source: src/vector.cpp@ d690fa

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since d690fa was d690fa, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Replaced array inside of Vector with gsl_vector structure.

  • Property mode set to 100644
File size: 18.5 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "vector.hpp"
9#include "verbose.hpp"
10#include "World.hpp"
11#include "Helpers/Assert.hpp"
12#include "Helpers/fast_functions.hpp"
13
14#include <iostream>
15
16using namespace std;
17
18
19/************************************ Functions for class vector ************************************/
20
21/** Constructor of class vector.
22 */
23Vector::Vector()
24{
25 content = gsl_vector_calloc (NDIM);
26 gsl_vector_set(content,0,0);
27 gsl_vector_set(content,1,0);
28 gsl_vector_set(content,2,0);
29};
30
31/**
32 * Copy constructor
33 */
34
35Vector::Vector(const Vector& src)
36{
37 content = gsl_vector_alloc(NDIM);
38 gsl_vector_set(content,0,src[0]);
39 gsl_vector_set(content,1,src[1]);
40 gsl_vector_set(content,2,src[2]);
41}
42
43/** Constructor of class vector.
44 */
45Vector::Vector(const double x1, const double x2, const double x3)
46{
47 content = gsl_vector_alloc(NDIM);
48 gsl_vector_set(content,0,x1);
49 gsl_vector_set(content,1,x2);
50 gsl_vector_set(content,2,x3);
51};
52
53/**
54 * Assignment operator
55 */
56Vector& Vector::operator=(const Vector& src){
57 // check for self assignment
58 if(&src!=this){
59 gsl_vector_set(content,0,src[0]);
60 gsl_vector_set(content,1,src[1]);
61 gsl_vector_set(content,2,src[2]);
62 }
63 return *this;
64}
65
66/** Desctructor of class vector.
67 */
68Vector::~Vector() {
69 gsl_vector_free(content);
70};
71
72/** Calculates square of distance between this and another vector.
73 * \param *y array to second vector
74 * \return \f$| x - y |^2\f$
75 */
76double Vector::DistanceSquared(const Vector &y) const
77{
78 double res = 0.;
79 for (int i=NDIM;i--;)
80 res += (at(i)-y[i])*(at(i)-y[i]);
81 return (res);
82};
83
84/** Calculates distance between this and another vector.
85 * \param *y array to second vector
86 * \return \f$| x - y |\f$
87 */
88double Vector::distance(const Vector &y) const
89{
90 return (sqrt(DistanceSquared(y)));
91};
92
93Vector Vector::getClosestPoint(const Vector &point) const{
94 // the closest point to a single point space is always the single point itself
95 return *this;
96}
97
98/** Calculates distance between this and another vector in a periodic cell.
99 * \param *y array to second vector
100 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
101 * \return \f$| x - y |\f$
102 */
103double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
104{
105 double res = distance(y), tmp, matrix[NDIM*NDIM];
106 Vector Shiftedy, TranslationVector;
107 int N[NDIM];
108 matrix[0] = cell_size[0];
109 matrix[1] = cell_size[1];
110 matrix[2] = cell_size[3];
111 matrix[3] = cell_size[1];
112 matrix[4] = cell_size[2];
113 matrix[5] = cell_size[4];
114 matrix[6] = cell_size[3];
115 matrix[7] = cell_size[4];
116 matrix[8] = cell_size[5];
117 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
118 for (N[0]=-1;N[0]<=1;N[0]++)
119 for (N[1]=-1;N[1]<=1;N[1]++)
120 for (N[2]=-1;N[2]<=1;N[2]++) {
121 // create the translation vector
122 TranslationVector.Zero();
123 for (int i=NDIM;i--;)
124 TranslationVector[i] = (double)N[i];
125 TranslationVector.MatrixMultiplication(matrix);
126 // add onto the original vector to compare with
127 Shiftedy = y + TranslationVector;
128 // get distance and compare with minimum so far
129 tmp = distance(Shiftedy);
130 if (tmp < res) res = tmp;
131 }
132 return (res);
133};
134
135/** Calculates distance between this and another vector in a periodic cell.
136 * \param *y array to second vector
137 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
138 * \return \f$| x - y |^2\f$
139 */
140double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
141{
142 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
143 Vector Shiftedy, TranslationVector;
144 int N[NDIM];
145 matrix[0] = cell_size[0];
146 matrix[1] = cell_size[1];
147 matrix[2] = cell_size[3];
148 matrix[3] = cell_size[1];
149 matrix[4] = cell_size[2];
150 matrix[5] = cell_size[4];
151 matrix[6] = cell_size[3];
152 matrix[7] = cell_size[4];
153 matrix[8] = cell_size[5];
154 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
155 for (N[0]=-1;N[0]<=1;N[0]++)
156 for (N[1]=-1;N[1]<=1;N[1]++)
157 for (N[2]=-1;N[2]<=1;N[2]++) {
158 // create the translation vector
159 TranslationVector.Zero();
160 for (int i=NDIM;i--;)
161 TranslationVector[i] = (double)N[i];
162 TranslationVector.MatrixMultiplication(matrix);
163 // add onto the original vector to compare with
164 Shiftedy = y + TranslationVector;
165 // get distance and compare with minimum so far
166 tmp = DistanceSquared(Shiftedy);
167 if (tmp < res) res = tmp;
168 }
169 return (res);
170};
171
172/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
173 * \param *out ofstream for debugging messages
174 * Tries to translate a vector into each adjacent neighbouring cell.
175 */
176void Vector::KeepPeriodic(const double * const matrix)
177{
178 // int N[NDIM];
179 // bool flag = false;
180 //vector Shifted, TranslationVector;
181 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
182 // Log() << Verbose(2) << "Vector is: ";
183 // Output(out);
184 // Log() << Verbose(0) << endl;
185 InverseMatrixMultiplication(matrix);
186 for(int i=NDIM;i--;) { // correct periodically
187 if (at(i) < 0) { // get every coefficient into the interval [0,1)
188 at(i) += ceil(at(i));
189 } else {
190 at(i) -= floor(at(i));
191 }
192 }
193 MatrixMultiplication(matrix);
194 // Log() << Verbose(2) << "New corrected vector is: ";
195 // Output(out);
196 // Log() << Verbose(0) << endl;
197 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
198};
199
200/** Calculates scalar product between this and another vector.
201 * \param *y array to second vector
202 * \return \f$\langle x, y \rangle\f$
203 */
204double Vector::ScalarProduct(const Vector &y) const
205{
206 double res = 0.;
207 for (int i=NDIM;i--;)
208 res += at(i)*y[i];
209 return (res);
210};
211
212
213/** Calculates VectorProduct between this and another vector.
214 * -# returns the Product in place of vector from which it was initiated
215 * -# ATTENTION: Only three dim.
216 * \param *y array to vector with which to calculate crossproduct
217 * \return \f$ x \times y \f&
218 */
219void Vector::VectorProduct(const Vector &y)
220{
221 Vector tmp;
222 for(int i=NDIM;i--;)
223 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
224 (*this) = tmp;
225};
226
227
228/** projects this vector onto plane defined by \a *y.
229 * \param *y normal vector of plane
230 * \return \f$\langle x, y \rangle\f$
231 */
232void Vector::ProjectOntoPlane(const Vector &y)
233{
234 Vector tmp;
235 tmp = y;
236 tmp.Normalize();
237 tmp.Scale(ScalarProduct(tmp));
238 *this -= tmp;
239};
240
241/** Calculates the minimum distance of this vector to the plane.
242 * \sa Vector::GetDistanceVectorToPlane()
243 * \param *out output stream for debugging
244 * \param *PlaneNormal normal of plane
245 * \param *PlaneOffset offset of plane
246 * \return distance to plane
247 */
248double Vector::DistanceToSpace(const Space &space) const
249{
250 return space.distance(*this);
251};
252
253/** Calculates the projection of a vector onto another \a *y.
254 * \param *y array to second vector
255 */
256void Vector::ProjectIt(const Vector &y)
257{
258 (*this) += (-ScalarProduct(y))*y;
259};
260
261/** Calculates the projection of a vector onto another \a *y.
262 * \param *y array to second vector
263 * \return Vector
264 */
265Vector Vector::Projection(const Vector &y) const
266{
267 Vector helper = y;
268 helper.Scale((ScalarProduct(y)/y.NormSquared()));
269
270 return helper;
271};
272
273/** Calculates norm of this vector.
274 * \return \f$|x|\f$
275 */
276double Vector::Norm() const
277{
278 return (sqrt(NormSquared()));
279};
280
281/** Calculates squared norm of this vector.
282 * \return \f$|x|^2\f$
283 */
284double Vector::NormSquared() const
285{
286 return (ScalarProduct(*this));
287};
288
289/** Normalizes this vector.
290 */
291void Vector::Normalize()
292{
293 double factor = Norm();
294 (*this) *= 1/factor;
295};
296
297/** Zeros all components of this vector.
298 */
299void Vector::Zero()
300{
301 at(0)=at(1)=at(2)=0;
302};
303
304/** Zeros all components of this vector.
305 */
306void Vector::One(const double one)
307{
308 at(0)=at(1)=at(2)=one;
309};
310
311/** Checks whether vector has all components zero.
312 * @return true - vector is zero, false - vector is not
313 */
314bool Vector::IsZero() const
315{
316 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
317};
318
319/** Checks whether vector has length of 1.
320 * @return true - vector is normalized, false - vector is not
321 */
322bool Vector::IsOne() const
323{
324 return (fabs(Norm() - 1.) < MYEPSILON);
325};
326
327/** Checks whether vector is normal to \a *normal.
328 * @return true - vector is normalized, false - vector is not
329 */
330bool Vector::IsNormalTo(const Vector &normal) const
331{
332 if (ScalarProduct(normal) < MYEPSILON)
333 return true;
334 else
335 return false;
336};
337
338/** Checks whether vector is normal to \a *normal.
339 * @return true - vector is normalized, false - vector is not
340 */
341bool Vector::IsEqualTo(const Vector &a) const
342{
343 bool status = true;
344 for (int i=0;i<NDIM;i++) {
345 if (fabs(at(i) - a[i]) > MYEPSILON)
346 status = false;
347 }
348 return status;
349};
350
351/** Calculates the angle between this and another vector.
352 * \param *y array to second vector
353 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
354 */
355double Vector::Angle(const Vector &y) const
356{
357 double norm1 = Norm(), norm2 = y.Norm();
358 double angle = -1;
359 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
360 angle = this->ScalarProduct(y)/norm1/norm2;
361 // -1-MYEPSILON occured due to numerical imprecision, catch ...
362 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
363 if (angle < -1)
364 angle = -1;
365 if (angle > 1)
366 angle = 1;
367 return acos(angle);
368};
369
370
371double& Vector::operator[](size_t i){
372 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
373 return *gsl_vector_ptr (content, i);
374}
375
376const double& Vector::operator[](size_t i) const{
377 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
378 return *gsl_vector_ptr (content, i);
379}
380
381double& Vector::at(size_t i){
382 return (*this)[i];
383}
384
385const double& Vector::at(size_t i) const{
386 return (*this)[i];
387}
388
389double* Vector::get(){
390 static double res[NDIM];
391 res[0]=gsl_vector_get(content,0);
392 res[1]=gsl_vector_get(content,1);
393 res[2]=gsl_vector_get(content,2);
394 return res;
395}
396
397/** Compares vector \a to vector \a b component-wise.
398 * \param a base vector
399 * \param b vector components to add
400 * \return a == b
401 */
402bool Vector::operator==(const Vector& b) const
403{
404 return IsEqualTo(b);
405};
406
407bool Vector::operator!=(const Vector& b) const
408{
409 return !IsEqualTo(b);
410}
411
412/** Sums vector \a to this lhs component-wise.
413 * \param a base vector
414 * \param b vector components to add
415 * \return lhs + a
416 */
417const Vector& Vector::operator+=(const Vector& b)
418{
419 this->AddVector(b);
420 return *this;
421};
422
423/** Subtracts vector \a from this lhs component-wise.
424 * \param a base vector
425 * \param b vector components to add
426 * \return lhs - a
427 */
428const Vector& Vector::operator-=(const Vector& b)
429{
430 this->SubtractVector(b);
431 return *this;
432};
433
434/** factor each component of \a a times a double \a m.
435 * \param a base vector
436 * \param m factor
437 * \return lhs.x[i] * m
438 */
439const Vector& operator*=(Vector& a, const double m)
440{
441 a.Scale(m);
442 return a;
443};
444
445/** Sums two vectors \a and \b component-wise.
446 * \param a first vector
447 * \param b second vector
448 * \return a + b
449 */
450Vector const Vector::operator+(const Vector& b) const
451{
452 Vector x = *this;
453 x.AddVector(b);
454 return x;
455};
456
457/** Subtracts vector \a from \b component-wise.
458 * \param a first vector
459 * \param b second vector
460 * \return a - b
461 */
462Vector const Vector::operator-(const Vector& b) const
463{
464 Vector x = *this;
465 x.SubtractVector(b);
466 return x;
467};
468
469/** Factors given vector \a a times \a m.
470 * \param a vector
471 * \param m factor
472 * \return m * a
473 */
474Vector const operator*(const Vector& a, const double m)
475{
476 Vector x(a);
477 x.Scale(m);
478 return x;
479};
480
481/** Factors given vector \a a times \a m.
482 * \param m factor
483 * \param a vector
484 * \return m * a
485 */
486Vector const operator*(const double m, const Vector& a )
487{
488 Vector x(a);
489 x.Scale(m);
490 return x;
491};
492
493ostream& operator<<(ostream& ost, const Vector& m)
494{
495 ost << "(";
496 for (int i=0;i<NDIM;i++) {
497 ost << m[i];
498 if (i != 2)
499 ost << ",";
500 }
501 ost << ")";
502 return ost;
503};
504
505
506void Vector::ScaleAll(const double *factor)
507{
508 for (int i=NDIM;i--;)
509 at(i) *= factor[i];
510};
511
512
513
514void Vector::Scale(const double factor)
515{
516 for (int i=NDIM;i--;)
517 at(i) *= factor;
518};
519
520/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
521 * \param *M matrix of box
522 * \param *Minv inverse matrix
523 */
524void Vector::WrapPeriodically(const double * const M, const double * const Minv)
525{
526 MatrixMultiplication(Minv);
527 // truncate to [0,1] for each axis
528 for (int i=0;i<NDIM;i++) {
529 at(i) += 0.5; // set to center of box
530 while (at(i) >= 1.)
531 at(i) -= 1.;
532 while (at(i) < 0.)
533 at(i) += 1.;
534 }
535 MatrixMultiplication(M);
536};
537
538std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
539 double factor = ScalarProduct(rhs)/rhs.NormSquared();
540 Vector res= factor * rhs;
541 return make_pair(res,(*this)-res);
542}
543
544std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
545 Vector helper = *this;
546 pointset res;
547 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
548 pair<Vector,Vector> currPart = helper.partition(*iter);
549 res.push_back(currPart.first);
550 helper = currPart.second;
551 }
552 return make_pair(res,helper);
553}
554
555/** Do a matrix multiplication.
556 * \param *matrix NDIM_NDIM array
557 */
558void Vector::MatrixMultiplication(const double * const M)
559{
560 Vector tmp;
561 // do the matrix multiplication
562 for(int i=NDIM;i--;)
563 tmp[i] = M[i]*at(0)+M[i+3]*at(1)+M[i+6]*at(2);
564
565 (*this) = tmp;
566};
567
568/** Do a matrix multiplication with the \a *A' inverse.
569 * \param *matrix NDIM_NDIM array
570 */
571bool Vector::InverseMatrixMultiplication(const double * const A)
572{
573 double B[NDIM*NDIM];
574 double detA = RDET3(A);
575 double detAReci;
576
577 // calculate the inverse B
578 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
579 detAReci = 1./detA;
580 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
581 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
582 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
583 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
584 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
585 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
586 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
587 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
588 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
589
590 MatrixMultiplication(B);
591
592 return true;
593 } else {
594 return false;
595 }
596};
597
598
599/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
600 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
601 * \param *x1 first vector
602 * \param *x2 second vector
603 * \param *x3 third vector
604 * \param *factors three-component vector with the factor for each given vector
605 */
606void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
607{
608 (*this) = (factors[0]*x1) +
609 (factors[1]*x2) +
610 (factors[2]*x3);
611};
612
613/** Calculates orthonormal vector to one given vectors.
614 * Just subtracts the projection onto the given vector from this vector.
615 * The removed part of the vector is Vector::Projection()
616 * \param *x1 vector
617 * \return true - success, false - vector is zero
618 */
619bool Vector::MakeNormalTo(const Vector &y1)
620{
621 bool result = false;
622 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
623 Vector x1 = factor * y1;
624 SubtractVector(x1);
625 for (int i=NDIM;i--;)
626 result = result || (fabs(at(i)) > MYEPSILON);
627
628 return result;
629};
630
631/** Creates this vector as one of the possible orthonormal ones to the given one.
632 * Just scan how many components of given *vector are unequal to zero and
633 * try to get the skp of both to be zero accordingly.
634 * \param *vector given vector
635 * \return true - success, false - failure (null vector given)
636 */
637bool Vector::GetOneNormalVector(const Vector &GivenVector)
638{
639 int Components[NDIM]; // contains indices of non-zero components
640 int Last = 0; // count the number of non-zero entries in vector
641 int j; // loop variables
642 double norm;
643
644 for (j=NDIM;j--;)
645 Components[j] = -1;
646
647 // in two component-systems we need to find the one position that is zero
648 int zeroPos = -1;
649 // find two components != 0
650 for (j=0;j<NDIM;j++){
651 if (fabs(GivenVector[j]) > MYEPSILON)
652 Components[Last++] = j;
653 else
654 // this our zero Position
655 zeroPos = j;
656 }
657
658 switch(Last) {
659 case 3: // threecomponent system
660 // the position of the zero is arbitrary in three component systems
661 zeroPos = Components[2];
662 case 2: // two component system
663 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
664 at(zeroPos) = 0.;
665 // in skp both remaining parts shall become zero but with opposite sign and third is zero
666 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
667 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
668 return true;
669 break;
670 case 1: // one component system
671 // set sole non-zero component to 0, and one of the other zero component pendants to 1
672 at((Components[0]+2)%NDIM) = 0.;
673 at((Components[0]+1)%NDIM) = 1.;
674 at(Components[0]) = 0.;
675 return true;
676 break;
677 default:
678 return false;
679 }
680};
681
682/** Adds vector \a *y componentwise.
683 * \param *y vector
684 */
685void Vector::AddVector(const Vector &y)
686{
687 for(int i=NDIM;i--;)
688 at(i) += y[i];
689}
690
691/** Adds vector \a *y componentwise.
692 * \param *y vector
693 */
694void Vector::SubtractVector(const Vector &y)
695{
696 for(int i=NDIM;i--;)
697 at(i) -= y[i];
698}
699
700/**
701 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
702 * their offset.
703 *
704 * @param offest for the origin of the parallelepiped
705 * @param three vectors forming the matrix that defines the shape of the parallelpiped
706 */
707bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
708{
709 Vector a = (*this)-offset;
710 a.InverseMatrixMultiplication(parallelepiped);
711 bool isInside = true;
712
713 for (int i=NDIM;i--;)
714 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
715
716 return isInside;
717}
718
719
720// some comonly used vectors
721const Vector zeroVec(0,0,0);
722const Vector e1(1,0,0);
723const Vector e2(0,1,0);
724const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.