| [0a4f7f] | 1 | /* | 
|---|
|  | 2 | * vector_ops.cpp | 
|---|
|  | 3 | * | 
|---|
|  | 4 | *  Created on: Apr 1, 2010 | 
|---|
|  | 5 | *      Author: crueger | 
|---|
|  | 6 | */ | 
|---|
|  | 7 |  | 
|---|
|  | 8 | #include "vector.hpp" | 
|---|
|  | 9 | #include "Plane.hpp" | 
|---|
|  | 10 | #include "log.hpp" | 
|---|
|  | 11 | #include "verbose.hpp" | 
|---|
|  | 12 | #include "gslmatrix.hpp" | 
|---|
|  | 13 | #include "leastsquaremin.hpp" | 
|---|
|  | 14 | #include "info.hpp" | 
|---|
|  | 15 | #include "Helpers/fast_functions.hpp" | 
|---|
|  | 16 | #include "Exceptions/LinearDependenceException.hpp" | 
|---|
|  | 17 |  | 
|---|
|  | 18 | #include <gsl/gsl_linalg.h> | 
|---|
|  | 19 | #include <gsl/gsl_matrix.h> | 
|---|
|  | 20 | #include <gsl/gsl_permutation.h> | 
|---|
|  | 21 | #include <gsl/gsl_vector.h> | 
|---|
|  | 22 |  | 
|---|
|  | 23 | /** | 
|---|
|  | 24 | * !@file | 
|---|
|  | 25 | * These files defines several common operation on vectors that should not | 
|---|
|  | 26 | * become part of the main vector class, because they are either to complex | 
|---|
|  | 27 | * or need methods from other subsystems that should not be moved to | 
|---|
|  | 28 | * the LinAlg-Subsystem | 
|---|
|  | 29 | */ | 
|---|
|  | 30 |  | 
|---|
|  | 31 | /** Creates a new vector as the one with least square distance to a given set of \a vectors. | 
|---|
|  | 32 | * \param *vectors set of vectors | 
|---|
|  | 33 | * \param num number of vectors | 
|---|
|  | 34 | * \return true if success, false if failed due to linear dependency | 
|---|
|  | 35 | */ | 
|---|
|  | 36 | bool LSQdistance(Vector &res,const Vector **vectors, int num) | 
|---|
|  | 37 | { | 
|---|
|  | 38 | int j; | 
|---|
|  | 39 |  | 
|---|
|  | 40 | for (j=0;j<num;j++) { | 
|---|
|  | 41 | Log() << Verbose(1) << j << "th atom's vector: " << vectors[j] << endl; | 
|---|
|  | 42 | } | 
|---|
|  | 43 |  | 
|---|
|  | 44 | int np = 3; | 
|---|
|  | 45 | struct LSQ_params par; | 
|---|
|  | 46 |  | 
|---|
|  | 47 | const gsl_multimin_fminimizer_type *T = | 
|---|
|  | 48 | gsl_multimin_fminimizer_nmsimplex; | 
|---|
|  | 49 | gsl_multimin_fminimizer *s = NULL; | 
|---|
|  | 50 | gsl_vector *ss, *y; | 
|---|
|  | 51 | gsl_multimin_function minex_func; | 
|---|
|  | 52 |  | 
|---|
|  | 53 | size_t iter = 0, i; | 
|---|
|  | 54 | int status; | 
|---|
|  | 55 | double size; | 
|---|
|  | 56 |  | 
|---|
|  | 57 | /* Initial vertex size vector */ | 
|---|
|  | 58 | ss = gsl_vector_alloc (np); | 
|---|
|  | 59 | y = gsl_vector_alloc (np); | 
|---|
|  | 60 |  | 
|---|
|  | 61 | /* Set all step sizes to 1 */ | 
|---|
|  | 62 | gsl_vector_set_all (ss, 1.0); | 
|---|
|  | 63 |  | 
|---|
|  | 64 | /* Starting point */ | 
|---|
|  | 65 | par.vectors = vectors; | 
|---|
|  | 66 | par.num = num; | 
|---|
|  | 67 |  | 
|---|
|  | 68 | for (i=NDIM;i--;) | 
|---|
|  | 69 | gsl_vector_set(y, i, (vectors[0]->at(i) - vectors[1]->at(i))/2.); | 
|---|
|  | 70 |  | 
|---|
|  | 71 | /* Initialize method and iterate */ | 
|---|
|  | 72 | minex_func.f = &LSQ; | 
|---|
|  | 73 | minex_func.n = np; | 
|---|
|  | 74 | minex_func.params = (void *)∥ | 
|---|
|  | 75 |  | 
|---|
|  | 76 | s = gsl_multimin_fminimizer_alloc (T, np); | 
|---|
|  | 77 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss); | 
|---|
|  | 78 |  | 
|---|
|  | 79 | do | 
|---|
|  | 80 | { | 
|---|
|  | 81 | iter++; | 
|---|
|  | 82 | status = gsl_multimin_fminimizer_iterate(s); | 
|---|
|  | 83 |  | 
|---|
|  | 84 | if (status) | 
|---|
|  | 85 | break; | 
|---|
|  | 86 |  | 
|---|
|  | 87 | size = gsl_multimin_fminimizer_size (s); | 
|---|
|  | 88 | status = gsl_multimin_test_size (size, 1e-2); | 
|---|
|  | 89 |  | 
|---|
|  | 90 | if (status == GSL_SUCCESS) | 
|---|
|  | 91 | { | 
|---|
|  | 92 | printf ("converged to minimum at\n"); | 
|---|
|  | 93 | } | 
|---|
|  | 94 |  | 
|---|
|  | 95 | printf ("%5d ", (int)iter); | 
|---|
|  | 96 | for (i = 0; i < (size_t)np; i++) | 
|---|
|  | 97 | { | 
|---|
|  | 98 | printf ("%10.3e ", gsl_vector_get (s->x, i)); | 
|---|
|  | 99 | } | 
|---|
|  | 100 | printf ("f() = %7.3f size = %.3f\n", s->fval, size); | 
|---|
|  | 101 | } | 
|---|
|  | 102 | while (status == GSL_CONTINUE && iter < 100); | 
|---|
|  | 103 |  | 
|---|
|  | 104 | for (i=(size_t)np;i--;) | 
|---|
|  | 105 | res[i] = gsl_vector_get(s->x, i); | 
|---|
|  | 106 | gsl_vector_free(y); | 
|---|
|  | 107 | gsl_vector_free(ss); | 
|---|
|  | 108 | gsl_multimin_fminimizer_free (s); | 
|---|
|  | 109 |  | 
|---|
|  | 110 | return true; | 
|---|
|  | 111 | }; | 
|---|
|  | 112 |  | 
|---|
|  | 113 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha. | 
|---|
|  | 114 | * \param *axis rotation axis | 
|---|
|  | 115 | * \param alpha rotation angle in radian | 
|---|
|  | 116 | */ | 
|---|
|  | 117 | Vector RotateVector(const Vector &vec,const Vector &axis, const double alpha) | 
|---|
|  | 118 | { | 
|---|
|  | 119 | Vector a,y; | 
|---|
|  | 120 | Vector res; | 
|---|
|  | 121 | // normalise this vector with respect to axis | 
|---|
| [1bd79e] | 122 | a = vec; | 
|---|
| [273382] | 123 | a.ProjectOntoPlane(axis); | 
|---|
| [0a4f7f] | 124 | // construct normal vector | 
|---|
|  | 125 | try { | 
|---|
|  | 126 | y = Plane(axis,a,0).getNormal(); | 
|---|
|  | 127 | } | 
|---|
| [fa5a6a] | 128 | catch (MathException &excp) { | 
|---|
| [0a4f7f] | 129 | // The normal vector cannot be created if there is linar dependency. | 
|---|
|  | 130 | // Then the vector to rotate is on the axis and any rotation leads to the vector itself. | 
|---|
|  | 131 | return vec; | 
|---|
|  | 132 | } | 
|---|
|  | 133 | y.Scale(vec.Norm()); | 
|---|
|  | 134 | // scale normal vector by sine and this vector by cosine | 
|---|
|  | 135 | y.Scale(sin(alpha)); | 
|---|
|  | 136 | a.Scale(cos(alpha)); | 
|---|
| [273382] | 137 | res = vec.Projection(axis); | 
|---|
| [0a4f7f] | 138 | // add scaled normal vector onto this vector | 
|---|
| [273382] | 139 | res += y; | 
|---|
| [0a4f7f] | 140 | // add part in axis direction | 
|---|
| [273382] | 141 | res += a; | 
|---|
| [0a4f7f] | 142 | return res; | 
|---|
|  | 143 | }; | 
|---|
|  | 144 |  | 
|---|
|  | 145 | /** Calculates the intersection of the two lines that are both on the same plane. | 
|---|
|  | 146 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html | 
|---|
|  | 147 | * \param *out output stream for debugging | 
|---|
|  | 148 | * \param *Line1a first vector of first line | 
|---|
|  | 149 | * \param *Line1b second vector of first line | 
|---|
|  | 150 | * \param *Line2a first vector of second line | 
|---|
|  | 151 | * \param *Line2b second vector of second line | 
|---|
|  | 152 | * \return true - \a this will contain the intersection on return, false - lines are parallel | 
|---|
|  | 153 | */ | 
|---|
|  | 154 | Vector GetIntersectionOfTwoLinesOnPlane(const Vector &Line1a, const Vector &Line1b, const Vector &Line2a, const Vector &Line2b) | 
|---|
|  | 155 | { | 
|---|
|  | 156 | Info FunctionInfo(__func__); | 
|---|
|  | 157 |  | 
|---|
|  | 158 | Vector res; | 
|---|
|  | 159 |  | 
|---|
|  | 160 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4)); | 
|---|
|  | 161 |  | 
|---|
|  | 162 | M->SetAll(1.); | 
|---|
|  | 163 | for (int i=0;i<3;i++) { | 
|---|
|  | 164 | M->Set(0, i, Line1a[i]); | 
|---|
|  | 165 | M->Set(1, i, Line1b[i]); | 
|---|
|  | 166 | M->Set(2, i, Line2a[i]); | 
|---|
|  | 167 | M->Set(3, i, Line2b[i]); | 
|---|
|  | 168 | } | 
|---|
|  | 169 |  | 
|---|
|  | 170 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl; | 
|---|
|  | 171 | //for (int i=0;i<4;i++) { | 
|---|
|  | 172 | //  for (int j=0;j<4;j++) | 
|---|
|  | 173 | //    cout << "\t" << M->Get(i,j); | 
|---|
|  | 174 | //  cout << endl; | 
|---|
|  | 175 | //} | 
|---|
|  | 176 | if (fabs(M->Determinant()) > MYEPSILON) { | 
|---|
|  | 177 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl; | 
|---|
|  | 178 | throw LinearDependenceException(__FILE__,__LINE__); | 
|---|
|  | 179 | } | 
|---|
|  | 180 |  | 
|---|
|  | 181 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl; | 
|---|
|  | 182 |  | 
|---|
|  | 183 |  | 
|---|
|  | 184 | // constuct a,b,c | 
|---|
|  | 185 | Vector a = Line1b - Line1a; | 
|---|
|  | 186 | Vector b = Line2b - Line2a; | 
|---|
|  | 187 | Vector c = Line2a - Line1a; | 
|---|
|  | 188 | Vector d = Line2b - Line1b; | 
|---|
|  | 189 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl; | 
|---|
|  | 190 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) { | 
|---|
|  | 191 | res.Zero(); | 
|---|
|  | 192 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl; | 
|---|
|  | 193 | throw LinearDependenceException(__FILE__,__LINE__); | 
|---|
|  | 194 | } | 
|---|
|  | 195 |  | 
|---|
|  | 196 | // check for parallelity | 
|---|
|  | 197 | Vector parallel; | 
|---|
|  | 198 | double factor = 0.; | 
|---|
| [273382] | 199 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) { | 
|---|
| [0a4f7f] | 200 | parallel = Line1a - Line2a; | 
|---|
| [273382] | 201 | factor = parallel.ScalarProduct(a)/a.Norm(); | 
|---|
| [0a4f7f] | 202 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) { | 
|---|
|  | 203 | res = Line2a; | 
|---|
|  | 204 | Log() << Verbose(1) << "Lines conincide." << endl; | 
|---|
|  | 205 | return res; | 
|---|
|  | 206 | } else { | 
|---|
|  | 207 | parallel = Line1a - Line2b; | 
|---|
| [273382] | 208 | factor = parallel.ScalarProduct(a)/a.Norm(); | 
|---|
| [0a4f7f] | 209 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) { | 
|---|
|  | 210 | res = Line2b; | 
|---|
|  | 211 | Log() << Verbose(1) << "Lines conincide." << endl; | 
|---|
|  | 212 | return res; | 
|---|
|  | 213 | } | 
|---|
|  | 214 | } | 
|---|
|  | 215 | Log() << Verbose(1) << "Lines are parallel." << endl; | 
|---|
|  | 216 | res.Zero(); | 
|---|
|  | 217 | throw LinearDependenceException(__FILE__,__LINE__); | 
|---|
|  | 218 | } | 
|---|
|  | 219 |  | 
|---|
|  | 220 | // obtain s | 
|---|
|  | 221 | double s; | 
|---|
|  | 222 | Vector temp1, temp2; | 
|---|
| [273382] | 223 | temp1 = c; | 
|---|
|  | 224 | temp1.VectorProduct(b); | 
|---|
|  | 225 | temp2 = a; | 
|---|
|  | 226 | temp2.VectorProduct(b); | 
|---|
| [0a4f7f] | 227 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl; | 
|---|
|  | 228 | if (fabs(temp2.NormSquared()) > MYEPSILON) | 
|---|
| [273382] | 229 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared(); | 
|---|
| [0a4f7f] | 230 | else | 
|---|
|  | 231 | s = 0.; | 
|---|
| [273382] | 232 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl; | 
|---|
| [0a4f7f] | 233 |  | 
|---|
|  | 234 | // construct intersection | 
|---|
|  | 235 | res = a; | 
|---|
|  | 236 | res.Scale(s); | 
|---|
|  | 237 | res += Line1a; | 
|---|
|  | 238 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl; | 
|---|
|  | 239 |  | 
|---|
|  | 240 | return res; | 
|---|
|  | 241 | }; | 
|---|