| 1 | /** \file vector.cpp | 
|---|
| 2 | * | 
|---|
| 3 | * Function implementations for the class vector. | 
|---|
| 4 | * | 
|---|
| 5 | */ | 
|---|
| 6 |  | 
|---|
| 7 | #include "Helpers/MemDebug.hpp" | 
|---|
| 8 |  | 
|---|
| 9 | #include "vector.hpp" | 
|---|
| 10 | #include "verbose.hpp" | 
|---|
| 11 | #include "World.hpp" | 
|---|
| 12 | #include "Helpers/Assert.hpp" | 
|---|
| 13 | #include "Helpers/fast_functions.hpp" | 
|---|
| 14 |  | 
|---|
| 15 | #include <iostream> | 
|---|
| 16 |  | 
|---|
| 17 | using namespace std; | 
|---|
| 18 |  | 
|---|
| 19 |  | 
|---|
| 20 | /************************************ Functions for class vector ************************************/ | 
|---|
| 21 |  | 
|---|
| 22 | /** Constructor of class vector. | 
|---|
| 23 | */ | 
|---|
| 24 | Vector::Vector() | 
|---|
| 25 | { | 
|---|
| 26 | x[0] = x[1] = x[2] = 0.; | 
|---|
| 27 | }; | 
|---|
| 28 |  | 
|---|
| 29 | /** | 
|---|
| 30 | * Copy constructor | 
|---|
| 31 | */ | 
|---|
| 32 |  | 
|---|
| 33 | Vector::Vector(const Vector& src) | 
|---|
| 34 | { | 
|---|
| 35 | x[0] = src[0]; | 
|---|
| 36 | x[1] = src[1]; | 
|---|
| 37 | x[2] = src[2]; | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 | /** Constructor of class vector. | 
|---|
| 41 | */ | 
|---|
| 42 | Vector::Vector(const double x1, const double x2, const double x3) | 
|---|
| 43 | { | 
|---|
| 44 | x[0] = x1; | 
|---|
| 45 | x[1] = x2; | 
|---|
| 46 | x[2] = x3; | 
|---|
| 47 | }; | 
|---|
| 48 |  | 
|---|
| 49 | /** | 
|---|
| 50 | * Assignment operator | 
|---|
| 51 | */ | 
|---|
| 52 | Vector& Vector::operator=(const Vector& src){ | 
|---|
| 53 | // check for self assignment | 
|---|
| 54 | if(&src!=this){ | 
|---|
| 55 | x[0] = src[0]; | 
|---|
| 56 | x[1] = src[1]; | 
|---|
| 57 | x[2] = src[2]; | 
|---|
| 58 | } | 
|---|
| 59 | return *this; | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | /** Desctructor of class vector. | 
|---|
| 63 | */ | 
|---|
| 64 | Vector::~Vector() {}; | 
|---|
| 65 |  | 
|---|
| 66 | /** Calculates square of distance between this and another vector. | 
|---|
| 67 | * \param *y array to second vector | 
|---|
| 68 | * \return \f$| x - y |^2\f$ | 
|---|
| 69 | */ | 
|---|
| 70 | double Vector::DistanceSquared(const Vector &y) const | 
|---|
| 71 | { | 
|---|
| 72 | double res = 0.; | 
|---|
| 73 | for (int i=NDIM;i--;) | 
|---|
| 74 | res += (x[i]-y[i])*(x[i]-y[i]); | 
|---|
| 75 | return (res); | 
|---|
| 76 | }; | 
|---|
| 77 |  | 
|---|
| 78 | /** Calculates distance between this and another vector. | 
|---|
| 79 | * \param *y array to second vector | 
|---|
| 80 | * \return \f$| x - y |\f$ | 
|---|
| 81 | */ | 
|---|
| 82 | double Vector::distance(const Vector &y) const | 
|---|
| 83 | { | 
|---|
| 84 | return (sqrt(DistanceSquared(y))); | 
|---|
| 85 | }; | 
|---|
| 86 |  | 
|---|
| 87 | Vector Vector::getClosestPoint(const Vector &point) const{ | 
|---|
| 88 | // the closest point to a single point space is always the single point itself | 
|---|
| 89 | return *this; | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
| 93 | * \param *y array to second vector | 
|---|
| 94 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
| 95 | * \return \f$| x - y |\f$ | 
|---|
| 96 | */ | 
|---|
| 97 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const | 
|---|
| 98 | { | 
|---|
| 99 | double res = distance(y), tmp, matrix[NDIM*NDIM]; | 
|---|
| 100 | Vector Shiftedy, TranslationVector; | 
|---|
| 101 | int N[NDIM]; | 
|---|
| 102 | matrix[0] = cell_size[0]; | 
|---|
| 103 | matrix[1] = cell_size[1]; | 
|---|
| 104 | matrix[2] = cell_size[3]; | 
|---|
| 105 | matrix[3] = cell_size[1]; | 
|---|
| 106 | matrix[4] = cell_size[2]; | 
|---|
| 107 | matrix[5] = cell_size[4]; | 
|---|
| 108 | matrix[6] = cell_size[3]; | 
|---|
| 109 | matrix[7] = cell_size[4]; | 
|---|
| 110 | matrix[8] = cell_size[5]; | 
|---|
| 111 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
| 112 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
| 113 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
| 114 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
| 115 | // create the translation vector | 
|---|
| 116 | TranslationVector.Zero(); | 
|---|
| 117 | for (int i=NDIM;i--;) | 
|---|
| 118 | TranslationVector[i] = (double)N[i]; | 
|---|
| 119 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
| 120 | // add onto the original vector to compare with | 
|---|
| 121 | Shiftedy = y + TranslationVector; | 
|---|
| 122 | // get distance and compare with minimum so far | 
|---|
| 123 | tmp = distance(Shiftedy); | 
|---|
| 124 | if (tmp < res) res = tmp; | 
|---|
| 125 | } | 
|---|
| 126 | return (res); | 
|---|
| 127 | }; | 
|---|
| 128 |  | 
|---|
| 129 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
| 130 | * \param *y array to second vector | 
|---|
| 131 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
| 132 | * \return \f$| x - y |^2\f$ | 
|---|
| 133 | */ | 
|---|
| 134 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const | 
|---|
| 135 | { | 
|---|
| 136 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM]; | 
|---|
| 137 | Vector Shiftedy, TranslationVector; | 
|---|
| 138 | int N[NDIM]; | 
|---|
| 139 | matrix[0] = cell_size[0]; | 
|---|
| 140 | matrix[1] = cell_size[1]; | 
|---|
| 141 | matrix[2] = cell_size[3]; | 
|---|
| 142 | matrix[3] = cell_size[1]; | 
|---|
| 143 | matrix[4] = cell_size[2]; | 
|---|
| 144 | matrix[5] = cell_size[4]; | 
|---|
| 145 | matrix[6] = cell_size[3]; | 
|---|
| 146 | matrix[7] = cell_size[4]; | 
|---|
| 147 | matrix[8] = cell_size[5]; | 
|---|
| 148 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
| 149 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
| 150 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
| 151 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
| 152 | // create the translation vector | 
|---|
| 153 | TranslationVector.Zero(); | 
|---|
| 154 | for (int i=NDIM;i--;) | 
|---|
| 155 | TranslationVector[i] = (double)N[i]; | 
|---|
| 156 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
| 157 | // add onto the original vector to compare with | 
|---|
| 158 | Shiftedy = y + TranslationVector; | 
|---|
| 159 | // get distance and compare with minimum so far | 
|---|
| 160 | tmp = DistanceSquared(Shiftedy); | 
|---|
| 161 | if (tmp < res) res = tmp; | 
|---|
| 162 | } | 
|---|
| 163 | return (res); | 
|---|
| 164 | }; | 
|---|
| 165 |  | 
|---|
| 166 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix. | 
|---|
| 167 | * \param *out ofstream for debugging messages | 
|---|
| 168 | * Tries to translate a vector into each adjacent neighbouring cell. | 
|---|
| 169 | */ | 
|---|
| 170 | void Vector::KeepPeriodic(const double * const matrix) | 
|---|
| 171 | { | 
|---|
| 172 | //  int N[NDIM]; | 
|---|
| 173 | //  bool flag = false; | 
|---|
| 174 | //vector Shifted, TranslationVector; | 
|---|
| 175 | //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl; | 
|---|
| 176 | //  Log() << Verbose(2) << "Vector is: "; | 
|---|
| 177 | //  Output(out); | 
|---|
| 178 | //  Log() << Verbose(0) << endl; | 
|---|
| 179 | InverseMatrixMultiplication(matrix); | 
|---|
| 180 | for(int i=NDIM;i--;) { // correct periodically | 
|---|
| 181 | if (at(i) < 0) {  // get every coefficient into the interval [0,1) | 
|---|
| 182 | at(i) += ceil(at(i)); | 
|---|
| 183 | } else { | 
|---|
| 184 | at(i) -= floor(at(i)); | 
|---|
| 185 | } | 
|---|
| 186 | } | 
|---|
| 187 | MatrixMultiplication(matrix); | 
|---|
| 188 | //  Log() << Verbose(2) << "New corrected vector is: "; | 
|---|
| 189 | //  Output(out); | 
|---|
| 190 | //  Log() << Verbose(0) << endl; | 
|---|
| 191 | //  Log() << Verbose(1) << "End of KeepPeriodic." << endl; | 
|---|
| 192 | }; | 
|---|
| 193 |  | 
|---|
| 194 | /** Calculates scalar product between this and another vector. | 
|---|
| 195 | * \param *y array to second vector | 
|---|
| 196 | * \return \f$\langle x, y \rangle\f$ | 
|---|
| 197 | */ | 
|---|
| 198 | double Vector::ScalarProduct(const Vector &y) const | 
|---|
| 199 | { | 
|---|
| 200 | double res = 0.; | 
|---|
| 201 | for (int i=NDIM;i--;) | 
|---|
| 202 | res += x[i]*y[i]; | 
|---|
| 203 | return (res); | 
|---|
| 204 | }; | 
|---|
| 205 |  | 
|---|
| 206 |  | 
|---|
| 207 | /** Calculates VectorProduct between this and another vector. | 
|---|
| 208 | *  -# returns the Product in place of vector from which it was initiated | 
|---|
| 209 | *  -# ATTENTION: Only three dim. | 
|---|
| 210 | *  \param *y array to vector with which to calculate crossproduct | 
|---|
| 211 | *  \return \f$ x \times y \f& | 
|---|
| 212 | */ | 
|---|
| 213 | void Vector::VectorProduct(const Vector &y) | 
|---|
| 214 | { | 
|---|
| 215 | Vector tmp; | 
|---|
| 216 | tmp[0] = x[1]* y[2] - x[2]* y[1]; | 
|---|
| 217 | tmp[1] = x[2]* y[0] - x[0]* y[2]; | 
|---|
| 218 | tmp[2] = x[0]* y[1] - x[1]* y[0]; | 
|---|
| 219 | (*this) = tmp; | 
|---|
| 220 | }; | 
|---|
| 221 |  | 
|---|
| 222 |  | 
|---|
| 223 | /** projects this vector onto plane defined by \a *y. | 
|---|
| 224 | * \param *y normal vector of plane | 
|---|
| 225 | * \return \f$\langle x, y \rangle\f$ | 
|---|
| 226 | */ | 
|---|
| 227 | void Vector::ProjectOntoPlane(const Vector &y) | 
|---|
| 228 | { | 
|---|
| 229 | Vector tmp; | 
|---|
| 230 | tmp = y; | 
|---|
| 231 | tmp.Normalize(); | 
|---|
| 232 | tmp.Scale(ScalarProduct(tmp)); | 
|---|
| 233 | *this -= tmp; | 
|---|
| 234 | }; | 
|---|
| 235 |  | 
|---|
| 236 | /** Calculates the minimum distance of this vector to the plane. | 
|---|
| 237 | * \sa Vector::GetDistanceVectorToPlane() | 
|---|
| 238 | * \param *out output stream for debugging | 
|---|
| 239 | * \param *PlaneNormal normal of plane | 
|---|
| 240 | * \param *PlaneOffset offset of plane | 
|---|
| 241 | * \return distance to plane | 
|---|
| 242 | */ | 
|---|
| 243 | double Vector::DistanceToSpace(const Space &space) const | 
|---|
| 244 | { | 
|---|
| 245 | return space.distance(*this); | 
|---|
| 246 | }; | 
|---|
| 247 |  | 
|---|
| 248 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
| 249 | * \param *y array to second vector | 
|---|
| 250 | */ | 
|---|
| 251 | void Vector::ProjectIt(const Vector &y) | 
|---|
| 252 | { | 
|---|
| 253 | (*this) += (-ScalarProduct(y))*y; | 
|---|
| 254 | }; | 
|---|
| 255 |  | 
|---|
| 256 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
| 257 | * \param *y array to second vector | 
|---|
| 258 | * \return Vector | 
|---|
| 259 | */ | 
|---|
| 260 | Vector Vector::Projection(const Vector &y) const | 
|---|
| 261 | { | 
|---|
| 262 | Vector helper = y; | 
|---|
| 263 | helper.Scale((ScalarProduct(y)/y.NormSquared())); | 
|---|
| 264 |  | 
|---|
| 265 | return helper; | 
|---|
| 266 | }; | 
|---|
| 267 |  | 
|---|
| 268 | /** Calculates norm of this vector. | 
|---|
| 269 | * \return \f$|x|\f$ | 
|---|
| 270 | */ | 
|---|
| 271 | double Vector::Norm() const | 
|---|
| 272 | { | 
|---|
| 273 | return (sqrt(NormSquared())); | 
|---|
| 274 | }; | 
|---|
| 275 |  | 
|---|
| 276 | /** Calculates squared norm of this vector. | 
|---|
| 277 | * \return \f$|x|^2\f$ | 
|---|
| 278 | */ | 
|---|
| 279 | double Vector::NormSquared() const | 
|---|
| 280 | { | 
|---|
| 281 | return (ScalarProduct(*this)); | 
|---|
| 282 | }; | 
|---|
| 283 |  | 
|---|
| 284 | /** Normalizes this vector. | 
|---|
| 285 | */ | 
|---|
| 286 | void Vector::Normalize() | 
|---|
| 287 | { | 
|---|
| 288 | double factor = Norm(); | 
|---|
| 289 | (*this) *= 1/factor; | 
|---|
| 290 | }; | 
|---|
| 291 |  | 
|---|
| 292 | /** Zeros all components of this vector. | 
|---|
| 293 | */ | 
|---|
| 294 | void Vector::Zero() | 
|---|
| 295 | { | 
|---|
| 296 | at(0)=at(1)=at(2)=0; | 
|---|
| 297 | }; | 
|---|
| 298 |  | 
|---|
| 299 | /** Zeros all components of this vector. | 
|---|
| 300 | */ | 
|---|
| 301 | void Vector::One(const double one) | 
|---|
| 302 | { | 
|---|
| 303 | at(0)=at(1)=at(2)=one; | 
|---|
| 304 | }; | 
|---|
| 305 |  | 
|---|
| 306 | /** Checks whether vector has all components zero. | 
|---|
| 307 | * @return true - vector is zero, false - vector is not | 
|---|
| 308 | */ | 
|---|
| 309 | bool Vector::IsZero() const | 
|---|
| 310 | { | 
|---|
| 311 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON); | 
|---|
| 312 | }; | 
|---|
| 313 |  | 
|---|
| 314 | /** Checks whether vector has length of 1. | 
|---|
| 315 | * @return true - vector is normalized, false - vector is not | 
|---|
| 316 | */ | 
|---|
| 317 | bool Vector::IsOne() const | 
|---|
| 318 | { | 
|---|
| 319 | return (fabs(Norm() - 1.) < MYEPSILON); | 
|---|
| 320 | }; | 
|---|
| 321 |  | 
|---|
| 322 | /** Checks whether vector is normal to \a *normal. | 
|---|
| 323 | * @return true - vector is normalized, false - vector is not | 
|---|
| 324 | */ | 
|---|
| 325 | bool Vector::IsNormalTo(const Vector &normal) const | 
|---|
| 326 | { | 
|---|
| 327 | if (ScalarProduct(normal) < MYEPSILON) | 
|---|
| 328 | return true; | 
|---|
| 329 | else | 
|---|
| 330 | return false; | 
|---|
| 331 | }; | 
|---|
| 332 |  | 
|---|
| 333 | /** Checks whether vector is normal to \a *normal. | 
|---|
| 334 | * @return true - vector is normalized, false - vector is not | 
|---|
| 335 | */ | 
|---|
| 336 | bool Vector::IsEqualTo(const Vector &a) const | 
|---|
| 337 | { | 
|---|
| 338 | bool status = true; | 
|---|
| 339 | for (int i=0;i<NDIM;i++) { | 
|---|
| 340 | if (fabs(x[i] - a[i]) > MYEPSILON) | 
|---|
| 341 | status = false; | 
|---|
| 342 | } | 
|---|
| 343 | return status; | 
|---|
| 344 | }; | 
|---|
| 345 |  | 
|---|
| 346 | /** Calculates the angle between this and another vector. | 
|---|
| 347 | * \param *y array to second vector | 
|---|
| 348 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$ | 
|---|
| 349 | */ | 
|---|
| 350 | double Vector::Angle(const Vector &y) const | 
|---|
| 351 | { | 
|---|
| 352 | double norm1 = Norm(), norm2 = y.Norm(); | 
|---|
| 353 | double angle = -1; | 
|---|
| 354 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON)) | 
|---|
| 355 | angle = this->ScalarProduct(y)/norm1/norm2; | 
|---|
| 356 | // -1-MYEPSILON occured due to numerical imprecision, catch ... | 
|---|
| 357 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl; | 
|---|
| 358 | if (angle < -1) | 
|---|
| 359 | angle = -1; | 
|---|
| 360 | if (angle > 1) | 
|---|
| 361 | angle = 1; | 
|---|
| 362 | return acos(angle); | 
|---|
| 363 | }; | 
|---|
| 364 |  | 
|---|
| 365 |  | 
|---|
| 366 | double& Vector::operator[](size_t i){ | 
|---|
| 367 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range"); | 
|---|
| 368 | return x[i]; | 
|---|
| 369 | } | 
|---|
| 370 |  | 
|---|
| 371 | const double& Vector::operator[](size_t i) const{ | 
|---|
| 372 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range"); | 
|---|
| 373 | return x[i]; | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | double& Vector::at(size_t i){ | 
|---|
| 377 | return (*this)[i]; | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | const double& Vector::at(size_t i) const{ | 
|---|
| 381 | return (*this)[i]; | 
|---|
| 382 | } | 
|---|
| 383 |  | 
|---|
| 384 | double* Vector::get(){ | 
|---|
| 385 | return x; | 
|---|
| 386 | } | 
|---|
| 387 |  | 
|---|
| 388 | /** Compares vector \a to vector \a b component-wise. | 
|---|
| 389 | * \param a base vector | 
|---|
| 390 | * \param b vector components to add | 
|---|
| 391 | * \return a == b | 
|---|
| 392 | */ | 
|---|
| 393 | bool Vector::operator==(const Vector& b) const | 
|---|
| 394 | { | 
|---|
| 395 | return IsEqualTo(b); | 
|---|
| 396 | }; | 
|---|
| 397 |  | 
|---|
| 398 | bool Vector::operator!=(const Vector& b) const | 
|---|
| 399 | { | 
|---|
| 400 | return !IsEqualTo(b); | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | /** Sums vector \a to this lhs component-wise. | 
|---|
| 404 | * \param a base vector | 
|---|
| 405 | * \param b vector components to add | 
|---|
| 406 | * \return lhs + a | 
|---|
| 407 | */ | 
|---|
| 408 | const Vector& Vector::operator+=(const Vector& b) | 
|---|
| 409 | { | 
|---|
| 410 | this->AddVector(b); | 
|---|
| 411 | return *this; | 
|---|
| 412 | }; | 
|---|
| 413 |  | 
|---|
| 414 | /** Subtracts vector \a from this lhs component-wise. | 
|---|
| 415 | * \param a base vector | 
|---|
| 416 | * \param b vector components to add | 
|---|
| 417 | * \return lhs - a | 
|---|
| 418 | */ | 
|---|
| 419 | const Vector& Vector::operator-=(const Vector& b) | 
|---|
| 420 | { | 
|---|
| 421 | this->SubtractVector(b); | 
|---|
| 422 | return *this; | 
|---|
| 423 | }; | 
|---|
| 424 |  | 
|---|
| 425 | /** factor each component of \a a times a double \a m. | 
|---|
| 426 | * \param a base vector | 
|---|
| 427 | * \param m factor | 
|---|
| 428 | * \return lhs.x[i] * m | 
|---|
| 429 | */ | 
|---|
| 430 | const Vector& operator*=(Vector& a, const double m) | 
|---|
| 431 | { | 
|---|
| 432 | a.Scale(m); | 
|---|
| 433 | return a; | 
|---|
| 434 | }; | 
|---|
| 435 |  | 
|---|
| 436 | /** Sums two vectors \a  and \b component-wise. | 
|---|
| 437 | * \param a first vector | 
|---|
| 438 | * \param b second vector | 
|---|
| 439 | * \return a + b | 
|---|
| 440 | */ | 
|---|
| 441 | Vector const Vector::operator+(const Vector& b) const | 
|---|
| 442 | { | 
|---|
| 443 | Vector x = *this; | 
|---|
| 444 | x.AddVector(b); | 
|---|
| 445 | return x; | 
|---|
| 446 | }; | 
|---|
| 447 |  | 
|---|
| 448 | /** Subtracts vector \a from \b component-wise. | 
|---|
| 449 | * \param a first vector | 
|---|
| 450 | * \param b second vector | 
|---|
| 451 | * \return a - b | 
|---|
| 452 | */ | 
|---|
| 453 | Vector const Vector::operator-(const Vector& b) const | 
|---|
| 454 | { | 
|---|
| 455 | Vector x = *this; | 
|---|
| 456 | x.SubtractVector(b); | 
|---|
| 457 | return x; | 
|---|
| 458 | }; | 
|---|
| 459 |  | 
|---|
| 460 | /** Factors given vector \a a times \a m. | 
|---|
| 461 | * \param a vector | 
|---|
| 462 | * \param m factor | 
|---|
| 463 | * \return m * a | 
|---|
| 464 | */ | 
|---|
| 465 | Vector const operator*(const Vector& a, const double m) | 
|---|
| 466 | { | 
|---|
| 467 | Vector x(a); | 
|---|
| 468 | x.Scale(m); | 
|---|
| 469 | return x; | 
|---|
| 470 | }; | 
|---|
| 471 |  | 
|---|
| 472 | /** Factors given vector \a a times \a m. | 
|---|
| 473 | * \param m factor | 
|---|
| 474 | * \param a vector | 
|---|
| 475 | * \return m * a | 
|---|
| 476 | */ | 
|---|
| 477 | Vector const operator*(const double m, const Vector& a ) | 
|---|
| 478 | { | 
|---|
| 479 | Vector x(a); | 
|---|
| 480 | x.Scale(m); | 
|---|
| 481 | return x; | 
|---|
| 482 | }; | 
|---|
| 483 |  | 
|---|
| 484 | ostream& operator<<(ostream& ost, const Vector& m) | 
|---|
| 485 | { | 
|---|
| 486 | ost << "("; | 
|---|
| 487 | for (int i=0;i<NDIM;i++) { | 
|---|
| 488 | ost << m[i]; | 
|---|
| 489 | if (i != 2) | 
|---|
| 490 | ost << ","; | 
|---|
| 491 | } | 
|---|
| 492 | ost << ")"; | 
|---|
| 493 | return ost; | 
|---|
| 494 | }; | 
|---|
| 495 |  | 
|---|
| 496 |  | 
|---|
| 497 | void Vector::ScaleAll(const double *factor) | 
|---|
| 498 | { | 
|---|
| 499 | for (int i=NDIM;i--;) | 
|---|
| 500 | x[i] *= factor[i]; | 
|---|
| 501 | }; | 
|---|
| 502 |  | 
|---|
| 503 |  | 
|---|
| 504 |  | 
|---|
| 505 | void Vector::Scale(const double factor) | 
|---|
| 506 | { | 
|---|
| 507 | for (int i=NDIM;i--;) | 
|---|
| 508 | x[i] *= factor; | 
|---|
| 509 | }; | 
|---|
| 510 |  | 
|---|
| 511 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box. | 
|---|
| 512 | * \param *M matrix of box | 
|---|
| 513 | * \param *Minv inverse matrix | 
|---|
| 514 | */ | 
|---|
| 515 | void Vector::WrapPeriodically(const double * const M, const double * const Minv) | 
|---|
| 516 | { | 
|---|
| 517 | MatrixMultiplication(Minv); | 
|---|
| 518 | // truncate to [0,1] for each axis | 
|---|
| 519 | for (int i=0;i<NDIM;i++) { | 
|---|
| 520 | //x[i] += 0.5;  // set to center of box | 
|---|
| 521 | while (x[i] >= 1.) | 
|---|
| 522 | x[i] -= 1.; | 
|---|
| 523 | while (x[i] < 0.) | 
|---|
| 524 | x[i] += 1.; | 
|---|
| 525 | } | 
|---|
| 526 | MatrixMultiplication(M); | 
|---|
| 527 | }; | 
|---|
| 528 |  | 
|---|
| 529 | std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{ | 
|---|
| 530 | double factor = ScalarProduct(rhs)/rhs.NormSquared(); | 
|---|
| 531 | Vector res= factor * rhs; | 
|---|
| 532 | return make_pair(res,(*this)-res); | 
|---|
| 533 | } | 
|---|
| 534 |  | 
|---|
| 535 | std::pair<pointset,Vector> Vector::partition(const pointset &points) const{ | 
|---|
| 536 | Vector helper = *this; | 
|---|
| 537 | pointset res; | 
|---|
| 538 | for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){ | 
|---|
| 539 | pair<Vector,Vector> currPart = helper.partition(*iter); | 
|---|
| 540 | res.push_back(currPart.first); | 
|---|
| 541 | helper = currPart.second; | 
|---|
| 542 | } | 
|---|
| 543 | return make_pair(res,helper); | 
|---|
| 544 | } | 
|---|
| 545 |  | 
|---|
| 546 | /** Do a matrix multiplication. | 
|---|
| 547 | * \param *matrix NDIM_NDIM array | 
|---|
| 548 | */ | 
|---|
| 549 | void Vector::MatrixMultiplication(const double * const M) | 
|---|
| 550 | { | 
|---|
| 551 | // do the matrix multiplication | 
|---|
| 552 | at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2]; | 
|---|
| 553 | at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2]; | 
|---|
| 554 | at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2]; | 
|---|
| 555 | }; | 
|---|
| 556 |  | 
|---|
| 557 | /** Do a matrix multiplication with the \a *A' inverse. | 
|---|
| 558 | * \param *matrix NDIM_NDIM array | 
|---|
| 559 | */ | 
|---|
| 560 | bool Vector::InverseMatrixMultiplication(const double * const A) | 
|---|
| 561 | { | 
|---|
| 562 | double B[NDIM*NDIM]; | 
|---|
| 563 | double detA = RDET3(A); | 
|---|
| 564 | double detAReci; | 
|---|
| 565 |  | 
|---|
| 566 | // calculate the inverse B | 
|---|
| 567 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
| 568 | detAReci = 1./detA; | 
|---|
| 569 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11 | 
|---|
| 570 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12 | 
|---|
| 571 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13 | 
|---|
| 572 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21 | 
|---|
| 573 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22 | 
|---|
| 574 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23 | 
|---|
| 575 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31 | 
|---|
| 576 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32 | 
|---|
| 577 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33 | 
|---|
| 578 |  | 
|---|
| 579 | // do the matrix multiplication | 
|---|
| 580 | at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2]; | 
|---|
| 581 | at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2]; | 
|---|
| 582 | at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2]; | 
|---|
| 583 |  | 
|---|
| 584 | return true; | 
|---|
| 585 | } else { | 
|---|
| 586 | return false; | 
|---|
| 587 | } | 
|---|
| 588 | }; | 
|---|
| 589 |  | 
|---|
| 590 |  | 
|---|
| 591 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three. | 
|---|
| 592 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2] | 
|---|
| 593 | * \param *x1 first vector | 
|---|
| 594 | * \param *x2 second vector | 
|---|
| 595 | * \param *x3 third vector | 
|---|
| 596 | * \param *factors three-component vector with the factor for each given vector | 
|---|
| 597 | */ | 
|---|
| 598 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors) | 
|---|
| 599 | { | 
|---|
| 600 | (*this) = (factors[0]*x1) + | 
|---|
| 601 | (factors[1]*x2) + | 
|---|
| 602 | (factors[2]*x3); | 
|---|
| 603 | }; | 
|---|
| 604 |  | 
|---|
| 605 | /** Calculates orthonormal vector to one given vectors. | 
|---|
| 606 | * Just subtracts the projection onto the given vector from this vector. | 
|---|
| 607 | * The removed part of the vector is Vector::Projection() | 
|---|
| 608 | * \param *x1 vector | 
|---|
| 609 | * \return true - success, false - vector is zero | 
|---|
| 610 | */ | 
|---|
| 611 | bool Vector::MakeNormalTo(const Vector &y1) | 
|---|
| 612 | { | 
|---|
| 613 | bool result = false; | 
|---|
| 614 | double factor = y1.ScalarProduct(*this)/y1.NormSquared(); | 
|---|
| 615 | Vector x1 = factor * y1; | 
|---|
| 616 | SubtractVector(x1); | 
|---|
| 617 | for (int i=NDIM;i--;) | 
|---|
| 618 | result = result || (fabs(x[i]) > MYEPSILON); | 
|---|
| 619 |  | 
|---|
| 620 | return result; | 
|---|
| 621 | }; | 
|---|
| 622 |  | 
|---|
| 623 | /** Creates this vector as one of the possible orthonormal ones to the given one. | 
|---|
| 624 | * Just scan how many components of given *vector are unequal to zero and | 
|---|
| 625 | * try to get the skp of both to be zero accordingly. | 
|---|
| 626 | * \param *vector given vector | 
|---|
| 627 | * \return true - success, false - failure (null vector given) | 
|---|
| 628 | */ | 
|---|
| 629 | bool Vector::GetOneNormalVector(const Vector &GivenVector) | 
|---|
| 630 | { | 
|---|
| 631 | int Components[NDIM]; // contains indices of non-zero components | 
|---|
| 632 | int Last = 0;   // count the number of non-zero entries in vector | 
|---|
| 633 | int j;  // loop variables | 
|---|
| 634 | double norm; | 
|---|
| 635 |  | 
|---|
| 636 | for (j=NDIM;j--;) | 
|---|
| 637 | Components[j] = -1; | 
|---|
| 638 |  | 
|---|
| 639 | // in two component-systems we need to find the one position that is zero | 
|---|
| 640 | int zeroPos = -1; | 
|---|
| 641 | // find two components != 0 | 
|---|
| 642 | for (j=0;j<NDIM;j++){ | 
|---|
| 643 | if (fabs(GivenVector[j]) > MYEPSILON) | 
|---|
| 644 | Components[Last++] = j; | 
|---|
| 645 | else | 
|---|
| 646 | // this our zero Position | 
|---|
| 647 | zeroPos = j; | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | switch(Last) { | 
|---|
| 651 | case 3:  // threecomponent system | 
|---|
| 652 | // the position of the zero is arbitrary in three component systems | 
|---|
| 653 | zeroPos = Components[2]; | 
|---|
| 654 | case 2:  // two component system | 
|---|
| 655 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]])); | 
|---|
| 656 | at(zeroPos) = 0.; | 
|---|
| 657 | // in skp both remaining parts shall become zero but with opposite sign and third is zero | 
|---|
| 658 | at(Components[1]) = -1./GivenVector[Components[1]] / norm; | 
|---|
| 659 | at(Components[0]) = 1./GivenVector[Components[0]] / norm; | 
|---|
| 660 | return true; | 
|---|
| 661 | break; | 
|---|
| 662 | case 1: // one component system | 
|---|
| 663 | // set sole non-zero component to 0, and one of the other zero component pendants to 1 | 
|---|
| 664 | at((Components[0]+2)%NDIM) = 0.; | 
|---|
| 665 | at((Components[0]+1)%NDIM) = 1.; | 
|---|
| 666 | at(Components[0]) = 0.; | 
|---|
| 667 | return true; | 
|---|
| 668 | break; | 
|---|
| 669 | default: | 
|---|
| 670 | return false; | 
|---|
| 671 | } | 
|---|
| 672 | }; | 
|---|
| 673 |  | 
|---|
| 674 | /** Adds vector \a *y componentwise. | 
|---|
| 675 | * \param *y vector | 
|---|
| 676 | */ | 
|---|
| 677 | void Vector::AddVector(const Vector &y) | 
|---|
| 678 | { | 
|---|
| 679 | for(int i=NDIM;i--;) | 
|---|
| 680 | x[i] += y[i]; | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | /** Adds vector \a *y componentwise. | 
|---|
| 684 | * \param *y vector | 
|---|
| 685 | */ | 
|---|
| 686 | void Vector::SubtractVector(const Vector &y) | 
|---|
| 687 | { | 
|---|
| 688 | for(int i=NDIM;i--;) | 
|---|
| 689 | x[i] -= y[i]; | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | /** | 
|---|
| 693 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and | 
|---|
| 694 | * their offset. | 
|---|
| 695 | * | 
|---|
| 696 | * @param offest for the origin of the parallelepiped | 
|---|
| 697 | * @param three vectors forming the matrix that defines the shape of the parallelpiped | 
|---|
| 698 | */ | 
|---|
| 699 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const | 
|---|
| 700 | { | 
|---|
| 701 | Vector a = (*this)-offset; | 
|---|
| 702 | a.InverseMatrixMultiplication(parallelepiped); | 
|---|
| 703 | bool isInside = true; | 
|---|
| 704 |  | 
|---|
| 705 | for (int i=NDIM;i--;) | 
|---|
| 706 | isInside = isInside && ((a[i] <= 1) && (a[i] >= 0)); | 
|---|
| 707 |  | 
|---|
| 708 | return isInside; | 
|---|
| 709 | } | 
|---|
| 710 |  | 
|---|
| 711 |  | 
|---|
| 712 | // some comonly used vectors | 
|---|
| 713 | const Vector zeroVec(0,0,0); | 
|---|
| 714 | const Vector e1(1,0,0); | 
|---|
| 715 | const Vector e2(0,1,0); | 
|---|
| 716 | const Vector e3(0,0,1); | 
|---|