1 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2); return result; } if (k2) { result = PmB[2] * comp_prim_overlap(i1,j1,k1,i2,j2,k2-1); if (k2>1) result += oo2zeta*(k2-1) * comp_prim_overlap(i1,j1,k1,i2,j2,k2-2); if (k1>0) result += oo2zeta*k1 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1); return result; } return ss; } /* --------------------------------------------------------------- */ /* ------------- Routines for the kinetic energy ----------------- */ /* --------------------------------------------------------------- */ /* This computes the kinetic energy integrals between functions in two shells. * The result is placed in the buffer. */ void Int1eV3::kinetic(int ish, int jsh) { int c1,i1,j1,k1,c2,i2,j2,k2; int cart1,cart2; int index; int gc1,gc2; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2); index++; END_FOR_GCCART_GS(cart2) END_FOR_GCCART_GS(cart1) transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2); } void Int1eV3::int_accum_shell_kinetic(int ish, int jsh) { int c1,i1,j1,k1,c2,i2,j2,k2; int cart1,cart2; int index; int gc1,gc2; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2); index++; END_FOR_GCCART_GS(cart2) END_FOR_GCCART_GS(cart1) accum_transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the kinetic energy derivative integrals between functions * in two shells. The result is accumulated in the buffer which is ordered * atom 0 x, y, z, atom 1, ... . */ void Int1eV3::int_accum_shell_kinetic_1der(int ish, int jsh, Ref dercs, int centernum) { accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_kinetic); } /* This computes the basis function part of * generic derivative integrals between functions * in two shells. The result is accumulated in the buffer which is ordered * atom 0 x, y, z, atom 1, ... . * The function used to compute the nonderivative integrals is shell_function. */ void Int1eV3::accum_shell_1der(double *buff, int ish, int jsh, Ref dercs, int centernum, double (Int1eV3::*shell_function) (int,int,int,int,int,int,int,int)) { int i; int gc1,gc2; int c1,i1,j1,k1,c2,i2,j2,k2; int index1,index2; double tmp[3]; double *ctmp = cartesianbuffer; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2) if ((bs1_==bs2_)&&(c1==c2)) { if ( three_center && !((bs1_==third_centers)&&(c1==third_centernum)) && ((bs1_==dercs)&&(c1==centernum))) { for (i=0; i<3; i++) { /* Derivative wrt first shell. */ exponent_weighted = 0; tmp[i] = 2.0 * (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2); exponent_weighted = -1; if (SELECT(i1,j1,k1,i)) { tmp[i] -= SELECT(i1,j1,k1,i) * (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2); } /* Derviative wrt second shell. */ exponent_weighted = 1; tmp[i] += 2.0 * (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2)); exponent_weighted = -1; if (SELECT(i2,j2,k2,i)) { tmp[i] -= SELECT(i2,j2,k2,i) * (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2)); } } } else { /* If there are two centers and they are the same, then we * use translational invariance to get a net contrib of 0.0 */ for (i=0; i<3; i++) tmp[i] = 0.0; } } else if ((bs1_==dercs)&&(c1==centernum)) { for (i=0; i<3; i++) { exponent_weighted = 0; tmp[i] = 2.0 * (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2); exponent_weighted = -1; if (SELECT(i1,j1,k1,i)) { tmp[i] -= SELECT(i1,j1,k1,i) * (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2); } } } else if ((bs2_==dercs)&&(c2==centernum)) { for (i=0; i<3; i++) { exponent_weighted = 1; tmp[i] = 2.0 * (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2)); exponent_weighted = -1; if (SELECT(i2,j2,k2,i)) { tmp[i] -= SELECT(i2,j2,k2,i) * (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2)); } } } else { for (i=0; i<3; i++) tmp[i] = 0.0; } if (scale_shell_result) { for (i=0; i<3; i++) tmp[i] *= result_scale_factor; } for (i=0; i<3; i++) ctmp[i] = tmp[i]; /* Increment the pointer to the xyz for the next atom. */ ctmp += 3; END_FOR_GCCART_GS(index2) END_FOR_GCCART_GS(index1) accum_transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the basis function part of * generic derivative integrals between functions * in two shells. The result is accumulated in the buffer which is ordered * atom 0 x, y, z, atom 1, ... . * The function used to compute the nonderivative integrals is shell_function. */ void Int1eV3::accum_shell_block_1der(double *buff, int ish, int jsh, Ref dercs, int centernum, void (Int1eV3::*shell_block_function) (int gc1, int a, int gc2, int b, int gcsize2, int gcoff1, int gcoff2, double coef, double *buffer)) { int i; int gc1,gc2; int c1,i1,j1,k1,c2,i2,j2,k2; int index1,index2; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); int docenter1=0, docenter2=0; int equiv12 = (bs1_==bs2_)&&(c1==c2); int der1 = (bs1_==dercs)&&(c1==centernum); int der2 = (bs2_==dercs)&&(c2==centernum); if (!equiv12) { docenter1 = der1; docenter2 = der2; } else if (three_center) { int equiv123 = (bs1_==third_centers)&&(c1==third_centernum); if (!equiv123) { docenter1 = der1; docenter2 = der2; } } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); int gcsize1 = gshell1->ncartesian(); int gcsize2 = gshell2->ncartesian(); memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3); if (!docenter1 && !docenter2) return; double coef; if (scale_shell_result) { coef = result_scale_factor; } else coef = 1.0; for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } int gcoff1 = 0; for (gc1=0; gc1ncontraction(); gc1++) { int a = gshell1->am(gc1); int sizea = INT_NCART_NN(a); int sizeap1 = INT_NCART_NN(a+1); int sizeam1 = INT_NCART(a-1); int gcoff2 = 0; for (gc2=0; gc2ncontraction(); gc2++) { int b = gshell2->am(gc2); int sizeb = INT_NCART_NN(b); int sizebp1 = INT_NCART_NN(b+1); int sizebm1 = INT_NCART(b-1); /* Derivative wrt first shell. */ if (docenter1) { exponent_weighted = 0; memset(cartesianbuffer_scratch,0,sizeof(double)*sizeap1*sizeb); (this->*shell_block_function)(gc1, a+1, gc2, b, sizeb, 0, 0, coef, cartesianbuffer_scratch); index1=0; FOR_CART(i1,j1,k1,a) { index2=0; FOR_CART(i2,j2,k2,b) { double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2 +index2+gcoff2)*3]; for (i=0; i<3; i++) { int ind = INT_CARTINDEX(a+1,i1+IN(i,0),j1+IN(i,1)); *ctmp++ += 2.0*cartesianbuffer_scratch[ind*sizeb+index2]; } index2++; } END_FOR_CART; index1++; } END_FOR_CART; if (a) { exponent_weighted = -1; memset(cartesianbuffer_scratch,0,sizeof(double)*sizeam1*sizeb); (this->*shell_block_function)(gc1, a-1, gc2, b, sizeb, 0, 0, coef, cartesianbuffer_scratch); index1=0; FOR_CART(i1,j1,k1,a) { index2=0; FOR_CART(i2,j2,k2,b) { double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2 +index2+gcoff2)*3]; for (i=0; i<3; i++) { int sel = SELECT(i1,j1,k1,i); if (sel) { int ind = INT_CARTINDEX(a-1,i1-IN(i,0),j1-IN(i,1)); ctmp[i] -= sel * cartesianbuffer_scratch[ind*sizeb+index2]; } } index2++; } END_FOR_CART; index1++; } END_FOR_CART; } } if (docenter2) { /* Derviative wrt second shell. */ exponent_weighted = 1; memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebp1); (this->*shell_block_function)(gc1, a, gc2, b+1, sizebp1, 0, 0, coef, cartesianbuffer_scratch); index1=0; FOR_CART(i1,j1,k1,a) { index2=0; FOR_CART(i2,j2,k2,b) { double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2 +index2+gcoff2)*3]; for (i=0; i<3; i++) { int ind = INT_CARTINDEX(b+1,i2+IN(i,0),j2+IN(i,1)); *ctmp++ += 2.0*cartesianbuffer_scratch[index1*sizebp1+ind]; } index2++; } END_FOR_CART; index1++; } END_FOR_CART; if (b) { exponent_weighted = -1; memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebm1); (this->*shell_block_function)(gc1, a, gc2, b-1, sizebm1, 0, 0, coef, cartesianbuffer_scratch); index1=0; FOR_CART(i1,j1,k1,a) { index2=0; FOR_CART(i2,j2,k2,b) { double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2 +index2+gcoff2)*3]; for (i=0; i<3; i++) { int sel = SELECT(i2,j2,k2,i); if (sel) { int ind = INT_CARTINDEX(b-1,i2-IN(i,0),j2-IN(i,1)); ctmp[i] -= sel * cartesianbuffer_scratch[index1*sizebm1+ind]; } } index2++; } END_FOR_CART; index1++; } END_FOR_CART; } } gcoff2 += INT_NCART_NN(b); } gcoff1 += INT_NCART_NN(a); } accum_transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); #if DEBUG_NUC_SHELL_DER double *fastbuff = cartesianbuffer; cartesianbuffer = new double[gcsize1*gcsize2*3]; double *junkbuff = new double[gcsize1*gcsize2*3]; memset(junkbuff,0,sizeof(double)*gcsize1*gcsize2*3); accum_shell_1der(junkbuff,ish,jsh,dercs,centernum, &Int1eV3::comp_shell_nuclear); delete[] junkbuff; int index = 0; for (i=0; i1.0e-12) { ExEnv::outn() << " **"; } ExEnv::outn() << endl; } } delete[] cartesianbuffer; cartesianbuffer = fastbuff; #endif } /* Compute the kinetic energy for the shell. The arguments are the * cartesian exponents for centers 1 and 2. The shell1 and shell2 * globals are used. */ double Int1eV3::comp_shell_kinetic(int gc1, int i1, int j1, int k1, int gc2, int i2, int j2, int k2) { int i,j,xyz; double result; double Pi; double oozeta; double AmB,AmB2; double tmp; /* Loop over the primitives in the shells. */ result = 0.0; for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ oo2zeta_a = 0.5/gshell1->exponent(i); oo2zeta_b = 0.5/gshell2->exponent(j); oozeta = 1.0/(gshell1->exponent(i) + gshell2->exponent(j)); oo2zeta = 0.5*oozeta; xi = oozeta * gshell1->exponent(i) * gshell2->exponent(j); AmB2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; } /* The s integral kinetic energy. */ ss = pow(M_PI/(gshell1->exponent(i) +gshell2->exponent(j)),1.5) * exp(- xi * AmB2); sTs = ss * xi * (3.0 - 2.0 * xi * AmB2); tmp = gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j) * comp_prim_kinetic(i1,j1,k1,i2,j2,k2); if (exponent_weighted == 0) tmp *= gshell1->exponent(i); else if (exponent_weighted == 1) tmp *= gshell2->exponent(j); result += tmp; } } return result; } double Int1eV3::comp_prim_kinetic(int i1, int j1, int k1, int i2, int j2, int k2) { double tmp; double result; if (i1) { result = PmA[0] * comp_prim_kinetic(i1-1,j1,k1,i2,j2,k2); if (i1>1) result += oo2zeta*(i1-1)*comp_prim_kinetic(i1-2,j1,k1,i2,j2,k2); if (i2) result += oo2zeta*i2*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2); tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (i1>1) tmp -= oo2zeta_a*(i1-1)*comp_prim_overlap(i1-2,j1,k1,i2,j2,k2); result += 2.0 * xi * tmp; return result; } if (j1) { result = PmA[1] * comp_prim_kinetic(i1,j1-1,k1,i2,j2,k2); if (j1>1) result += oo2zeta*(j1-1)*comp_prim_kinetic(i1,j1-2,k1,i2,j2,k2); if (j2) result += oo2zeta*j2*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2); tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (j1>1) tmp -= oo2zeta_a*(j1-1)*comp_prim_overlap(i1,j1-2,k1,i2,j2,k2); result += 2.0 * xi * tmp; return result; } if (k1) { result = PmA[2] * comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2); if (k1>1) result += oo2zeta*(k1-1)*comp_prim_kinetic(i1,j1,k1-2,i2,j2,k2); if (k2) result += oo2zeta*k2*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1); tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (k1>1) tmp -= oo2zeta_a*(k1-1)*comp_prim_overlap(i1,j1,k1-2,i2,j2,k2); result += 2.0 * xi * tmp; return result; } if (i2) { result = PmB[0] * comp_prim_kinetic(i1,j1,k1,i2-1,j2,k2); if (i2>1) result += oo2zeta*(i2-1)*comp_prim_kinetic(i1,j1,k1,i2-2,j2,k2); if (i1) result += oo2zeta*i1*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2); tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (i2>1) tmp -= oo2zeta_b*(i2-1)*comp_prim_overlap(i1,j1,k1,i2-2,j2,k2); result += 2.0 * xi * tmp; return result; } if (j2) { result = PmB[1] * comp_prim_kinetic(i1,j1,k1,i2,j2-1,k2); if (j2>1) result += oo2zeta*(j2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2-2,k2); if (j1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2); tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (j2>1) tmp -= oo2zeta_b*(j2-1)*comp_prim_overlap(i1,j1,k1,i2,j2-2,k2); result += 2.0 * xi * tmp; return result; } if (k2) { result = PmB[2] * comp_prim_kinetic(i1,j1,k1,i2,j2,k2-1); if (k2>1) result += oo2zeta*(k2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2,k2-2); if (k1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1); tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2); if (k2>1) tmp -= oo2zeta_b*(k2-1)*comp_prim_overlap(i1,j1,k1,i2,j2,k2-2); result += 2.0 * xi * tmp; return result; } return sTs; } /* --------------------------------------------------------------- */ /* ------------- Routines for the nuclear attraction ------------- */ /* --------------------------------------------------------------- */ /* This computes the nuclear attraction derivative integrals between functions * in two shells. The result is accumulated in the buffer which is ordered * atom 0 x, y, z, atom 1, ... . */ void Int1eV3::int_accum_shell_nuclear_1der(int ish, int jsh, Ref dercs, int centernum) { int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum); int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum); } /* A correction to the Hellman-Feynman part is computed which * is not included in the original HF routine. This is only needed * if the real Hellman-Feynman forces are desired, because the sum * of the hf_1der and nonhf_1der forces are still correct. */ void Int1eV3::int_accum_shell_nuclear_hfc_1der(int ish, int jsh, Ref dercs, int centernum) { /* If both ish and jsh are not on the der center, * then there's no correction. */ if (!( (bs1_==dercs) &&(bs2_==dercs) &&(bs1_->shell_to_center(ish)==centernum) &&(bs2_->shell_to_center(jsh)==centernum))) { return; } /* Compute the nuc attr part of the nuclear derivative for three equal * centers. */ scale_shell_result = 1; result_scale_factor = -bs1_->molecule()->charge(centernum); for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs1_->r(centernum,xyz); } accum_shell_efield(buff,ish,jsh); scale_shell_result = 0; } /* This computes the nuclear attraction derivative integrals between functions * in two shells. The result is accumulated in the buffer which is ordered * atom 0 x, y, z, atom 1, ... . Only the Hellman-Feynman part is computed. */ void Int1eV3::int_accum_shell_nuclear_hf_1der(int ish, int jsh, Ref dercs, int centernum) { /* If both ish and jsh are on the der center, then the contrib is zero. */ if ( (bs1_==dercs) &&(bs2_==dercs) &&(bs1_->shell_to_center(ish)==centernum) &&(bs2_->shell_to_center(jsh)==centernum)) { return; } /* Compute the nuc attr part of the nuclear derivative. */ if (bs1_ == dercs) { scale_shell_result = 1; result_scale_factor= -bs1_->molecule()->charge(centernum); for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs1_->r(centernum,xyz); } //accum_shell_efield(buff,ish,jsh); accum_shell_block_efield(buff,ish,jsh); scale_shell_result = 0; } else if (bs2_ == dercs) { scale_shell_result = 1; result_scale_factor= -bs2_->molecule()->charge(centernum); for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs2_->r(centernum,xyz); } //accum_shell_efield(buff,ish,jsh); accum_shell_block_efield(buff,ish,jsh); scale_shell_result = 0; } } /* This computes the nuclear attraction derivative integrals between functions * in two shells. The result is accumulated in the buffer which is ordered * atom 0 x, y, z, atom 1, ... . Only the non Hellman-Feynman part is computed. */ void Int1eV3::int_accum_shell_nuclear_nonhf_1der(int ish, int jsh, Ref dercs, int centernum) { int i; /* Get the basis function part of the nuclear derivative. */ three_center = 1; third_centers = bs1_; for (i=0; incenter(); i++) { third_centernum = i; for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs1_->r(i,xyz); } scale_shell_result = 1; result_scale_factor = -bs1_->molecule()->charge(i); //accum_shell_1der(buff,ish,jsh,dercs,centernum, // &Int1eV3::comp_shell_nuclear); accum_shell_block_1der(buff,ish,jsh,dercs,centernum, &Int1eV3::comp_shell_block_nuclear); scale_shell_result = 0; } if (bs2_!=bs1_) { third_centers = bs2_; for (i=0; incenter(); i++) { third_centernum = i; for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs2_->r(i,xyz); } scale_shell_result = 1; result_scale_factor = -bs2_->molecule()->charge(i); //accum_shell_1der(buff,ish,jsh,dercs,centernum, // &Int1eV3::comp_shell_nuclear); accum_shell_block_1der(buff,ish,jsh,dercs,centernum, &Int1eV3::comp_shell_block_nuclear); scale_shell_result = 0; } } three_center = 0; } /* This computes the efield integrals between functions in two shells. * The result is accumulated in the buffer in the form bf1 x y z, bf2 * x y z, etc. */ void Int1eV3::int_accum_shell_efield(int ish, int jsh, double *position) { scale_shell_result = 0; for (int xyz=0; xyz<3; xyz++) { C[xyz] = position[xyz]; } accum_shell_efield(buff,ish,jsh); } /* This computes the efield integrals between functions in two shells. * The result is accumulated in the buffer in the form bf1 x y z, bf2 * x y z, etc. The globals scale_shell_result, result_scale_factor, * and C must be set before this is called. */ void Int1eV3::accum_shell_efield(double *buff, int ish, int jsh) { int i; int c1,i1,j1,k1,c2,i2,j2,k2; double efield[3]; int gc1,gc2; int index1,index2; double *tmp = cartesianbuffer; if (!(init_order >= 1)) { ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2) comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2); if (scale_shell_result) { for (i=0; i<3; i++) efield[i] *= result_scale_factor; } for (i=0; i<3; i++) tmp[i] = efield[i]; tmp += 3; END_FOR_GCCART_GS(index2) END_FOR_GCCART_GS(index1) accum_transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the efield integrals between functions in two shells. * The result is accumulated in the buffer in the form bf1 x y z, bf2 * x y z, etc. The globals scale_shell_result, result_scale_factor, * and C must be set before this is called. */ void Int1eV3::accum_shell_block_efield(double *buff, int ish, int jsh) { int c1,c2; int gc1,gc2; if (!(init_order >= 1)) { ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); double coef; if (scale_shell_result) coef = result_scale_factor; else coef = 1.0; int gcsize1 = gshell1->ncartesian(); int gcsize2 = gshell2->ncartesian(); memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3); int gcoff1 = 0; for (gc1=0; gc1ncontraction(); gc1++) { int a = gshell1->am(gc1); int sizea = INT_NCART_NN(a); int gcoff2 = 0; for (gc2=0; gc2ncontraction(); gc2++) { int b = gshell2->am(gc2); int sizeb = INT_NCART_NN(b); comp_shell_block_efield(gc1,a,gc2,b, gcsize2, gcoff1, gcoff2, coef, cartesianbuffer); gcoff2 += sizeb; } gcoff1 += sizea; } accum_transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the efield integrals between functions in two shells. * The result is placed in the buffer in the form bf1 x y z, bf2 * x y z, etc. */ void Int1eV3::efield(int ish, int jsh, double *position) { scale_shell_result = 0; int xyz; for (xyz=0; xyz<3; xyz++) { C[xyz] = position[xyz]; } int i; int c1,i1,j1,k1,c2,i2,j2,k2; double efield[3]; int gc1,gc2; int index1,index2; double *tmp = cartesianbuffer; if (!(init_order >= 1)) { ExEnv::errn() << scprintf("Int1eV3::efield one electron routines are not ready\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2) comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2); if (scale_shell_result) { for (i=0; i<3; i++) efield[i] *= result_scale_factor; } for (i=0; i<3; i++) tmp[i] = efield[i]; tmp += 3; END_FOR_GCCART_GS(index2) END_FOR_GCCART_GS(index1) transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This slowly computes the nuc rep energy integrals between functions in * two shells. The result is placed in the buffer. */ void Int1eV3::nuclear_slow(int ish, int jsh) { int i; int c1,i1,j1,k1,c2,i2,j2,k2; int index; int gc1,gc2; int cart1,cart2; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) cartesianbuffer[index] = 0.0; /* Loop thru the centers on bs1_. */ for (i=0; incenter(); i++) { for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs1_->r(i,xyz); } cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2) * bs1_->molecule()->charge(i); } /* Loop thru the centers on bs2_ if necessary. */ if (bs2_ != bs1_) { for (i=0; incenter(); i++) { for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs2_->r(i,xyz); } cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2) * bs2_->molecule()->charge(i); } } index++; END_FOR_GCCART_GS(cart2) END_FOR_GCCART_GS(cart1) transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the nuc rep energy integrals between functions in two * shells. The result is placed in the buffer. */ void Int1eV3::nuclear(int ish, int jsh) { int i; int c1,c2; int gc1,gc2; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); int ni = gshell1->ncartesian(); int nj = gshell2->ncartesian(); memset(cartesianbuffer,0,sizeof(double)*ni*nj); int offi = 0; for (gc1=0; gc1ncontraction(); gc1++) { int a = gshell1->am(gc1); int offj = 0; for (gc2=0; gc2ncontraction(); gc2++) { int b = gshell2->am(gc2); /* Loop thru the centers on bs1_. */ for (i=0; incenter(); i++) { double charge = bs1_->molecule()->charge(i); for (int xyz=0; xyz<3; xyz++) C[xyz] = bs1_->r(i,xyz); comp_shell_block_nuclear(gc1, a, gc2, b, nj, offi, offj, -charge, cartesianbuffer); } /* Loop thru the centers on bs2_ if necessary. */ if (bs2_ != bs1_) { for (i=0; incenter(); i++) { double charge = bs2_->molecule()->charge(i); for (int xyz=0; xyz<3; xyz++) C[xyz] = bs2_->r(i,xyz); comp_shell_block_nuclear(gc1, a, gc2, b, nj, offi, offj, -charge, cartesianbuffer); } } offj += INT_NCART_NN(b); } offi += INT_NCART_NN(a); } #if DEBUG_NUC_SHELL double *fastbuf = new double[ni*nj]; memcpy(fastbuf,cartesianbuffer,sizeof(double)*ni*nj); nuclear_slow(ish,jsh); index = 0; int cart1, cart2; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) { FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) { double fast = fastbuf[index]; double slow = cartesianbuffer[index]; if (fabs(fast-slow)>1.0e-12) { ExEnv::outn() << scprintf("NUC SHELL FINAL: %d (%d %d %d) %d (%d %d %d): ", gc1, i1,j1,k1, gc2, i2,j2,k2) << scprintf(" % 20.15f % 20.15f", fast, slow) << endl; } index++; } END_FOR_GCCART_GS(cart2); } END_FOR_GCCART_GS(cart1); memcpy(cartesianbuffer,fastbuf,sizeof(double)*ni*nj); delete[] fastbuf; #endif transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the integrals between functions in two shells for * a point charge interaction operator. * The result is placed in the buffer. */ void Int1eV3::int_accum_shell_point_charge(int ish, int jsh, int ncharge, const double* charge, const double*const* position) { int i; int c1,i1,j1,k1,c2,i2,j2,k2; int index; int gc1,gc2; int cart1,cart2; double tmp; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_pointcharge: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) /* Loop thru the point charges. */ tmp = 0.0; for (i=0; i= 0)) { ExEnv::errn() << scprintf("Int1eV3::point_charge: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) cartesianbuffer[index] = 0.0; /* Loop thru the point charges. */ for (i=0; i= 0)) { ExEnv::errn() << scprintf("hcore: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2); /* Loop thru the centers on bs1_. */ for (i=0; incenter(); i++) { for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs1_->r(i,xyz); } cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2) * bs1_->molecule()->charge(i); } /* Loop thru the centers on bs2_ if necessary. */ if (bs2_ != bs1_) { for (i=0; incenter(); i++) { for (int xyz=0; xyz<3; xyz++) { C[xyz] = bs2_->r(i,xyz); } cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2) * bs2_->molecule()->charge(i); } } index++; END_FOR_GCCART_GS(cart2) END_FOR_GCCART_GS(cart1) transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the 1e Hamiltonian deriv ints between functions in two shells. * The result is placed in the buffer. */ void Int1eV3::hcore_1der(int ish, int jsh, int idercs, int centernum) { int i; int c1,c2; int ni,nj; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_hcore: one electron routines are not init'ed\n"); exit(1); } Ref dercs; if (idercs == 0) dercs = bs1_; else dercs = bs2_; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); ni = gshell1->nfunction(); nj = gshell2->nfunction(); for (i=0; i= 0)) { ExEnv::errn() << scprintf("int_shell_kinetic: one electron routines are not init'ed\n"); exit(1); } Ref dercs; if (idercs == 0) dercs = bs1_; else dercs = bs2_; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); ni = gshell1->nfunction(); nj = gshell2->nfunction(); for (i=0; i= 0)) { ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n"); exit(1); } Ref dercs; if (idercs == 0) dercs = bs1_; else dercs = bs2_; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); ni = gshell1->nfunction(); nj = gshell2->nfunction(); for (i=0; i dercs, int centernum) { int i; int c1,c2; int ni,nj; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_nuclear_hf_1der: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); ni = gshell1->nfunction(); nj = gshell2->nfunction(); for (i=0; i dercs, int centernum) { int i; int c1,c2; int ni,nj; if (!(init_order >= 0)) { ExEnv::errn() << scprintf("int_shell_nuclear_nonhf_1der: one electron routines are not init'ed\n"); exit(1); } c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (int xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); ni = gshell1->nfunction(); nj = gshell2->nfunction(); #if 0 ExEnv::outn() << scprintf("int_shell_nuclear_nonhf_1der: zeroing %d doubles in buff\n",ni*nj*3); #endif for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ zeta = gshell1->exponent(i) + gshell2->exponent(j); oozeta = 1.0/zeta; oo2zeta = 0.5*oozeta; AmB2 = 0.0; PmC2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; PmC[xyz] = Pi - C[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; PmC2 += PmC[xyz]*PmC[xyz]; } /* The auxillary integral coeficients. */ auxcoef = 2.0 * M_PI/(gshell1->exponent(i) +gshell2->exponent(j)) * exp(- oozeta * gshell1->exponent(i) * gshell2->exponent(j) * AmB2); /* The Fm(U) intermediates. */ fjttable_ = fjt_->values(am,zeta*PmC2); /* Convert the Fm(U) intermediates into the auxillary * nuclear attraction integrals. */ for (k=0; k<=am; k++) { fjttable_[k] *= auxcoef; } /* Compute the nuclear attraction integral. */ tmp = gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j) * comp_prim_nuclear(i1,j1,k1,i2,j2,k2,0); if (exponent_weighted == 0) tmp *= gshell1->exponent(i); else if (exponent_weighted == 1) tmp *= gshell2->exponent(j); result += tmp; } } /* printf("comp_shell_nuclear(%d,%d,%d,%d,%d,%d): result = % 12.8lf\n", * i1,j1,k1,i2,j2,k2,result); */ return result; } /* Compute the nuclear attraction for the shell. The arguments are the * cartesian exponents for centers 1 and 2. The shell1 and shell2 * globals are used. */ void Int1eV3::comp_shell_block_nuclear(int gc1, int a, int gc2, int b, int gcsize2, int gcoff1, int gcoff2, double coef, double *buffer) { int i,j,k,xyz; double Pi; double oozeta; double AmB,AmB2; double PmC2; double auxcoef; double tmp; int am = a + b; int size1 = INT_NCART_NN(a); int size2 = INT_NCART_NN(b); #if DEBUG_NUC_SHELL double *shellints = new double[size1*size2]; memset(shellints,0,sizeof(double)*size1*size2); #endif /* Loop over the primitives in the shells. */ for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ zeta = gshell1->exponent(i) + gshell2->exponent(j); oozeta = 1.0/zeta; oo2zeta = 0.5*oozeta; AmB2 = 0.0; PmC2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; PmC[xyz] = Pi - C[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; PmC2 += PmC[xyz]*PmC[xyz]; } /* The auxillary integral coeficients. */ auxcoef = 2.0 * M_PI/(gshell1->exponent(i) +gshell2->exponent(j)) * exp(- oozeta * gshell1->exponent(i) * gshell2->exponent(j) * AmB2); /* The Fm(U) intermediates. */ fjttable_ = fjt_->values(am,zeta*PmC2); /* Convert the Fm(U) intermediates into the auxillary * nuclear attraction integrals. */ for (k=0; k<=am; k++) { fjttable_[k] *= auxcoef; } /* Compute the primitive nuclear attraction integral. */ comp_prim_block_nuclear(a,b); tmp = gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j) * coef; if (exponent_weighted == 0) tmp *= gshell1->exponent(i); else if (exponent_weighted == 1) tmp *= gshell2->exponent(j); #if DEBUG_NUC_SHELL double *tprimbuffer = inter(a,b,0); double *tmpshellints = shellints; for (int ip=0; ip 1 ExEnv::outn() << scprintf("GC = (%d %d), A = %d, B = %d", gc1, gc2, a, b) << endl; # endif int i1,j1,k1; int i2,j2,k2; int ip = 0; double *tmpshellints = shellints; FOR_CART(i1,j1,k1,a) { int jp = 0; FOR_CART(i2,j2,k2,b) { double fast = *tmpshellints++; double slow = comp_shell_nuclear(gc1, i1, j1, k1, gc2, i2, j2, k2); int bad = fabs(fast-slow)>1.0e-12; if (DEBUG_NUC_SHELL > 1 || bad) { ExEnv::outn() << scprintf("NUC SHELL: (%d %d %d) (%d %d %d): ", i1,j1,k1, i2,j2,k2) << scprintf(" % 20.15f % 20.15f", fast, slow); } if (bad) { ExEnv::outn() << " ****" << endl; } else if (DEBUG_NUC_SHELL > 1) { ExEnv::outn() << endl; } jp++; } END_FOR_CART; ip++; } END_FOR_CART; delete[] shellints; #endif } void Int1eV3::comp_prim_block_nuclear(int a, int b) { int im, ia, ib; int l = a + b; // fill in the ia+ib=0 integrals for (im=0; im<=l; im++) { #if DEBUG_NUC_PRIM > 1 ExEnv::outn() << "BUILD: M = " << im << " A = " << 0 << " B = " << 0 << endl; #endif inter(0,0,im)[0] = fjttable_[im]; } for (im=l-1; im>=0; im--) { int lm = l-im; // build the integrals for a = 0 for (ib=1; ib<=lm && ib<=b; ib++) { #if DEBUG_NUC_PRIM > 1 ExEnv::outn() << "BUILD: M = " << im << " A = " << 0 << " B = " << ib << endl; #endif comp_prim_block_nuclear_build_b(ib,im); } for (ia=1; ia<=lm && ia<=a; ia++) { for (ib=0; ib<=lm-ia && ib<=b; ib++) { #if DEBUG_NUC_PRIM > 1 ExEnv::outn() << "BUILD: M = " << im << " A = " << ia << " B = " << ib << endl; #endif comp_prim_block_nuclear_build_a(ia,ib,im); } } } #if DEBUG_NUC_PRIM for (im=0; im<=l; im++) { int lm = l-im; for (ia=0; ia<=lm && ia<=a; ia++) { int na = INT_NCART_NN(a); for (ib=0; ib<=lm-ia && ib<=b; ib++) { int nb = INT_NCART_NN(b); #if DEBUG_NUC_PRIM > 1 ExEnv::outn() << "M = " << im << " A = " << ia << " B = " << ib << endl; #endif double *buf = inter(ia,ib,im); int i1,j1,k1, i2,j2,k2; FOR_CART(i1,j1,k1,ia) { FOR_CART(i2,j2,k2,ib) { double fast = *buf++; double slow = comp_prim_nuclear(i1, j1, k1, i2, j2, k2, im); if (fast > 999.0) fast = 999.0; if (fast < -999.0) fast = -999.0; if (fabs(fast-slow)>1.0e-12) { ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ", i1,j1,k1, i2,j2,k2, im) << scprintf(" % 20.15f % 20.15f", fast, slow) << endl; } } END_FOR_CART; } END_FOR_CART; } } } #endif } void Int1eV3::comp_prim_block_nuclear_build_a(int a, int b, int m) { double *I000 = inter(a,b,m); double *I100 = inter(a-1,b,m); double *I101 = inter(a-1,b,m+1); double *I200 = (a>1?inter(a-2,b,m):0); double *I201 = (a>1?inter(a-2,b,m+1):0); double *I110 = (b?inter(a-1,b-1,m):0); double *I111 = (b?inter(a-1,b-1,m+1):0); int i1,j1,k1; int i2,j2,k2; int carta=0; int sizeb = INT_NCART_NN(b); int sizebm1 = INT_NCART_DEC(b,sizeb); FOR_CART(i1,j1,k1,a) { int cartb=0; FOR_CART(i2,j2,k2,b) { double result = 0.0; if (i1) { int am1 = INT_CARTINDEX(a-1,i1-1,j1); result = PmA[0] * I100[am1*sizeb+cartb]; result -= PmC[0] * I101[am1*sizeb+cartb]; if (i1>1) { int am2 = INT_CARTINDEX(a-2,i1-2,j1); result += oo2zeta * (i1-1) *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]); } if (i2) { int bm1 = INT_CARTINDEX(b-1,i2-1,j2); result += oo2zeta * i2 *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]); } } else if (j1) { int am1 = INT_CARTINDEX(a-1,i1,j1-1); result = PmA[1] * I100[am1*sizeb+cartb]; result -= PmC[1] * I101[am1*sizeb+cartb]; if (j1>1) { int am2 = INT_CARTINDEX(a-2,i1,j1-2); result += oo2zeta * (j1-1) *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]); } if (j2) { int bm1 = INT_CARTINDEX(b-1,i2,j2-1); result += oo2zeta * j2 *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]); } } else if (k1) { int am1 = INT_CARTINDEX(a-1,i1,j1); result = PmA[2] * I100[am1*sizeb+cartb]; result -= PmC[2] * I101[am1*sizeb+cartb]; if (k1>1) { int am2 = INT_CARTINDEX(a-2,i1,j1); result += oo2zeta * (k1-1) *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]); } if (k2) { int bm1 = INT_CARTINDEX(b-1,i2,j2); result += oo2zeta * k2 *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]); } } I000[carta*sizeb+cartb] = result; cartb++; } END_FOR_CART; carta++; } END_FOR_CART; } void Int1eV3::comp_prim_block_nuclear_build_b(int b, int m) { double *I000 = inter(0,b,m); double *I010 = inter(0,b-1,m); double *I011 = inter(0,b-1,m+1); double *I020 = (b>1?inter(0,b-2,m):0); double *I021 = (b>1?inter(0,b-2,m+1):0); int i2,j2,k2; int cartb=0; FOR_CART(i2,j2,k2,b) { double result = 0.0; if (i2) { int bm1 = INT_CARTINDEX(b-1,i2-1,j2); result = PmB[0] * I010[bm1]; result -= PmC[0] * I011[bm1]; if (i2>1) { int bm2 = INT_CARTINDEX(b-2,i2-2,j2); result += oo2zeta * (i2-1) * (I020[bm2] - I021[bm2]); } } else if (j2) { int bm1 = INT_CARTINDEX(b-1,i2,j2-1); result = PmB[1] * I010[bm1]; result -= PmC[1] * I011[bm1]; if (j2>1) { int bm2 = INT_CARTINDEX(b-2,i2,j2-2); result += oo2zeta * (j2-1) * (I020[bm2] - I021[bm2]); } } else if (k2) { int bm1 = INT_CARTINDEX(b-1,i2,j2); result = PmB[2] * I010[bm1]; result -= PmC[2] * I011[bm1]; if (k2>1) { int bm2 = INT_CARTINDEX(b-2,i2,j2); result += oo2zeta * (k2-1) * (I020[bm2] - I021[bm2]); } } I000[cartb] = result; cartb++; } END_FOR_CART; } double Int1eV3::comp_prim_nuclear(int i1, int j1, int k1, int i2, int j2, int k2, int m) { double result; if (i1) { result = PmA[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m); result -= PmC[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1); if (i1>1) result += oo2zeta * (i1-1) * ( comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m) - comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m+1)); if (i2) result += oo2zeta * i2 * ( comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m) - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1)); } else if (j1) { result = PmA[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m); result -= PmC[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1); if (j1>1) result += oo2zeta * (j1-1) * ( comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m) - comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m+1)); if (j2) result += oo2zeta * j2 * ( comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m) - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1)); } else if (k1) { result = PmA[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m); result -= PmC[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1); if (k1>1) result += oo2zeta * (k1-1) * ( comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m) - comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m+1)); if (k2) result += oo2zeta * k2 * ( comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m) - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1)); } else if (i2) { result = PmB[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m); result -= PmC[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1); if (i2>1) result += oo2zeta * (i2-1) * ( comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m) - comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m+1)); if (i1) result += oo2zeta * i1 * ( comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m) - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1)); } else if (j2) { result = PmB[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m); result -= PmC[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1); if (j2>1) result += oo2zeta * (j2-1) * ( comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m) - comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m+1)); if (j1) result += oo2zeta * j1 * ( comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m) - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1)); } else if (k2) { result = PmB[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m); result -= PmC[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1); if (k2>1) result += oo2zeta * (k2-1) * ( comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m) - comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m+1)); if (k1) result += oo2zeta * k1 * ( comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m) - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1)); } else result = fjttable_[m]; return result; } /* Compute the electric field integral for the shell. The arguments are the * the electric field vector, the * cartesian exponents for centers 1 and 2. The shell1 and shell2 * globals are used. */ void Int1eV3::comp_shell_efield(double *efield, int gc1, int i1, int j1, int k1, int gc2, int i2, int j2, int k2) { int i,j,k,xyz; double result[3]; double Pi; double oozeta; double AmB,AmB2; double PmC2; double auxcoef; int am; am = i1+j1+k1+i2+j2+k2; /* Loop over the primitives in the shells. */ for (xyz=0; xyz<3; xyz++) result[xyz] = 0.0; for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ zeta = gshell1->exponent(i) + gshell2->exponent(j); oozeta = 1.0/zeta; oo2zeta = 0.5*oozeta; AmB2 = 0.0; PmC2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; PmC[xyz] = Pi - C[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; PmC2 += PmC[xyz]*PmC[xyz]; } /* The auxillary integral coeficients. */ auxcoef = 2.0 * M_PI/(gshell1->exponent(i) +gshell2->exponent(j)) * exp(- oozeta * gshell1->exponent(i) * gshell2->exponent(j) * AmB2); /* The Fm(U) intermediates. */ fjttable_ = fjt_->values(am+1,zeta*PmC2); /* Convert the Fm(U) intermediates into the auxillary * nuclear attraction integrals. */ for (k=0; k<=am+1; k++) { fjttable_[k] *= auxcoef; } /* Compute the nuclear attraction integral. */ for (xyz=0; xyz<3; xyz++) { result[xyz] += gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j) * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2,0); } } } for (xyz=0; xyz<3; xyz++) efield[xyz] = result[xyz]; } /* Compute the electric field integral for the shell. The arguments are the * the electric field vector, the * cartesian exponents for centers 1 and 2. The shell1 and shell2 * globals are used. */ void Int1eV3::comp_shell_block_efield(int gc1, int a, int gc2, int b, int gcsize2, int gcoff1, int gcoff2, double coef, double *buffer) { int i,j,k,xyz; double Pi; double oozeta; double AmB,AmB2; double PmC2; double auxcoef; int am = a + b; int size1 = INT_NCART_NN(a); int size2 = INT_NCART_NN(b); /* Loop over the primitives in the shells. */ for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ zeta = gshell1->exponent(i) + gshell2->exponent(j); oozeta = 1.0/zeta; oo2zeta = 0.5*oozeta; AmB2 = 0.0; PmC2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; PmC[xyz] = Pi - C[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; PmC2 += PmC[xyz]*PmC[xyz]; } /* The auxillary integral coeficients. */ auxcoef = 2.0 * M_PI/(gshell1->exponent(i) +gshell2->exponent(j)) * exp(- oozeta * gshell1->exponent(i) * gshell2->exponent(j) * AmB2); /* The Fm(U) intermediates. */ fjttable_ = fjt_->values(am+1,zeta*PmC2); /* Convert the Fm(U) intermediates into the auxillary * nuclear attraction integrals. */ for (k=0; k<=am+1; k++) { fjttable_[k] *= auxcoef; } double tmp = gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j) * coef; /* Compute the nuclear attraction integral. */ comp_prim_block_efield(a,b); double *primbuffer = efield_inter(a,b,0); for (int ip=0; ip 1 ExEnv::outn() << "BUILD NUC: M = " << im << " A = " << 0 << " B = " << 0 << endl; #endif inter(0,0,im)[0] = fjttable_[im]; } // skipping m=0 for (im=l-1; im>0; im--) { int lm = l-im; // build the integrals for a = 0 for (ib=1; ib<=lm && ib<=b; ib++) { #if DEBUG_EFIELD_PRIM > 1 ExEnv::outn() << "BUILD NUC: M = " << im << " A = " << 0 << " B = " << ib << endl; #endif comp_prim_block_nuclear_build_b(ib,im); } for (ia=1; ia<=lm && ia<=a; ia++) { for (ib=0; ib<=lm-ia && ib<=b; ib++) { #if DEBUG_EFIELD_PRIM > 1 ExEnv::outn() << "BUILD NUC: M = " << im << " A = " << ia << " B = " << ib << endl; #endif comp_prim_block_nuclear_build_a(ia,ib,im); } } } // now complete the efield integrals // fill in the ia+ib=0 integrals for (im=0; im<=l; im++) { #if DEBUG_EFIELD_PRIM > 1 ExEnv::outn() << "BUILD EFIELD: M = " << im << " A = " << 0 << " B = " << 0 << endl; #endif double *tmp = efield_inter(0,0,im); for (xyz=0; xyz<3; xyz++) { *tmp++ = 2.0 * zeta * PmC[xyz] * fjttable_[im+1]; } } for (im=l-1; im>=0; im--) { int lm = l-im; // build the integrals for a = 0 for (ib=1; ib<=lm && ib<=b; ib++) { #if DEBUG_EFIELD_PRIM > 1 ExEnv::outn() << "BUILD EFIELD: M = " << im << " A = " << 0 << " B = " << ib << endl; #endif comp_prim_block_efield_build_b(ib,im); } for (ia=1; ia<=lm && ia<=a; ia++) { for (ib=0; ib<=lm-ia && ib<=b; ib++) { #if DEBUG_EFIELD_PRIM > 1 ExEnv::outn() << "BUILD EFIELD: M = " << im << " A = " << ia << " B = " << ib << endl; #endif comp_prim_block_efield_build_a(ia,ib,im); } } } #if DEBUG_EFIELD_PRIM for (im=0; im<=l; im++) { int lm = l-im; for (ia=0; ia<=lm && ia<=a; ia++) { int na = INT_NCART_NN(a); for (ib=0; ib<=lm-ia && ib<=b; ib++) { int nb = INT_NCART_NN(b); #if DEBUG_EFIELD_PRIM > 1 ExEnv::outn() << "M = " << im << " A = " << ia << " B = " << ib << endl; #endif double *buf = efield_inter(ia,ib,im); int i1,j1,k1, i2,j2,k2; FOR_CART(i1,j1,k1,ia) { FOR_CART(i2,j2,k2,ib) { for (xyz=0; xyz<3; xyz++) { double fast = *buf++; double slow = comp_prim_efield(xyz, i1, j1, k1, i2, j2, k2, im); if (fast > 999.0) fast = 999.0; if (fast < -999.0) fast = -999.0; if (fabs(fast-slow)>1.0e-12) { ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ", i1,j1,k1, i2,j2,k2, im) << scprintf(" % 20.15f % 20.15f", fast, slow) << endl; } } } END_FOR_CART; } END_FOR_CART; } } } #endif } void Int1eV3::comp_prim_block_efield_build_a(int a, int b, int m) { double *I000 = efield_inter(a,b,m); double *I100 = efield_inter(a-1,b,m); double *I101 = efield_inter(a-1,b,m+1); double *I200 = (a>1?efield_inter(a-2,b,m):0); double *I201 = (a>1?efield_inter(a-2,b,m+1):0); double *I110 = (b?efield_inter(a-1,b-1,m):0); double *I111 = (b?efield_inter(a-1,b-1,m+1):0); double *nucI101 = inter(a-1,b,m+1); int i1,j1,k1; int i2,j2,k2; int xyz; int carta=0; int sizeb = INT_NCART_NN(b); int sizebm1 = INT_NCART_DEC(b,sizeb); FOR_CART(i1,j1,k1,a) { int cartb=0; FOR_CART(i2,j2,k2,b) { for (xyz=0; xyz<3; xyz++) { double result = 0.0; if (i1) { int am1 = INT_CARTINDEX(a-1,i1-1,j1); result = PmA[0] * I100[(am1*sizeb+cartb)*3+xyz]; result -= PmC[0] * I101[(am1*sizeb+cartb)*3+xyz]; if (i1>1) { int am2 = INT_CARTINDEX(a-2,i1-2,j1); result += oo2zeta * (i1-1) *(I200[(am2*sizeb+cartb)*3+xyz] - I201[(am2*sizeb+cartb)*3+xyz]); } if (i2) { int bm1 = INT_CARTINDEX(b-1,i2-1,j2); result += oo2zeta * i2 *(I110[(am1*sizebm1+bm1)*3+xyz] - I111[(am1*sizebm1+bm1)*3+xyz]); } if (xyz==0) result += nucI101[am1*sizeb+cartb]; } else if (j1) { int am1 = INT_CARTINDEX(a-1,i1,j1-1); result = PmA[1] * I100[(am1*sizeb+cartb)*3+xyz]; result -= PmC[1] * I101[(am1*sizeb+cartb)*3+xyz]; if (j1>1) { int am2 = INT_CARTINDEX(a-2,i1,j1-2); result += oo2zeta * (j1-1) *(I200[(am2*sizeb+cartb)*3+xyz] - I201[(am2*sizeb+cartb)*3+xyz]); } if (j2) { int bm1 = INT_CARTINDEX(b-1,i2,j2-1); result += oo2zeta * j2 *(I110[(am1*sizebm1+bm1)*3+xyz] - I111[(am1*sizebm1+bm1)*3+xyz]); } if (xyz==1) result += nucI101[am1*sizeb+cartb]; } else if (k1) { int am1 = INT_CARTINDEX(a-1,i1,j1); result = PmA[2] * I100[(am1*sizeb+cartb)*3+xyz]; result -= PmC[2] * I101[(am1*sizeb+cartb)*3+xyz]; if (k1>1) { int am2 = INT_CARTINDEX(a-2,i1,j1); result += oo2zeta * (k1-1) *(I200[(am2*sizeb+cartb)*3+xyz] - I201[(am2*sizeb+cartb)*3+xyz]); } if (k2) { int bm1 = INT_CARTINDEX(b-1,i2,j2); result += oo2zeta * k2 *(I110[(am1*sizebm1+bm1)*3+xyz] - I111[(am1*sizebm1+bm1)*3+xyz]); } if (xyz==2) result += nucI101[am1*sizeb+cartb]; } I000[(carta*sizeb+cartb)*3+xyz] = result; } cartb++; } END_FOR_CART; carta++; } END_FOR_CART; } void Int1eV3::comp_prim_block_efield_build_b(int b, int m) { double *I000 = efield_inter(0,b,m); double *I010 = efield_inter(0,b-1,m); double *I011 = efield_inter(0,b-1,m+1); double *I020 = (b>1?efield_inter(0,b-2,m):0); double *I021 = (b>1?efield_inter(0,b-2,m+1):0); double *nucI011 = inter(0,b-1,m+1); int xyz; int i2,j2,k2; int cartb=0; FOR_CART(i2,j2,k2,b) { for (xyz=0; xyz<3; xyz++) { double result = 0.0; if (i2) { int bm1 = INT_CARTINDEX(b-1,i2-1,j2); result = PmB[0] * I010[(bm1)*3+xyz]; result -= PmC[0] * I011[(bm1)*3+xyz]; if (i2>1) { int bm2 = INT_CARTINDEX(b-2,i2-2,j2); result += oo2zeta * (i2-1) * (I020[(bm2)*3+xyz] - I021[(bm2)*3+xyz]); } if (xyz==0) result += nucI011[bm1]; } else if (j2) { int bm1 = INT_CARTINDEX(b-1,i2,j2-1); result = PmB[1] * I010[(bm1)*3+xyz]; result -= PmC[1] * I011[(bm1)*3+xyz]; if (j2>1) { int bm2 = INT_CARTINDEX(b-2,i2,j2-2); result += oo2zeta * (j2-1) * (I020[(bm2)*3+xyz] - I021[(bm2)*3+xyz]); } if (xyz==1) result += nucI011[bm1]; } else if (k2) { int bm1 = INT_CARTINDEX(b-1,i2,j2); result = PmB[2] * I010[(bm1)*3+xyz]; result -= PmC[2] * I011[(bm1)*3+xyz]; if (k2>1) { int bm2 = INT_CARTINDEX(b-2,i2,j2); result += oo2zeta * (k2-1) * (I020[(bm2)*3+xyz] - I021[(bm2)*3+xyz]); } if (xyz==2) result += nucI011[bm1]; } I000[(cartb)*3+xyz] = result; } cartb++; } END_FOR_CART; } double Int1eV3::comp_prim_efield(int xyz, int i1, int j1, int k1, int i2, int j2, int k2, int m) { double result; /* if ((xyz != 0) || (i1 != 1)) return 0.0; */ if (i1) { result = PmA[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m); result -= PmC[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m+1); if (i1>1) result += oo2zeta * (i1-1) * ( comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m) - comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m+1)); if (i2) result += oo2zeta * i2 * ( comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m) - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1)); if (xyz==0) result += comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1); } else if (j1) { result = PmA[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m); result -= PmC[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m+1); if (j1>1) result += oo2zeta * (j1-1) * ( comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m) - comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m+1)); if (j2) result += oo2zeta * j2 * ( comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m) - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1)); if (xyz==1) result += comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1); } else if (k1) { result = PmA[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m); result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m+1); if (k1>1) result += oo2zeta * (k1-1) * ( comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m) - comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m+1)); if (k2) result += oo2zeta * k2 * ( comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m) - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1)); if (xyz==2) result += comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1); } else if (i2) { result = PmB[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m); result -= PmC[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m+1); if (i2>1) result += oo2zeta * (i2-1) * ( comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m) - comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m+1)); if (i1) result += oo2zeta * i1 * ( comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m) - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1)); if (xyz==0) result += comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1); } else if (j2) { result = PmB[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m); result -= PmC[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m+1); if (j2>1) result += oo2zeta * (j2-1) * ( comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m) - comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m+1)); if (j1) result += oo2zeta * j1 * ( comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m) - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1)); if (xyz==1) result += comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1); } else if (k2) { result = PmB[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m); result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m+1); if (k2>1) result += oo2zeta * (k2-1) * ( comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m) - comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m+1)); if (k1) result += oo2zeta * k1 * ( comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m) - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1)); if (xyz==2) result += comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1); } else { /* We arrive here if we have a (s| |s) type efield integral. * The fjttable contains the standard (s| |s) nuc attr integrals. */ result = 2.0 * zeta * PmC[xyz] * fjttable_[m+1]; } return result; } /* --------------------------------------------------------------- */ /* ------------- Routines for dipole moment integrals ------------ */ /* --------------------------------------------------------------- */ /* This computes the dipole integrals between functions in two shells. * The result is accumulated in the buffer in the form bf1 x y z, bf2 * x y z, etc. The last arg, com, is the origin of the coordinate * system used to compute the dipole moment. */ void Int1eV3::int_accum_shell_dipole(int ish, int jsh, double *com) { int c1,i1,j1,k1,c2,i2,j2,k2; int gc1,gc2; int index,index1,index2; double dipole[3]; int xyz; for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz]; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2) comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2); for(mu=0; mu < 3; mu++) { cartesianbuffer[index] = dipole[mu]; index++; } END_FOR_GCCART_GS(index2) END_FOR_GCCART_GS(index1) accum_transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); } /* This computes the dipole integrals between functions in two shells. * The result is placed in the buffer in the form bf1 x y z, bf2 * x y z, etc. The last arg, com, is the origin of the coordinate * system used to compute the dipole moment. */ void Int1eV3::dipole(int ish, int jsh, double *com) { int c1,i1,j1,k1,c2,i2,j2,k2; int gc1,gc2; int index,index1,index2; double dipole[3]; int xyz; for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz]; c1 = bs1_->shell_to_center(ish); c2 = bs2_->shell_to_center(jsh); for (xyz=0; xyz<3; xyz++) { A[xyz] = bs1_->r(c1,xyz); B[xyz] = bs2_->r(c2,xyz); } gshell1 = &bs1_->shell(ish); gshell2 = &bs2_->shell(jsh); index = 0; FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1) FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2) comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2); for(mu=0; mu < 3; mu++) { cartesianbuffer[index] = dipole[mu]; index++; } END_FOR_GCCART_GS(index2) END_FOR_GCCART_GS(index1) transform_1e_xyz(integral_, cartesianbuffer, buff, gshell1, gshell2); } void Int1eV3::comp_shell_dipole(double* dipole, int gc1, int i1, int j1, int k1, int gc2, int i2, int j2, int k2) { double exp1,exp2; int i,j,xyz; double Pi; double oozeta; double AmB,AmB2; double tmp; dipole[0] = dipole[1] = dipole[2] = 0.0; if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return; /* Loop over the primitives in the shells. */ for (i=0; inprimitive(); i++) { for (j=0; jnprimitive(); j++) { /* Compute the intermediates. */ exp1 = gshell1->exponent(i); exp2 = gshell2->exponent(j); oozeta = 1.0/(exp1 + exp2); oo2zeta = 0.5*oozeta; AmB2 = 0.0; for (xyz=0; xyz<3; xyz++) { Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]); PmA[xyz] = Pi - A[xyz]; PmB[xyz] = Pi - B[xyz]; PmC[xyz] = Pi - C[xyz]; AmB = A[xyz] - B[xyz]; AmB2 += AmB*AmB; } ss = pow(M_PI/(exp1+exp2),1.5) * exp(- oozeta * exp1 * exp2 * AmB2); for (mu=0; mu<3; mu++) sMus[mu] = ss * PmC[mu]; tmp = gshell1->coefficient_unnorm(gc1,i) * gshell2->coefficient_unnorm(gc2,j); if (exponent_weighted == 0) tmp *= exp1; else if (exponent_weighted == 1) tmp *= exp2; dipole[0] += tmp * comp_prim_dipole(0,i1,j1,k1,i2,j2,k2); dipole[1] += tmp * comp_prim_dipole(1,i1,j1,k1,i2,j2,k2); dipole[2] += tmp * comp_prim_dipole(2,i1,j1,k1,i2,j2,k2); } } } double Int1eV3::comp_prim_dipole(int axis, int i1, int j1, int k1, int i2, int j2, int k2) { double result; if (i1) { result = PmA[0] * comp_prim_dipole(axis,i1-1,j1,k1,i2,j2,k2); if (i2) result += oo2zeta*i2*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2); if (i1>1) result += oo2zeta*(i1-1)*comp_prim_dipole(axis,i1-2,j1,k1,i2,j2,k2); if(axis==0) result += oo2zeta*comp_prim_overlap(i1-1,j1,k1,i2,j2,k2); return result; } if (j1) { result = PmA[1] * comp_prim_dipole(axis,i1,j1-1,k1,i2,j2,k2); if (j2) result += oo2zeta*j2*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2); if (j1>1) result += oo2zeta*(j1-1)*comp_prim_dipole(axis,i1,j1-2,k1,i2,j2,k2); if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1-1,k1,i2,j2,k2); return result; } if (k1) { result = PmA[2] * comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2); if (k2) result += oo2zeta*k2*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1); if (k1>1) result += oo2zeta*(k1-1)*comp_prim_dipole(axis,i1,j1,k1-2,i2,j2,k2); if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1-1,i2,j2,k2); return result; } if (i2) { result = PmB[0] * comp_prim_dipole(axis,i1,j1,k1,i2-1,j2,k2); if (i1) result += oo2zeta*i1*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2); if (i2>1) result += oo2zeta*(i2-1)*comp_prim_dipole(axis,i1,j1,k1,i2-2,j2,k2); if(axis==0) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2-1,j2,k2); return result; } if (j2) { result = PmB[1] * comp_prim_dipole(axis,i1,j1,k1,i2,j2-1,k2); if (j1) result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2); if (j2>1) result += oo2zeta*(j2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2-2,k2); if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2-1,k2); return result; } if (k2) { result = PmB[2] * comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-1); if (k1) result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1); if (k2>1) result += oo2zeta*(k2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-2); if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2,k2-1); return result; } return sMus[axis]; } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "CLJ-CONDENSED" // End: