MPQC: Massively Parallel Quantum Chemistry Version 2.1.0-alpha-gcc3 Machine: i686-pc-linux-gnu User: cljanss@aros.ca.sandia.gov Start Time: Sat Apr 6 13:35:37 2002 Using ProcMessageGrp for message passing (number of nodes = 1). Using PthreadThreadGrp for threading (number of threads = 2). Using ProcMemoryGrp for distributed shared memory. Total number of processors = 2 Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/atominfo.kv. IntCoorGen: generated 3 coordinates. Forming optimization coordinates: SymmMolecularCoor::form_variable_coordinates() expected 3 coordinates found 2 variable coordinates found 0 constant coordinates Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/6-311gSS.kv. Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. CLSCF::init: total charge = 0 docc = [ 5 ] nbasis = 7 CLSCF::init: total charge = 0 docc = [ 5 ] nbasis = 30 Molecular formula H2O MPQC options: matrixkit = filename = h2ofrq_scf6311gssc2voptfrq restart_file = h2ofrq_scf6311gssc2voptfrq.ckpt restart = no checkpoint = no savestate = no do_energy = yes do_gradient = no optimize = yes write_pdb = no print_mole = yes print_timings = yes SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes Projecting guess wavefunction into the present basis set SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes Starting from core Hamiltonian guess Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 nuclear repulsion energy = 9.1571164588 733 integrals iter 1 energy = -74.6468200575 delta = 7.47196e-01 733 integrals iter 2 energy = -74.9403205745 delta = 2.23216e-01 733 integrals iter 3 energy = -74.9595428818 delta = 6.69340e-02 733 integrals iter 4 energy = -74.9606520926 delta = 2.02576e-02 733 integrals iter 5 energy = -74.9607020706 delta = 4.09811e-03 733 integrals iter 6 energy = -74.9607024821 delta = 3.66040e-04 733 integrals iter 7 energy = -74.9607024827 delta = 1.47732e-05 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 Projecting the guess density. The number of electrons in the guess density = 10 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.46641 Minimum orthogonalization residual = 0.0188915 The number of electrons in the projected density = 9.99139 nuclear repulsion energy = 9.1571164588 127194 integrals iter 1 energy = -75.7283928106 delta = 9.87360e-02 127292 integrals iter 2 energy = -76.0314750633 delta = 3.60005e-02 127291 integrals iter 3 energy = -76.0437203673 delta = 6.49018e-03 127292 integrals iter 4 energy = -76.0452918417 delta = 2.49056e-03 127291 integrals iter 5 energy = -76.0456219144 delta = 9.38963e-04 127291 integrals iter 6 energy = -76.0456765911 delta = 5.91379e-04 127292 integrals iter 7 energy = -76.0456769437 delta = 3.76481e-05 127292 integrals iter 8 energy = -76.0456769851 delta = 1.26111e-05 127291 integrals iter 9 energy = -76.0456769889 delta = 3.98043e-06 HOMO is 5 A = -0.497602 LUMO is 6 A = 0.150997 total scf energy = -76.0456769889 SCF::compute: gradient accuracy = 1.0000000e-04 Total Gradient: 1 O 0.0000000000 -0.0000000000 0.0142368409 2 H 0.0231234203 -0.0000000000 -0.0071184205 3 H -0.0231234203 0.0000000000 -0.0071184205 Max Gradient : 0.0231234203 0.0001000000 no Max Displacement : 0.0781181318 0.0001000000 no Gradient*Displace: 0.0036278335 0.0001000000 no taking step of size 0.103474 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3689983565] 2 H [ 0.7426375609 0.0000000000 -0.1844991782] 3 H [ -0.7426375609 0.0000000000 -0.1844991782] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 3.1427837e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.4976334040 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.58466 Minimum orthogonalization residual = 0.0161741 127292 integrals iter 1 energy = -76.0340970349 delta = 9.24310e-02 127292 integrals iter 2 energy = -76.0462906655 delta = 9.58553e-03 127292 integrals iter 3 energy = -76.0464927540 delta = 1.27619e-03 127292 integrals iter 4 energy = -76.0465035231 delta = 2.28297e-04 127292 integrals iter 5 energy = -76.0465047026 delta = 6.53829e-05 127291 integrals iter 6 energy = -76.0465049872 delta = 3.81337e-05 127292 integrals iter 7 energy = -76.0465049983 delta = 8.32543e-06 127292 integrals iter 8 energy = -76.0465049987 delta = 1.55190e-06 HOMO is 5 A = -0.501472 LUMO is 6 A = 0.154726 total scf energy = -76.0465049987 SCF::compute: gradient accuracy = 3.1427837e-05 Total Gradient: 1 O -0.0000000000 0.0000000000 -0.0229746839 2 H -0.0136695026 -0.0000000000 0.0114873420 3 H 0.0136695026 -0.0000000000 0.0114873420 Max Gradient : 0.0229746839 0.0001000000 no Max Displacement : 0.0186576097 0.0001000000 no Gradient*Displace: 0.0010005895 0.0001000000 no taking step of size 0.039784 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3765303055] 2 H [ 0.7525107435 0.0000000000 -0.1882651527] 3 H [ -0.7525107435 0.0000000000 -0.1882651527] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 2.0427764e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3503989476 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.54934 Minimum orthogonalization residual = 0.0170561 127291 integrals iter 1 energy = -76.0449228033 delta = 8.66066e-02 127292 integrals iter 2 energy = -76.0469516607 delta = 4.87048e-03 127291 integrals iter 3 energy = -76.0469930779 delta = 7.84335e-04 127292 integrals iter 4 energy = -76.0469963091 delta = 1.44699e-04 127291 integrals iter 5 energy = -76.0469968335 delta = 4.52050e-05 127291 integrals iter 6 energy = -76.0469969623 delta = 2.87539e-05 127292 integrals iter 7 energy = -76.0469969658 delta = 4.28621e-06 127291 integrals iter 8 energy = -76.0469969659 delta = 9.38308e-07 HOMO is 5 A = -0.500390 LUMO is 6 A = 0.152799 total scf energy = -76.0469969659 SCF::compute: gradient accuracy = 2.0427764e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 -0.0017172802 2 H 0.0009892888 -0.0000000000 0.0008586401 3 H -0.0009892888 -0.0000000000 0.0008586401 Max Gradient : 0.0017172802 0.0001000000 no Max Displacement : 0.0050049478 0.0001000000 no Gradient*Displace: 0.0000216373 0.0001000000 yes taking step of size 0.009528 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.3789409680] 2 H [ 0.7498622390 0.0000000000 -0.1894704840] 3 H [ -0.7498622390 0.0000000000 -0.1894704840] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 1.9905888e-08 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3510379540 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.5547 Minimum orthogonalization residual = 0.016993 127291 integrals iter 1 energy = -76.0469396965 delta = 8.82719e-02 127292 integrals iter 2 energy = -76.0470093987 delta = 8.45311e-04 127292 integrals iter 3 energy = -76.0470108035 delta = 1.41582e-04 127292 integrals iter 4 energy = -76.0470108352 delta = 1.84081e-05 127292 integrals iter 5 energy = -76.0470108387 delta = 4.98810e-06 127292 integrals iter 6 energy = -76.0470108391 delta = 1.31745e-06 127292 integrals iter 7 energy = -76.0470108392 delta = 7.10003e-07 127292 integrals iter 8 energy = -76.0470108392 delta = 1.07469e-07 HOMO is 5 A = -0.500589 LUMO is 6 A = 0.152655 total scf energy = -76.0470108392 SCF::compute: gradient accuracy = 1.9905888e-06 Total Gradient: 1 O -0.0000000000 0.0000000000 -0.0004822524 2 H 0.0002793727 0.0000000000 0.0002411262 3 H -0.0002793727 -0.0000000000 0.0002411262 Max Gradient : 0.0004822524 0.0001000000 no Max Displacement : 0.0019723698 0.0001000000 no Gradient*Displace: 0.0000023930 0.0001000000 yes taking step of size 0.003740 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.3798853532] 2 H [ 0.7488185057 0.0000000000 -0.1899426766] 3 H [ -0.7488185057 0.0000000000 -0.1899426766] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 5.6037762e-09 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3512849433 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.55682 Minimum orthogonalization residual = 0.0169694 127292 integrals iter 1 energy = -76.0470010674 delta = 8.84270e-02 127292 integrals iter 2 energy = -76.0470118055 delta = 3.33361e-04 127292 integrals iter 3 energy = -76.0470120224 delta = 5.56762e-05 127292 integrals iter 4 energy = -76.0470120273 delta = 7.26934e-06 127292 integrals iter 5 energy = -76.0470120278 delta = 1.87766e-06 127292 integrals iter 6 energy = -76.0470120279 delta = 5.83048e-07 127292 integrals iter 7 energy = -76.0470120279 delta = 2.82971e-07 127292 integrals iter 8 energy = -76.0470120279 delta = 4.29107e-08 127292 integrals iter 9 energy = -76.0470120279 delta = 6.94015e-09 HOMO is 5 A = -0.500667 LUMO is 6 A = 0.152598 total scf energy = -76.0470120279 SCF::compute: gradient accuracy = 5.6037762e-07 Total Gradient: 1 O 0.0000000000 0.0000000000 0.0000028297 2 H -0.0000022738 -0.0000000000 -0.0000014149 3 H 0.0000022738 -0.0000000000 -0.0000014149 Max Gradient : 0.0000028297 0.0001000000 yes Max Displacement : 0.0000139939 0.0001000000 yes Gradient*Displace: 0.0000000001 0.0001000000 yes All convergence criteria have been met. The optimization has converged. Value of the MolecularEnergy: -76.0470120279 The external rank is 6 Computing molecular hessian from 6 displacements: Starting at displacement: 0 Hessian options: displacement: 0.01 bohr gradient_accuracy: 1e-05 au eliminate_cubic_terms: yes only_totally_symmetric: no Beginning displacement 0: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3512849433 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.55682 Minimum orthogonalization residual = 0.0169694 127292 integrals iter 1 energy = -76.0470120279 delta = 8.85180e-02 127292 integrals iter 2 energy = -76.0470120279 delta = 2.05094e-10 HOMO is 5 A = -0.500667 LUMO is 6 A = 0.152598 total scf energy = -76.0470120279 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 0.0000028300 2 H -0.0000022737 -0.0000000000 -0.0000014150 3 H 0.0000022737 0.0000000000 -0.0000014150 Beginning displacement 1: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3132060493 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.54545 Minimum orthogonalization residual = 0.0172299 127291 integrals iter 1 energy = -76.0468405241 delta = 8.81013e-02 127292 integrals iter 2 energy = -76.0469756826 delta = 1.09284e-03 127291 integrals iter 3 energy = -76.0469781903 delta = 1.66348e-04 127292 integrals iter 4 energy = -76.0469783679 delta = 3.15873e-05 127291 integrals iter 5 energy = -76.0469783967 delta = 1.01436e-05 127291 integrals iter 6 energy = -76.0469784035 delta = 6.35550e-06 127292 integrals iter 7 energy = -76.0469784037 delta = 1.03179e-06 127291 integrals iter 8 energy = -76.0469784037 delta = 2.09220e-07 HOMO is 5 A = -0.500317 LUMO is 6 A = 0.152145 total scf energy = -76.0469784037 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 0.0047866528 2 H 0.0038689101 -0.0000000000 -0.0023933264 3 H -0.0038689101 0.0000000000 -0.0023933264 Beginning displacement 2: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3218788997 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.55541 Minimum orthogonalization residual = 0.017094 127292 integrals iter 1 energy = -76.0468288673 delta = 8.83751e-02 127292 integrals iter 2 energy = -76.0469792980 delta = 1.08125e-03 127292 integrals iter 3 energy = -76.0469821446 delta = 1.78338e-04 127292 integrals iter 4 energy = -76.0469821929 delta = 2.41554e-05 127292 integrals iter 5 energy = -76.0469821979 delta = 4.20224e-06 127292 integrals iter 6 energy = -76.0469821993 delta = 2.97390e-06 127292 integrals iter 7 energy = -76.0469821995 delta = 1.00699e-06 127292 integrals iter 8 energy = -76.0469821995 delta = 1.78295e-07 HOMO is 5 A = -0.500668 LUMO is 6 A = 0.152034 total scf energy = -76.0469821995 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 0.0055841511 2 H 0.0020515954 -0.0000000000 -0.0027920756 3 H -0.0020515954 -0.0000000000 -0.0027920756 Beginning displacement 3: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3896669540 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.56822 Minimum orthogonalization residual = 0.0167128 127292 integrals iter 1 energy = -76.0464537794 delta = 8.97313e-02 127292 integrals iter 2 energy = -76.0469655920 delta = 2.90654e-03 127291 integrals iter 3 energy = -76.0469768066 delta = 4.54210e-04 127292 integrals iter 4 energy = -76.0469776370 delta = 7.73945e-05 127292 integrals iter 5 energy = -76.0469777488 delta = 2.26642e-05 127292 integrals iter 6 energy = -76.0469777773 delta = 1.34190e-05 127292 integrals iter 7 energy = -76.0469777782 delta = 2.15244e-06 127292 integrals iter 8 energy = -76.0469777783 delta = 4.87724e-07 HOMO is 5 A = -0.501020 LUMO is 6 A = 0.153046 total scf energy = -76.0469777783 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 0.0000000000 -0.0049271551 2 H -0.0039692149 -0.0000000000 0.0024635776 3 H 0.0039692149 -0.0000000000 0.0024635776 Beginning displacement 4: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3805762961 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.55818 Minimum orthogonalization residual = 0.0168523 127291 integrals iter 1 energy = -76.0468243456 delta = 8.86838e-02 127292 integrals iter 2 energy = -76.0469793763 delta = 1.11194e-03 127291 integrals iter 3 energy = -76.0469822684 delta = 1.79460e-04 127292 integrals iter 4 energy = -76.0469823161 delta = 2.45573e-05 127292 integrals iter 5 energy = -76.0469823217 delta = 4.24584e-06 127291 integrals iter 6 energy = -76.0469823230 delta = 3.04770e-06 127292 integrals iter 7 energy = -76.0469823232 delta = 9.75654e-07 127291 integrals iter 8 energy = -76.0469823232 delta = 1.85269e-07 HOMO is 5 A = -0.500666 LUMO is 6 A = 0.153158 total scf energy = -76.0469823232 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 -0.0055845592 2 H -0.0021149241 -0.0000000000 0.0027922796 3 H 0.0021149241 -0.0000000000 0.0027922796 Beginning displacement 5: Displacement is B1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3515775761 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.55683 Minimum orthogonalization residual = 0.0169602 127292 integrals iter 1 energy = -76.0464233630 delta = 8.78889e-02 127292 integrals iter 2 energy = -76.0469292283 delta = 2.13325e-03 127291 integrals iter 3 energy = -76.0469393307 delta = 3.47847e-04 127292 integrals iter 4 energy = -76.0469400429 delta = 5.95281e-05 127292 integrals iter 5 energy = -76.0469401291 delta = 1.74652e-05 127292 integrals iter 6 energy = -76.0469401480 delta = 9.09239e-06 127292 integrals iter 7 energy = -76.0469401490 delta = 2.14688e-06 127292 integrals iter 8 energy = -76.0469401491 delta = 4.41606e-07 HOMO is 5 A = -0.500671 LUMO is 6 A = 0.152584 total scf energy = -76.0469401491 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0107469945 0.0000000000 -0.0001763155 2 H -0.0054663155 -0.0000000000 0.0041777679 3 H -0.0052806791 0.0000000000 -0.0040014524 The external rank is 6 Frequencies (cm-1; negative is imaginary): A1 1 4142.29 2 1750.70 B1 3 4237.73 THERMODYNAMIC ANALYSIS: Contributions to the nonelectronic enthalpy at 298.15 K: kJ/mol kcal/mol E0vib = 60.5952 14.4826 Evib(T) = 0.0045 0.0011 Erot(T) = 3.7185 0.8887 Etrans(T) = 3.7185 0.8887 PV(T) = 2.4790 0.5925 Total nonelectronic enthalpy: H_nonel(T) = 70.5156 16.8536 Contributions to the entropy at 298.15 K and 1.0 atm: J/(mol*K) cal/(mol*K) S_trans(T,P) = 144.8020 34.6085 S_rot(T) = 43.2464 10.3361 S_vib(T) = 0.0168 0.0040 S_el = 0.0000 0.0000 Total entropy: S_total(T,P) = 188.0652 44.9487 Various data used for thermodynamic analysis: Nonlinear molecule Principal moments of inertia (amu*angstrom^2): 0.58124, 1.13023, 1.71148 Point group: c2v Order of point group: 4 Rotational symmetry number: 2 Rotational temperatures (K): 41.7283, 21.4595, 14.1715 Electronic degeneracy: 1 Function Parameters: value_accuracy = 9.098022e-08 (1.000000e-07) gradient_accuracy = 9.098022e-06 (5.603776e-07) hessian_accuracy = 0.000000e+00 (1.000000e-04) (computed) Molecular Coordinates: IntMolecularCoor Parameters: update_bmat = no scale_bonds = 1 scale_bends = 1 scale_tors = 1 scale_outs = 1 symmetry_tolerance = 1.000000e-05 simple_tolerance = 1.000000e-03 coordinate_tolerance = 1.000000e-07 have_fixed_values = 0 max_update_steps = 100 max_update_disp = 0.500000 have_fixed_values = 0 Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.3798853532] 2 H [ 0.7488185057 0.0000000000 -0.1899426766] 3 H [ -0.7488185057 0.0000000000 -0.1899426766] } ) Atomic Masses: 15.99491 1.00783 1.00783 Bonds: STRE s1 0.94097 1 2 O-H STRE s2 0.94097 1 3 O-H Bends: BEND b1 105.45995 2 1 3 H-O-H SymmMolecularCoor Parameters: change_coordinates = no transform_hessian = yes max_kappa2 = 10.000000 GaussianBasisSet: nbasis = 30 nshell = 13 nprim = 24 name = "6-311G**" SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.3512849433 Using symmetric orthogonalization. n(SO): 30 Maximum orthogonalization residual = 4.55682 Minimum orthogonalization residual = 0.0169694 127292 integrals iter 1 energy = -76.0466936130 delta = 8.85297e-02 127292 integrals iter 2 energy = -76.0470059807 delta = 1.20387e-03 127291 integrals iter 3 energy = -76.0470115250 delta = 1.89058e-04 127292 integrals iter 4 energy = -76.0470119693 delta = 3.35859e-05 127292 integrals iter 5 energy = -76.0470120215 delta = 1.12534e-05 127291 integrals iter 6 energy = -76.0470120276 delta = 4.47877e-06 127292 integrals iter 7 energy = -76.0470120279 delta = 1.01241e-06 127287 integrals iter 8 energy = -76.0470120279 delta = 2.24733e-07 HOMO is 5 A = -0.500667 LUMO is 6 A = 0.152598 total scf energy = -76.0470120279 Natural Population Analysis: n atom charge ne(S) ne(P) ne(D) 1 O -0.891932 3.729839 5.153844 0.008249 2 H 0.445966 0.551118 0.002917 3 H 0.445966 0.551118 0.002917 SCF Parameters: maxiter = 40 density_reset_frequency = 10 level_shift = 0.000000 CLSCF Parameters: charge = 0 ndocc = 5 docc = [ 5 ] The following keywords in "h2ofrq_scf6311gssc2voptfrq.in" were ignored: mpqc:mole:guess_wavefunction:multiplicity mpqc:mole:multiplicity CPU Wall mpqc: 6.02 6.61 NAO: 0.26 0.26 vector: 0.24 0.24 density: 0.00 0.00 evals: 0.03 0.01 extrap: 0.02 0.01 fock: 0.16 0.18 accum: 0.00 0.00 ao_gmat: 0.16 0.18 start thread: 0.15 0.15 stop thread: 0.00 0.02 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 calc: 2.63 2.91 compute gradient: 1.41 1.59 nuc rep: 0.00 0.00 one electron gradient: 0.10 0.10 overlap gradient: 0.04 0.03 two electron gradient: 1.26 1.45 contribution: 0.75 0.94 start thread: 0.74 0.74 stop thread: 0.00 0.19 setup: 0.51 0.52 vector: 1.20 1.30 density: 0.03 0.02 evals: 0.06 0.07 extrap: 0.08 0.07 fock: 0.85 0.94 accum: 0.00 0.00 ao_gmat: 0.81 0.91 start thread: 0.81 0.80 stop thread: 0.00 0.10 init pmax: 0.00 0.00 local data: 0.02 0.01 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.01 0.01 vector: 0.02 0.02 density: 0.01 0.00 evals: 0.00 0.00 extrap: 0.00 0.00 fock: 0.01 0.01 accum: 0.00 0.00 ao_gmat: 0.01 0.01 start thread: 0.01 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 hessian: 2.99 3.29 compute gradient: 1.68 1.91 nuc rep: 0.00 0.00 one electron gradient: 0.13 0.12 overlap gradient: 0.04 0.04 two electron gradient: 1.51 1.75 contribution: 0.90 1.13 start thread: 0.89 0.89 stop thread: 0.00 0.23 setup: 0.61 0.62 vector: 1.30 1.37 density: 0.02 0.02 evals: 0.09 0.07 extrap: 0.08 0.07 fock: 0.93 1.01 accum: 0.00 0.00 ao_gmat: 0.89 0.97 start thread: 0.88 0.85 stop thread: 0.00 0.11 init pmax: 0.02 0.00 local data: 0.00 0.01 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.01 0.02 input: 0.13 0.14 End Time: Sat Apr 6 13:35:44 2002