| 1 | import pyMoleCuilder as mol
 | 
|---|
| 2 | import sys, os, math
 | 
|---|
| 3 | try:
 | 
|---|
| 4 |         import numpy
 | 
|---|
| 5 |         numpy_present = True
 | 
|---|
| 6 | except ImportError:
 | 
|---|
| 7 |         numpy_present = False
 | 
|---|
| 8 | 
 | 
|---|
| 9 | if len(sys.argv) < 5:
 | 
|---|
| 10 |         print('Usage: '+sys.argv[0]+' <input> <path> <steps> <no_atoms> <use bondgraph>')
 | 
|---|
| 11 |         sys.exit(1)
 | 
|---|
| 12 | 
 | 
|---|
| 13 | steps=int(sys.argv[3])
 | 
|---|
| 14 | equilibrium_distance=1.6
 | 
|---|
| 15 | no_atoms=int(sys.argv[4])
 | 
|---|
| 16 | inputfile=sys.argv[1]
 | 
|---|
| 17 | forcespath=sys.argv[2]
 | 
|---|
| 18 | forcesfile="ising.forces"
 | 
|---|
| 19 | use_bondgraph=sys.argv[5]
 | 
|---|
| 20 | 
 | 
|---|
| 21 | # creating input file
 | 
|---|
| 22 | atomstart=7.6-1.6*math.floor(no_atoms/2)
 | 
|---|
| 23 | print("Creating "+inputfile)
 | 
|---|
| 24 | with open(inputfile, 'w') as f:
 | 
|---|
| 25 |         f.write("# ATOMDATA\ttype\tId\tx=3\tu=3\tF=3\tneighbors=4\n")
 | 
|---|
| 26 |         f.write("# Box\t20\t0\t0\t0\t20\t0\t0\t0\t20\n")
 | 
|---|
| 27 |         for i in range(1, no_atoms+1):
 | 
|---|
| 28 |                 atompos=atomstart+1.6*float(i)
 | 
|---|
| 29 |                 if i==math.floor(no_atoms/2+1):
 | 
|---|
| 30 |                         atompos=atompos-.5
 | 
|---|
| 31 |                 if i==1:
 | 
|---|
| 32 |                         f.write("C\t%d\t%lg\t10\t10\t0\t0\t0\t0\t0\t0\t%d\t0\t0\t0\n" % (i, atompos, i+1));
 | 
|---|
| 33 |                 elif i==no_atoms:
 | 
|---|
| 34 |                         f.write("C\t%d\t%lg\t10\t10\t0\t0\t0\t0\t0\t0\t%d\t0\t0\t0\n" % (i, atompos, i-1));
 | 
|---|
| 35 |                 else:
 | 
|---|
| 36 |                         f.write("C\t%d\t%lg\t10\t10\t0\t0\t0\t0\t0\t0\t%d\t%d\t0\t0\n" % (i, atompos, i-1, i+1));
 | 
|---|
| 37 | 
 | 
|---|
| 38 | print("Parsing from "+inputfile)
 | 
|---|
| 39 | mol.WorldInput(inputfile)
 | 
|---|
| 40 | mol.SelectionAllAtoms()
 | 
|---|
| 41 | mol.CommandVerbose("4")
 | 
|---|
| 42 | 
 | 
|---|
| 43 | # calculate damping factor from finite geometric series
 | 
|---|
| 44 | # s_n/a = \sum^{n-1}_{k=0} r^k = (1-r^n)/(1-r) -> s_(n+1)/a -1 = \sum^{n}_{k=1} r^k = (1-r^(n+1))/(1-r) - 1
 | 
|---|
| 45 | # \sum^{n}_{k=1} r^k := 1 and 1 = (1-r^(n+1))/(1-r) - 1 -> 2*(1-r) = 1 - r^(n+1) -> 1 - 2*r + r^(n+1) = 0
 | 
|---|
| 46 | # find root: p[0] is coefficient of monomial with highest power 
 | 
|---|
| 47 | if numpy_present:
 | 
|---|
| 48 |         p=[0.] * (no_atoms+1)
 | 
|---|
| 49 |         p[0]=1.
 | 
|---|
| 50 |         p[no_atoms-1]=-2.
 | 
|---|
| 51 |         p[no_atoms]=1.
 | 
|---|
| 52 |         zeros=numpy.roots(p)
 | 
|---|
| 53 |         print("Roots of p "+str(p)+" are "+str(zeros))
 | 
|---|
| 54 |         damping=numpy.real(zeros[-1])
 | 
|---|
| 55 |         print("Using damping factor of "+str(damping))
 | 
|---|
| 56 | else:
 | 
|---|
| 57 |         if no_atoms == 2:
 | 
|---|
| 58 |                 damping=0.5
 | 
|---|
| 59 |         elif no_atoms == 5:
 | 
|---|
| 60 |                 damping=0.5436890126920764
 | 
|---|
| 61 | 
 | 
|---|
| 62 | for i in range(0, steps):
 | 
|---|
| 63 |         # TODO: Python interface should have something to iterate over selected atoms
 | 
|---|
| 64 |         # and molecules and get information on their internal status
 | 
|---|
| 65 |         
 | 
|---|
| 66 |         # read current atomic positions
 | 
|---|
| 67 |         outputfile=forcespath+'/'+forcesfile+'.xyz'
 | 
|---|
| 68 |         try:
 | 
|---|
| 69 |                 os.remove(outputfile)
 | 
|---|
| 70 |         except: OSError
 | 
|---|
| 71 |                 #
 | 
|---|
| 72 |         mol.WorldOutputAs(outputfile)
 | 
|---|
| 73 |         mol.wait()
 | 
|---|
| 74 |         distances=[]
 | 
|---|
| 75 |         coords=[0.,0.,0.]
 | 
|---|
| 76 |         try:
 | 
|---|
| 77 |                 skiplines=2+i*(1+1+no_atoms+1) # no_atoms, comment, no_atoms atoms, empty line
 | 
|---|
| 78 |                 with open(outputfile) as f:
 | 
|---|
| 79 |                         for line in f:
 | 
|---|
| 80 |                                 if skiplines != 0:
 | 
|---|
| 81 |                                         skiplines=skiplines-1
 | 
|---|
| 82 |                                         continue
 | 
|---|
| 83 |                                 line=line.replace('\t',' ')
 | 
|---|
| 84 |                                 print("LINE: "+line)
 | 
|---|
| 85 |                                 [elementtype, X, Y, Z] = line.split(' ', 4)
 | 
|---|
| 86 |                                 if coords!=[0.,0.,0.]:
 | 
|---|
| 87 |                                         distances.append(math.sqrt((coords[0]-float(X))**2+(coords[1]-float(Y))**2+(coords[2]-float(Z))**2))
 | 
|---|
| 88 |                                 coords=[float(X),float(Y),float(Z)]
 | 
|---|
| 89 |         except IOError:
 | 
|---|
| 90 |                 print('Warning: '+outputfile+' not readable.')
 | 
|---|
| 91 |                 sys.exit(1)
 | 
|---|
| 92 |         
 | 
|---|
| 93 |         assert(len(distances)==no_atoms-1)
 | 
|---|
| 94 |         
 | 
|---|
| 95 |         # 
 | 
|---|
| 96 |         # generate Ising model forces and store in file
 | 
|---|
| 97 |         #
 | 
|---|
| 98 |         # i.e. we have spring forces between neighboring atoms depending on their distance
 | 
|---|
| 99 |         forces=[]
 | 
|---|
| 100 |         for d in distances:
 | 
|---|
| 101 |                 forces.append( d - equilibrium_distance );
 | 
|---|
| 102 |                 
 | 
|---|
| 103 |         # generate new forces file
 | 
|---|
| 104 |         
 | 
|---|
| 105 |         with open(forcespath+'/'+forcesfile, 'w') as f:
 | 
|---|
| 106 |                 f.write('# atom\tf_x\tf_y\tf_z\n')
 | 
|---|
| 107 |                 for i in range(len(distances)+1):
 | 
|---|
| 108 |                         force=0
 | 
|---|
| 109 |                         if i!=0:
 | 
|---|
| 110 |                                 force=force-forces[i-1]
 | 
|---|
| 111 |                         if (i != len(distances)):
 | 
|---|
| 112 |                                 force=force+forces[i]
 | 
|---|
| 113 |                         f.write("%d\t%f\t0.\t0.\n" % (i+1, force))
 | 
|---|
| 114 | 
 | 
|---|
| 115 |         mol.WorldStepWorldTime("1")
 | 
|---|
| 116 |         mol.MoleculeForceAnnealing(forcespath+'/'+forcesfile, ".1", "%d" % (steps), "%d" % (no_atoms-1), "%lg" % (damping), use_bondgraph)
 | 
|---|
| 117 |         mol.wait()
 | 
|---|
| 118 |         
 | 
|---|
| 119 | sys.exit(0)
 | 
|---|