MPQC: Massively Parallel Quantum Chemistry Version 2.1.0-alpha-gcc3 Machine: i686-pc-linux-gnu User: cljanss@aros.ca.sandia.gov Start Time: Sat Apr 6 13:35:45 2002 Using ProcMessageGrp for message passing (number of nodes = 1). Using PthreadThreadGrp for threading (number of threads = 2). Using ProcMemoryGrp for distributed shared memory. Total number of processors = 2 Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/atominfo.kv. IntCoorGen: generated 3 coordinates. Forming optimization coordinates: SymmMolecularCoor::form_variable_coordinates() expected 3 coordinates found 2 variable coordinates found 0 constant coordinates Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. CLSCF::init: total charge = 0 docc = [ 5 ] nbasis = 7 CLSCF::init: total charge = 0 docc = [ 5 ] nbasis = 7 Molecular formula H2O MPQC options: matrixkit = filename = h2ofrq_scfsto3gc2vfrq restart_file = h2ofrq_scfsto3gc2vfrq.ckpt restart = no checkpoint = no savestate = no do_energy = yes do_gradient = no optimize = no write_pdb = no print_mole = yes print_timings = yes SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 Using guess wavefunction as starting vector SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes Starting from core Hamiltonian guess nuclear repulsion energy = 9.1571164588 733 integrals iter 1 energy = -74.6468200575 delta = 7.47196e-01 733 integrals iter 2 energy = -74.9403205745 delta = 2.23216e-01 733 integrals iter 3 energy = -74.9595428818 delta = 6.69340e-02 733 integrals iter 4 energy = -74.9606520926 delta = 2.02576e-02 733 integrals iter 5 energy = -74.9607020706 delta = 4.09811e-03 733 integrals iter 6 energy = -74.9607024821 delta = 3.66040e-04 733 integrals iter 7 energy = -74.9607024827 delta = 1.47732e-05 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 nuclear repulsion energy = 9.1571164588 733 integrals iter 1 energy = -74.9607024827 delta = 7.72168e-01 733 integrals iter 2 energy = -74.9607024827 delta = 6.14966e-10 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 Value of the MolecularEnergy: -74.9607024827 The external rank is 6 Computing molecular hessian from 6 displacements: Starting at displacement: 0 Hessian options: displacement: 0.01 bohr gradient_accuracy: 1e-05 au eliminate_cubic_terms: yes only_totally_symmetric: no Beginning displacement 0: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1571164588 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 733 integrals iter 1 energy = -74.9607024827 delta = 7.72168e-01 733 integrals iter 2 energy = -74.9607024827 delta = 3.09484e-11 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 -0.0729842490 2 H -0.0120904564 0.0000000000 0.0364921245 3 H 0.0120904564 0.0000000000 0.0364921245 Beginning displacement 1: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1315880753 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90902 Minimum orthogonalization residual = 0.346604 733 integrals iter 1 energy = -74.9614609243 delta = 7.71653e-01 733 integrals iter 2 energy = -74.9614844142 delta = 2.31284e-03 733 integrals iter 3 energy = -74.9614880008 delta = 9.87747e-04 733 integrals iter 4 energy = -74.9614883692 delta = 3.82748e-04 733 integrals iter 5 energy = -74.9614883754 delta = 4.11302e-05 733 integrals iter 6 energy = -74.9614883755 delta = 4.14321e-06 HOMO is 5 A = -0.387349 LUMO is 6 A = 0.591518 total scf energy = -74.9614883755 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 -0.0000000000 -0.0668050730 2 H -0.0100140356 -0.0000000000 0.0334025365 3 H 0.0100140356 0.0000000000 0.0334025365 Beginning displacement 2: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1948760979 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.91565 Minimum orthogonalization residual = 0.342287 733 integrals iter 1 energy = -74.9601887271 delta = 7.73561e-01 733 integrals iter 2 energy = -74.9602556469 delta = 3.86138e-03 733 integrals iter 3 energy = -74.9602631504 delta = 1.39208e-03 733 integrals iter 4 energy = -74.9602640485 delta = 5.98388e-04 733 integrals iter 5 energy = -74.9602640715 delta = 8.17901e-05 733 integrals iter 6 energy = -74.9602640718 delta = 9.62819e-06 HOMO is 5 A = -0.387285 LUMO is 6 A = 0.597039 total scf energy = -74.9602640718 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 0.0000000000 -0.0785688736 2 H -0.0167586594 0.0000000000 0.0392844368 3 H 0.0167586594 -0.0000000000 0.0392844368 Beginning displacement 3: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1824897339 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.91174 Minimum orthogonalization residual = 0.343204 733 integrals iter 1 energy = -74.9598431101 delta = 7.72072e-01 733 integrals iter 2 energy = -74.9598500510 delta = 1.03154e-03 733 integrals iter 3 energy = -74.9598515143 delta = 6.35991e-04 733 integrals iter 4 energy = -74.9598515804 delta = 1.76827e-04 733 integrals iter 5 energy = -74.9598515806 delta = 4.75593e-06 733 integrals iter 6 energy = -74.9598515806 delta = 9.71159e-07 HOMO is 5 A = -0.386525 LUMO is 6 A = 0.594228 total scf energy = -74.9598515806 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 -0.0791049488 2 H -0.0142078509 0.0000000000 0.0395524744 3 H 0.0142078509 -0.0000000000 0.0395524744 Beginning displacement 4: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1196611049 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90517 Minimum orthogonalization residual = 0.347488 733 integrals iter 1 energy = -74.9609852664 delta = 7.70825e-01 733 integrals iter 2 energy = -74.9610517783 delta = 3.81349e-03 733 integrals iter 3 energy = -74.9610593107 delta = 1.38253e-03 733 integrals iter 4 energy = -74.9610602318 delta = 6.03658e-04 733 integrals iter 5 energy = -74.9610602558 delta = 8.29099e-05 733 integrals iter 6 energy = -74.9610602562 delta = 1.01458e-05 HOMO is 5 A = -0.386611 LUMO is 6 A = 0.588782 total scf energy = -74.9610602562 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 -0.0000000000 -0.0675330235 2 H -0.0075239812 -0.0000000000 0.0337665117 3 H 0.0075239812 0.0000000000 0.0337665117 Beginning displacement 5: Displacement is B1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1574031199 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.91043 Minimum orthogonalization residual = 0.34465 733 integrals iter 1 energy = -74.9605659058 delta = 7.72807e-01 733 integrals iter 2 energy = -74.9606082911 delta = 2.21079e-03 733 integrals iter 3 energy = -74.9606103086 delta = 5.65937e-04 733 integrals iter 4 energy = -74.9606104321 delta = 1.91022e-04 733 integrals iter 5 energy = -74.9606104374 delta = 4.10939e-05 733 integrals iter 6 energy = -74.9606104375 delta = 6.11870e-06 732 integrals iter 7 energy = -74.9606104382 delta = 6.92936e-07 733 integrals iter 8 energy = -74.9606104375 delta = 1.30835e-07 HOMO is 5 A = -0.386950 LUMO is 6 A = 0.592685 total scf energy = -74.9606104375 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0138136071 -0.0000000000 -0.0731620193 2 H -0.0190934427 -0.0000000000 0.0417202831 3 H 0.0052798356 0.0000000000 0.0314417362 The external rank is 6 Frequencies (cm-1; negative is imaginary): A1 1 4421.31 2 1961.34 B1 3 4735.12 THERMODYNAMIC ANALYSIS: Contributions to the nonelectronic enthalpy at 298.15 K: kJ/mol kcal/mol E0vib = 66.4990 15.8937 Evib(T) = 0.0018 0.0004 Erot(T) = 3.7185 0.8887 Etrans(T) = 3.7185 0.8887 PV(T) = 2.4790 0.5925 Total nonelectronic enthalpy: H_nonel(T) = 76.4167 18.2640 Contributions to the entropy at 298.15 K and 1.0 atm: J/(mol*K) cal/(mol*K) S_trans(T,P) = 144.8020 34.6085 S_rot(T) = 43.5773 10.4152 S_vib(T) = 0.0067 0.0016 S_el = 0.0000 0.0000 Total entropy: S_total(T,P) = 188.3860 45.0253 Various data used for thermodynamic analysis: Nonlinear molecule Principal moments of inertia (amu*angstrom^2): 0.54952, 1.23885, 1.78837 Point group: c2v Order of point group: 4 Rotational symmetry number: 2 Rotational temperatures (K): 44.1373, 19.5780, 13.5622 Electronic degeneracy: 1 Function Parameters: value_accuracy = 1.920372e-08 (1.000000e-07) gradient_accuracy = 1.920372e-06 (1.000000e-06) hessian_accuracy = 0.000000e+00 (1.000000e-04) (computed) Molecular Coordinates: IntMolecularCoor Parameters: update_bmat = no scale_bonds = 1 scale_bends = 1 scale_tors = 1 scale_outs = 1 symmetry_tolerance = 1.000000e-05 simple_tolerance = 1.000000e-03 coordinate_tolerance = 1.000000e-07 have_fixed_values = 0 max_update_steps = 100 max_update_disp = 0.500000 have_fixed_values = 0 Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 0.0000000000 0.3693729440] 2 H [ 0.7839758990 0.0000000000 -0.1846864720] 3 H [ -0.7839758990 0.0000000000 -0.1846864720] } ) Atomic Masses: 15.99491 1.00783 1.00783 Bonds: STRE s1 0.96000 1 2 O-H STRE s2 0.96000 1 3 O-H Bends: BEND b1 109.50000 2 1 3 H-O-H SymmMolecularCoor Parameters: change_coordinates = no transform_hessian = yes max_kappa2 = 10.000000 GaussianBasisSet: nbasis = 7 nshell = 4 nprim = 12 name = "STO-3G" SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1571164588 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 733 integrals iter 1 energy = -74.9606724595 delta = 7.72166e-01 733 integrals iter 2 energy = -74.9607013451 delta = 1.51388e-03 733 integrals iter 3 energy = -74.9607024463 delta = 3.31708e-04 733 integrals iter 4 energy = -74.9607024821 delta = 6.73971e-05 733 integrals iter 5 energy = -74.9607024827 delta = 1.14850e-05 733 integrals iter 6 energy = -74.9607024827 delta = 4.32646e-07 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 Natural Population Analysis: n atom charge ne(S) ne(P) 1 O -0.404502 3.732558 4.671944 2 H 0.202251 0.797749 3 H 0.202251 0.797749 SCF Parameters: maxiter = 40 density_reset_frequency = 10 level_shift = 0.000000 CLSCF Parameters: charge = 0 ndocc = 5 docc = [ 5 ] The following keywords in "h2ofrq_scfsto3gc2vfrq.in" were ignored: mpqc:mole:guess_wavefunction:multiplicity mpqc:mole:multiplicity CPU Wall mpqc: 0.52 0.54 NAO: 0.02 0.03 vector: 0.02 0.02 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.01 0.00 fock: 0.00 0.01 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 calc: 0.04 0.04 vector: 0.04 0.04 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.00 0.00 fock: 0.01 0.00 accum: 0.00 0.00 ao_gmat: 0.01 0.00 start thread: 0.01 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 vector: 0.02 0.02 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.00 0.00 fock: 0.01 0.01 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.01 0.00 hessian: 0.33 0.34 compute gradient: 0.20 0.20 nuc rep: 0.00 0.00 one electron gradient: 0.02 0.02 overlap gradient: 0.00 0.01 two electron gradient: 0.18 0.17 contribution: 0.05 0.04 start thread: 0.04 0.03 stop thread: 0.00 0.00 setup: 0.13 0.13 vector: 0.13 0.13 density: 0.01 0.00 evals: 0.01 0.01 extrap: 0.03 0.02 fock: 0.02 0.04 accum: 0.00 0.00 ao_gmat: 0.01 0.03 start thread: 0.01 0.02 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.01 0.00 sum: 0.00 0.00 symm: 0.00 0.00 input: 0.12 0.13 End Time: Sat Apr 6 13:35:46 2002