Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/atominfo.kv. MPQC: Massively Parallel Quantum Chemistry Version 2.1.0-alpha-gcc3 Machine: i686-pc-linux-gnu User: cljanss@aros.ca.sandia.gov Start Time: Sat Apr 6 14:00:26 2002 Using ProcMessageGrp for message passing (number of nodes = 1). Using PthreadThreadGrp for threading (number of threads = 2). Using ProcMemoryGrp for distributed shared memory. Total number of processors = 2 Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/atominfo.kv. Molecule: setting point group to c2v Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/6-31gS.kv. Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. CLSCF::init: total charge = 0 Starting from core Hamiltonian guess Using symmetric orthogonalization. n(SO): 4 0 1 2 Maximum orthogonalization residual = 1.94039 Minimum orthogonalization residual = 0.335627 docc = [ 3 0 1 1 ] nbasis = 7 CLSCF::init: total charge = 0 Projecting guess wavefunction into the present basis set SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 7967676 bytes nuclear repulsion energy = 9.2914265473 565 integrals iter 1 energy = -74.6442059283 delta = 7.46913e-01 565 integrals iter 2 energy = -74.9411785471 delta = 2.32701e-01 565 integrals iter 3 energy = -74.9598835707 delta = 6.74768e-02 565 integrals iter 4 energy = -74.9608017389 delta = 1.82839e-02 565 integrals iter 5 energy = -74.9608457808 delta = 4.27179e-03 565 integrals iter 6 energy = -74.9608460189 delta = 2.87494e-04 565 integrals iter 7 energy = -74.9608460194 delta = 1.50392e-05 HOMO is 1 B1 = -0.391179 LUMO is 4 A1 = 0.614055 total scf energy = -74.9608460194 Projecting the guess density. The number of electrons in the guess density = 10 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.69613 Minimum orthogonalization residual = 0.0219193 The number of electrons in the projected density = 9.95801 docc = [ 3 0 1 1 ] nbasis = 19 Molecular formula H2O MPQC options: matrixkit = filename = input_hfh2ofreq restart_file = input_hfh2ofreq.ckpt restart = no checkpoint = no savestate = no do_energy = yes do_gradient = no optimize = no write_pdb = no print_mole = yes print_timings = yes SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes nuclear repulsion energy = 9.2914265473 19108 integrals iter 1 energy = -75.8313984939 delta = 2.12979e-01 19108 integrals iter 2 energy = -75.9893342668 delta = 5.77199e-02 19108 integrals iter 3 energy = -76.0061172655 delta = 1.48537e-02 19108 integrals iter 4 energy = -76.0104307742 delta = 6.83190e-03 19108 integrals iter 5 energy = -76.0107349333 delta = 2.29768e-03 19108 integrals iter 6 energy = -76.0107461220 delta = 5.11193e-04 19108 integrals iter 7 energy = -76.0107462842 delta = 5.25319e-05 19108 integrals iter 8 energy = -76.0107462976 delta = 1.68043e-05 19108 integrals iter 9 energy = -76.0107462983 delta = 4.02927e-06 19108 integrals iter 10 energy = -76.0107462984 delta = 1.15008e-06 HOMO is 1 B1 = -0.498217 LUMO is 4 A1 = 0.213089 total scf energy = -76.0107462984 Value of the MolecularEnergy: -76.0107462984 The external rank is 6 Computing molecular hessian from 6 displacements: Starting at displacement: 0 Hessian options: displacement: 0.01 bohr gradient_accuracy: 1e-05 au eliminate_cubic_terms: yes only_totally_symmetric: no Beginning displacement 0: Molecule: setting point group to c2v Displacement is A1 in c2v. Using point group c2v for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes nuclear repulsion energy = 9.2914265473 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.69613 Minimum orthogonalization residual = 0.0219193 19108 integrals iter 1 energy = -76.0107462984 delta = 2.09895e-01 19108 integrals iter 2 energy = -76.0107462984 delta = 1.86331e-08 HOMO is 1 B1 = -0.498218 LUMO is 4 A1 = 0.213089 total scf energy = -76.0107462984 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0004691490 0.0000000000 0.0000000000 2 H -0.0002345745 -0.0000000000 -0.0002321324 3 H -0.0002345745 -0.0000000000 0.0002321324 Beginning displacement 1: Molecule: setting point group to c2v Displacement is A1 in c2v. Using point group c2v for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes nuclear repulsion energy = 9.2713628191 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.69009 Minimum orthogonalization residual = 0.0219947 19108 integrals iter 1 energy = -76.0107168738 delta = 2.09903e-01 19108 integrals iter 2 energy = -76.0107327055 delta = 4.41842e-04 19108 integrals iter 3 energy = -76.0107332524 delta = 9.95819e-05 19108 integrals iter 4 energy = -76.0107333392 delta = 3.04180e-05 19108 integrals iter 5 energy = -76.0107333482 delta = 1.06061e-05 19108 integrals iter 6 energy = -76.0107333492 delta = 4.39723e-06 19108 integrals iter 7 energy = -76.0107333492 delta = 8.82987e-07 19108 integrals iter 8 energy = -76.0107333492 delta = 1.73915e-07 HOMO is 1 B1 = -0.497903 LUMO is 4 A1 = 0.212736 total scf energy = -76.0107333492 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0010405841 0.0000000000 -0.0000000000 2 H 0.0005202920 -0.0000000000 0.0022405305 3 H 0.0005202920 -0.0000000000 -0.0022405305 Beginning displacement 2: Molecule: setting point group to c2v Displacement is A1 in c2v. Using point group c2v for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes nuclear repulsion energy = 9.2483981954 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.68748 Minimum orthogonalization residual = 0.0220808 19108 integrals iter 1 energy = -76.0106433186 delta = 2.09707e-01 19108 integrals iter 2 energy = -76.0106998497 delta = 1.24263e-03 19108 integrals iter 3 energy = -76.0107037606 delta = 2.93534e-04 19108 integrals iter 4 energy = -76.0107045194 delta = 1.00100e-04 19108 integrals iter 5 energy = -76.0107046612 delta = 4.91826e-05 19108 integrals iter 6 energy = -76.0107046779 delta = 2.31661e-05 19108 integrals iter 7 energy = -76.0107046780 delta = 1.57454e-06 19108 integrals iter 8 energy = -76.0107046780 delta = 2.73161e-07 HOMO is 1 B1 = -0.498108 LUMO is 4 A1 = 0.212038 total scf energy = -76.0107046780 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0066012454 0.0000000000 0.0000000000 2 H 0.0033006227 -0.0000000000 0.0031779831 3 H 0.0033006227 -0.0000000000 -0.0031779831 Beginning displacement 3: Molecule: setting point group to c2v Displacement is A1 in c2v. Using point group c2v for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes nuclear repulsion energy = 9.3114638385 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.70216 Minimum orthogonalization residual = 0.0218448 19108 integrals iter 1 energy = -76.0106307945 delta = 2.10102e-01 19108 integrals iter 2 energy = -76.0107221272 delta = 1.46434e-03 19108 integrals iter 3 energy = -76.0107280713 delta = 3.42812e-04 19108 integrals iter 4 energy = -76.0107295333 delta = 1.36029e-04 19108 integrals iter 5 energy = -76.0107296860 delta = 4.54298e-05 19108 integrals iter 6 energy = -76.0107297039 delta = 2.30328e-05 19108 integrals iter 7 energy = -76.0107297041 delta = 2.17592e-06 19108 integrals iter 8 energy = -76.0107297041 delta = 4.74694e-07 HOMO is 1 B1 = -0.498531 LUMO is 4 A1 = 0.213430 total scf energy = -76.0107297041 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0020165841 0.0000000000 0.0000000000 2 H -0.0010082920 -0.0000000000 -0.0027230783 3 H -0.0010082920 -0.0000000000 0.0027230783 Beginning displacement 4: Molecule: setting point group to c2v Displacement is A1 in c2v. Using point group c2v for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes nuclear repulsion energy = 9.3346656189 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.70475 Minimum orthogonalization residual = 0.0217598 19108 integrals iter 1 energy = -76.0106278992 delta = 2.10097e-01 19108 integrals iter 2 energy = -76.0106864378 delta = 1.27390e-03 19108 integrals iter 3 energy = -76.0106904174 delta = 2.99792e-04 19108 integrals iter 4 energy = -76.0106911794 delta = 1.00691e-04 19108 integrals iter 5 energy = -76.0106913183 delta = 4.92094e-05 19108 integrals iter 6 energy = -76.0106913345 delta = 2.29549e-05 19108 integrals iter 7 energy = -76.0106913346 delta = 1.58762e-06 19108 integrals iter 8 energy = -76.0106913346 delta = 2.59742e-07 HOMO is 1 B1 = -0.498334 LUMO is 4 A1 = 0.214132 total scf energy = -76.0106913346 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0076545848 0.0000000000 0.0000000000 2 H -0.0038272924 -0.0000000000 -0.0037750779 3 H -0.0038272924 -0.0000000000 0.0037750779 Beginning displacement 5: Molecule: setting point group to cs Displacement is B2 in c2v. Using point group cs for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes Projecting guess wavefunction into the present basis set SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 7967676 bytes Starting from core Hamiltonian guess Using symmetric orthogonalization. n(SO): 6 1 Maximum orthogonalization residual = 1.94042 Minimum orthogonalization residual = 0.3354 nuclear repulsion energy = 9.2917138257 733 integrals iter 1 energy = -74.6441111903 delta = 7.46789e-01 733 integrals iter 2 energy = -74.9410849693 delta = 2.27702e-01 733 integrals iter 3 energy = -74.9597742006 delta = 6.70496e-02 733 integrals iter 4 energy = -74.9607071950 delta = 1.85604e-02 733 integrals iter 5 energy = -74.9607494303 delta = 3.80143e-03 733 integrals iter 6 energy = -74.9607496841 delta = 2.82464e-04 733 integrals iter 7 energy = -74.9607496844 delta = 9.74967e-06 HOMO is 1 A" = -0.391187 LUMO is 5 A' = 0.613805 total scf energy = -74.9607496844 Projecting the guess density. The number of electrons in the guess density = 10 Using symmetric orthogonalization. n(SO): 15 4 Maximum orthogonalization residual = 4.69616 Minimum orthogonalization residual = 0.0219165 The number of electrons in the projected density = 9.95801 nuclear repulsion energy = 9.2917138257 25330 integrals iter 1 energy = -75.8313073803 delta = 2.12869e-01 25330 integrals iter 2 energy = -75.9892651359 delta = 5.76207e-02 25330 integrals iter 3 energy = -76.0060646997 delta = 1.47923e-02 25330 integrals iter 4 energy = -76.0103608950 delta = 6.82584e-03 25330 integrals iter 5 energy = -76.0106645434 delta = 2.29496e-03 25330 integrals iter 6 energy = -76.0106757084 delta = 5.10629e-04 25330 integrals iter 7 energy = -76.0106758705 delta = 5.24087e-05 25330 integrals iter 8 energy = -76.0106758838 delta = 1.66862e-05 25330 integrals iter 9 energy = -76.0106758846 delta = 3.98484e-06 25330 integrals iter 10 energy = -76.0106758846 delta = 1.13646e-06 25330 integrals iter 11 energy = -76.0106758846 delta = 1.45371e-07 HOMO is 1 A" = -0.498222 LUMO is 5 A' = 0.213059 total scf energy = -76.0106758846 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0006454807 0.0000000000 -0.0105297251 2 H 0.0036801738 -0.0000000000 0.0049428248 3 H -0.0043256545 -0.0000000000 0.0055869003 Molecule: setting point group to c2v The external rank is 6 Frequencies (cm-1; negative is imaginary): A1 1 4074.63 2 1825.22 B2 3 4193.34 THERMODYNAMIC ANALYSIS: Contributions to the nonelectronic enthalpy at 298.15 K: kJ/mol kcal/mol E0vib = 60.3707 14.4289 Evib(T) = 0.0033 0.0008 Erot(T) = 3.7185 0.8887 Etrans(T) = 3.7185 0.8887 PV(T) = 2.4790 0.5925 Total nonelectronic enthalpy: H_nonel(T) = 70.2899 16.7997 Contributions to the entropy at 298.15 K and 1.0 atm: J/(mol*K) cal/(mol*K) S_trans(T,P) = 144.8020 34.6085 S_rot(T) = 43.4035 10.3737 S_vib(T) = 0.0122 0.0029 S_el = 0.0000 0.0000 Total entropy: S_total(T,P) = 188.2176 44.9851 Various data used for thermodynamic analysis: Nonlinear molecule Principal moments of inertia (amu*angstrom^2): 0.58773, 1.14593, 1.73366 Point group: c2v Order of point group: 4 Rotational symmetry number: 2 Rotational temperatures (K): 41.2676, 21.1656, 13.9902 Electronic degeneracy: 1 Function Parameters: value_accuracy = 2.772912e-08 (1.000000e-07) gradient_accuracy = 2.772912e-06 (1.000000e-06) hessian_accuracy = 0.000000e+00 (1.000000e-04) Molecule: Molecular formula: H2O molecule: ( symmetry = c2v symmetry_frame = [ [ -0.0000000000000000 0.0000000000000000 1.0000000000000000] [ 1.0000000000000000 0.0000000000000000 -0.0000000000000000] [ -0.0000000000000000 1.0000000000000000 -0.0000000000000000]] unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0641272226 0.0000000000 0.0000000000] 2 H [ 0.5088727774 -0.0000000000 0.7540000000] 3 H [ 0.5088727774 -0.0000000000 -0.7540000000] } ) Atomic Masses: 15.99491 1.00783 1.00783 GaussianBasisSet: nbasis = 19 nshell = 8 nprim = 19 name = "6-31G*" SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 236328 bytes integral cache = 7760632 bytes Projecting guess wavefunction into the present basis set SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 7967676 bytes Starting from core Hamiltonian guess Using symmetric orthogonalization. n(SO): 4 0 1 2 Maximum orthogonalization residual = 1.94039 Minimum orthogonalization residual = 0.335627 nuclear repulsion energy = 9.2914265473 565 integrals iter 1 energy = -74.6442059283 delta = 7.46913e-01 565 integrals iter 2 energy = -74.9411785471 delta = 2.32701e-01 565 integrals iter 3 energy = -74.9598835707 delta = 6.74768e-02 565 integrals iter 4 energy = -74.9608017389 delta = 1.82839e-02 565 integrals iter 5 energy = -74.9608457808 delta = 4.27179e-03 565 integrals iter 6 energy = -74.9608460189 delta = 2.87494e-04 565 integrals iter 7 energy = -74.9608460194 delta = 1.50392e-05 HOMO is 1 B1 = -0.391179 LUMO is 4 A1 = 0.614055 total scf energy = -74.9608460194 Projecting the guess density. The number of electrons in the guess density = 10 Using symmetric orthogonalization. n(SO): 10 1 3 5 Maximum orthogonalization residual = 4.69613 Minimum orthogonalization residual = 0.0219193 The number of electrons in the projected density = 9.95801 nuclear repulsion energy = 9.2914265473 19108 integrals iter 1 energy = -75.8313984939 delta = 2.12979e-01 19108 integrals iter 2 energy = -75.9893342668 delta = 5.77199e-02 19108 integrals iter 3 energy = -76.0061172655 delta = 1.48537e-02 19108 integrals iter 4 energy = -76.0104307742 delta = 6.83190e-03 19108 integrals iter 5 energy = -76.0107349333 delta = 2.29768e-03 19108 integrals iter 6 energy = -76.0107461220 delta = 5.11193e-04 19108 integrals iter 7 energy = -76.0107462842 delta = 5.25319e-05 19108 integrals iter 8 energy = -76.0107462976 delta = 1.68043e-05 19108 integrals iter 9 energy = -76.0107462983 delta = 4.02927e-06 19108 integrals iter 10 energy = -76.0107462984 delta = 1.15008e-06 19108 integrals iter 11 energy = -76.0107462984 delta = 1.44804e-07 HOMO is 1 B1 = -0.498218 LUMO is 4 A1 = 0.213089 total scf energy = -76.0107462984 Natural Population Analysis: n atom charge ne(S) ne(P) ne(D) 1 O -0.954701 3.748465 5.194988 0.011248 2 H 0.477351 0.522649 3 H 0.477351 0.522649 SCF Parameters: maxiter = 40 density_reset_frequency = 10 level_shift = 0.000000 CLSCF Parameters: charge = 0 ndocc = 5 docc = [ 3 0 1 1 ] CPU Wall mpqc: 1.87 1.99 NAO: 0.21 0.22 vector: 0.18 0.20 density: 0.00 0.00 evals: 0.04 0.01 extrap: 0.02 0.01 fock: 0.04 0.09 accum: 0.00 0.00 ao_gmat: 0.03 0.03 start thread: 0.03 0.03 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.01 0.03 sum: 0.00 0.00 symm: 0.00 0.03 vector: 0.05 0.05 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.00 0.01 fock: 0.03 0.02 accum: 0.00 0.00 ao_gmat: 0.01 0.01 start thread: 0.01 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.01 0.01 sum: 0.00 0.00 symm: 0.01 0.01 calc: 0.12 0.13 vector: 0.11 0.13 density: 0.00 0.00 evals: 0.00 0.01 extrap: 0.00 0.01 fock: 0.09 0.09 accum: 0.00 0.00 ao_gmat: 0.04 0.03 start thread: 0.03 0.03 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.04 0.02 sum: 0.00 0.00 symm: 0.01 0.03 hessian: 1.35 1.42 compute gradient: 0.62 0.68 nuc rep: 0.00 0.00 one electron gradient: 0.06 0.07 overlap gradient: 0.05 0.03 two electron gradient: 0.51 0.57 contribution: 0.09 0.15 start thread: 0.09 0.11 stop thread: 0.00 0.03 setup: 0.42 0.42 vector: 0.69 0.71 density: 0.01 0.01 evals: 0.04 0.03 extrap: 0.03 0.05 fock: 0.42 0.40 accum: 0.00 0.00 ao_gmat: 0.16 0.17 start thread: 0.15 0.15 stop thread: 0.00 0.01 init pmax: 0.00 0.00 local data: 0.03 0.01 setup: 0.06 0.09 sum: 0.00 0.00 symm: 0.16 0.12 vector: 0.05 0.04 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.03 0.00 fock: 0.00 0.02 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.01 input: 0.18 0.21 vector: 0.03 0.04 density: 0.00 0.00 evals: 0.01 0.00 extrap: 0.00 0.01 fock: 0.02 0.02 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.01 0.01 sum: 0.00 0.00 symm: 0.00 0.01 End Time: Sat Apr 6 14:00:28 2002