| 1 | /** \file vector.cpp | 
|---|
| 2 | * | 
|---|
| 3 | * Function implementations for the class vector. | 
|---|
| 4 | * | 
|---|
| 5 | */ | 
|---|
| 6 |  | 
|---|
| 7 |  | 
|---|
| 8 | #include "vector.hpp" | 
|---|
| 9 | #include "verbose.hpp" | 
|---|
| 10 | #include "World.hpp" | 
|---|
| 11 | #include "Helpers/Assert.hpp" | 
|---|
| 12 | #include "Helpers/fast_functions.hpp" | 
|---|
| 13 |  | 
|---|
| 14 | #include <iostream> | 
|---|
| 15 |  | 
|---|
| 16 | using namespace std; | 
|---|
| 17 |  | 
|---|
| 18 |  | 
|---|
| 19 | /************************************ Functions for class vector ************************************/ | 
|---|
| 20 |  | 
|---|
| 21 | /** Constructor of class vector. | 
|---|
| 22 | */ | 
|---|
| 23 | Vector::Vector() | 
|---|
| 24 | { | 
|---|
| 25 | x[0] = x[1] = x[2] = 0.; | 
|---|
| 26 | }; | 
|---|
| 27 |  | 
|---|
| 28 | /** | 
|---|
| 29 | * Copy constructor | 
|---|
| 30 | */ | 
|---|
| 31 |  | 
|---|
| 32 | Vector::Vector(const Vector& src) | 
|---|
| 33 | { | 
|---|
| 34 | x[0] = src[0]; | 
|---|
| 35 | x[1] = src[1]; | 
|---|
| 36 | x[2] = src[2]; | 
|---|
| 37 | } | 
|---|
| 38 |  | 
|---|
| 39 | /** Constructor of class vector. | 
|---|
| 40 | */ | 
|---|
| 41 | Vector::Vector(const double x1, const double x2, const double x3) | 
|---|
| 42 | { | 
|---|
| 43 | x[0] = x1; | 
|---|
| 44 | x[1] = x2; | 
|---|
| 45 | x[2] = x3; | 
|---|
| 46 | }; | 
|---|
| 47 |  | 
|---|
| 48 | /** | 
|---|
| 49 | * Assignment operator | 
|---|
| 50 | */ | 
|---|
| 51 | Vector& Vector::operator=(const Vector& src){ | 
|---|
| 52 | // check for self assignment | 
|---|
| 53 | if(&src!=this){ | 
|---|
| 54 | x[0] = src[0]; | 
|---|
| 55 | x[1] = src[1]; | 
|---|
| 56 | x[2] = src[2]; | 
|---|
| 57 | } | 
|---|
| 58 | return *this; | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | /** Desctructor of class vector. | 
|---|
| 62 | */ | 
|---|
| 63 | Vector::~Vector() {}; | 
|---|
| 64 |  | 
|---|
| 65 | /** Calculates square of distance between this and another vector. | 
|---|
| 66 | * \param *y array to second vector | 
|---|
| 67 | * \return \f$| x - y |^2\f$ | 
|---|
| 68 | */ | 
|---|
| 69 | double Vector::DistanceSquared(const Vector &y) const | 
|---|
| 70 | { | 
|---|
| 71 | double res = 0.; | 
|---|
| 72 | for (int i=NDIM;i--;) | 
|---|
| 73 | res += (x[i]-y[i])*(x[i]-y[i]); | 
|---|
| 74 | return (res); | 
|---|
| 75 | }; | 
|---|
| 76 |  | 
|---|
| 77 | /** Calculates distance between this and another vector. | 
|---|
| 78 | * \param *y array to second vector | 
|---|
| 79 | * \return \f$| x - y |\f$ | 
|---|
| 80 | */ | 
|---|
| 81 | double Vector::distance(const Vector &y) const | 
|---|
| 82 | { | 
|---|
| 83 | return (sqrt(DistanceSquared(y))); | 
|---|
| 84 | }; | 
|---|
| 85 |  | 
|---|
| 86 | Vector Vector::getClosestPoint(const Vector &point) const{ | 
|---|
| 87 | // the closest point to a single point space is always the single point itself | 
|---|
| 88 | return *this; | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
| 92 | * \param *y array to second vector | 
|---|
| 93 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
| 94 | * \return \f$| x - y |\f$ | 
|---|
| 95 | */ | 
|---|
| 96 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const | 
|---|
| 97 | { | 
|---|
| 98 | double res = distance(y), tmp, matrix[NDIM*NDIM]; | 
|---|
| 99 | Vector Shiftedy, TranslationVector; | 
|---|
| 100 | int N[NDIM]; | 
|---|
| 101 | matrix[0] = cell_size[0]; | 
|---|
| 102 | matrix[1] = cell_size[1]; | 
|---|
| 103 | matrix[2] = cell_size[3]; | 
|---|
| 104 | matrix[3] = cell_size[1]; | 
|---|
| 105 | matrix[4] = cell_size[2]; | 
|---|
| 106 | matrix[5] = cell_size[4]; | 
|---|
| 107 | matrix[6] = cell_size[3]; | 
|---|
| 108 | matrix[7] = cell_size[4]; | 
|---|
| 109 | matrix[8] = cell_size[5]; | 
|---|
| 110 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
| 111 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
| 112 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
| 113 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
| 114 | // create the translation vector | 
|---|
| 115 | TranslationVector.Zero(); | 
|---|
| 116 | for (int i=NDIM;i--;) | 
|---|
| 117 | TranslationVector[i] = (double)N[i]; | 
|---|
| 118 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
| 119 | // add onto the original vector to compare with | 
|---|
| 120 | Shiftedy = y + TranslationVector; | 
|---|
| 121 | // get distance and compare with minimum so far | 
|---|
| 122 | tmp = distance(Shiftedy); | 
|---|
| 123 | if (tmp < res) res = tmp; | 
|---|
| 124 | } | 
|---|
| 125 | return (res); | 
|---|
| 126 | }; | 
|---|
| 127 |  | 
|---|
| 128 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
| 129 | * \param *y array to second vector | 
|---|
| 130 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
| 131 | * \return \f$| x - y |^2\f$ | 
|---|
| 132 | */ | 
|---|
| 133 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const | 
|---|
| 134 | { | 
|---|
| 135 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM]; | 
|---|
| 136 | Vector Shiftedy, TranslationVector; | 
|---|
| 137 | int N[NDIM]; | 
|---|
| 138 | matrix[0] = cell_size[0]; | 
|---|
| 139 | matrix[1] = cell_size[1]; | 
|---|
| 140 | matrix[2] = cell_size[3]; | 
|---|
| 141 | matrix[3] = cell_size[1]; | 
|---|
| 142 | matrix[4] = cell_size[2]; | 
|---|
| 143 | matrix[5] = cell_size[4]; | 
|---|
| 144 | matrix[6] = cell_size[3]; | 
|---|
| 145 | matrix[7] = cell_size[4]; | 
|---|
| 146 | matrix[8] = cell_size[5]; | 
|---|
| 147 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
| 148 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
| 149 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
| 150 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
| 151 | // create the translation vector | 
|---|
| 152 | TranslationVector.Zero(); | 
|---|
| 153 | for (int i=NDIM;i--;) | 
|---|
| 154 | TranslationVector[i] = (double)N[i]; | 
|---|
| 155 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
| 156 | // add onto the original vector to compare with | 
|---|
| 157 | Shiftedy = y + TranslationVector; | 
|---|
| 158 | // get distance and compare with minimum so far | 
|---|
| 159 | tmp = DistanceSquared(Shiftedy); | 
|---|
| 160 | if (tmp < res) res = tmp; | 
|---|
| 161 | } | 
|---|
| 162 | return (res); | 
|---|
| 163 | }; | 
|---|
| 164 |  | 
|---|
| 165 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix. | 
|---|
| 166 | * \param *out ofstream for debugging messages | 
|---|
| 167 | * Tries to translate a vector into each adjacent neighbouring cell. | 
|---|
| 168 | */ | 
|---|
| 169 | void Vector::KeepPeriodic(const double * const matrix) | 
|---|
| 170 | { | 
|---|
| 171 | //  int N[NDIM]; | 
|---|
| 172 | //  bool flag = false; | 
|---|
| 173 | //vector Shifted, TranslationVector; | 
|---|
| 174 | //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl; | 
|---|
| 175 | //  Log() << Verbose(2) << "Vector is: "; | 
|---|
| 176 | //  Output(out); | 
|---|
| 177 | //  Log() << Verbose(0) << endl; | 
|---|
| 178 | InverseMatrixMultiplication(matrix); | 
|---|
| 179 | for(int i=NDIM;i--;) { // correct periodically | 
|---|
| 180 | if (at(i) < 0) {  // get every coefficient into the interval [0,1) | 
|---|
| 181 | at(i) += ceil(at(i)); | 
|---|
| 182 | } else { | 
|---|
| 183 | at(i) -= floor(at(i)); | 
|---|
| 184 | } | 
|---|
| 185 | } | 
|---|
| 186 | MatrixMultiplication(matrix); | 
|---|
| 187 | //  Log() << Verbose(2) << "New corrected vector is: "; | 
|---|
| 188 | //  Output(out); | 
|---|
| 189 | //  Log() << Verbose(0) << endl; | 
|---|
| 190 | //  Log() << Verbose(1) << "End of KeepPeriodic." << endl; | 
|---|
| 191 | }; | 
|---|
| 192 |  | 
|---|
| 193 | /** Calculates scalar product between this and another vector. | 
|---|
| 194 | * \param *y array to second vector | 
|---|
| 195 | * \return \f$\langle x, y \rangle\f$ | 
|---|
| 196 | */ | 
|---|
| 197 | double Vector::ScalarProduct(const Vector &y) const | 
|---|
| 198 | { | 
|---|
| 199 | double res = 0.; | 
|---|
| 200 | for (int i=NDIM;i--;) | 
|---|
| 201 | res += x[i]*y[i]; | 
|---|
| 202 | return (res); | 
|---|
| 203 | }; | 
|---|
| 204 |  | 
|---|
| 205 |  | 
|---|
| 206 | /** Calculates VectorProduct between this and another vector. | 
|---|
| 207 | *  -# returns the Product in place of vector from which it was initiated | 
|---|
| 208 | *  -# ATTENTION: Only three dim. | 
|---|
| 209 | *  \param *y array to vector with which to calculate crossproduct | 
|---|
| 210 | *  \return \f$ x \times y \f& | 
|---|
| 211 | */ | 
|---|
| 212 | void Vector::VectorProduct(const Vector &y) | 
|---|
| 213 | { | 
|---|
| 214 | Vector tmp; | 
|---|
| 215 | tmp[0] = x[1]* (y[2]) - x[2]* (y[1]); | 
|---|
| 216 | tmp[1] = x[2]* (y[0]) - x[0]* (y[2]); | 
|---|
| 217 | tmp[2] = x[0]* (y[1]) - x[1]* (y[0]); | 
|---|
| 218 | (*this) = tmp; | 
|---|
| 219 | }; | 
|---|
| 220 |  | 
|---|
| 221 |  | 
|---|
| 222 | /** projects this vector onto plane defined by \a *y. | 
|---|
| 223 | * \param *y normal vector of plane | 
|---|
| 224 | * \return \f$\langle x, y \rangle\f$ | 
|---|
| 225 | */ | 
|---|
| 226 | void Vector::ProjectOntoPlane(const Vector &y) | 
|---|
| 227 | { | 
|---|
| 228 | Vector tmp; | 
|---|
| 229 | tmp = y; | 
|---|
| 230 | tmp.Normalize(); | 
|---|
| 231 | tmp.Scale(ScalarProduct(tmp)); | 
|---|
| 232 | *this -= tmp; | 
|---|
| 233 | }; | 
|---|
| 234 |  | 
|---|
| 235 | /** Calculates the minimum distance vector of this vector to the plane. | 
|---|
| 236 | * \param *out output stream for debugging | 
|---|
| 237 | * \param *PlaneNormal normal of plane | 
|---|
| 238 | * \param *PlaneOffset offset of plane | 
|---|
| 239 | * \return distance to plane | 
|---|
| 240 | * \return distance vector onto to plane | 
|---|
| 241 | */ | 
|---|
| 242 | Vector Vector::GetDistanceVectorToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const | 
|---|
| 243 | { | 
|---|
| 244 | Vector temp = (*this) - PlaneOffset; | 
|---|
| 245 | temp.MakeNormalTo(PlaneNormal); | 
|---|
| 246 | temp.Scale(-1.); | 
|---|
| 247 | // then add connecting vector from plane to point | 
|---|
| 248 | temp += (*this)-PlaneOffset; | 
|---|
| 249 | double sign = temp.ScalarProduct(PlaneNormal); | 
|---|
| 250 | if (fabs(sign) > MYEPSILON) | 
|---|
| 251 | sign /= fabs(sign); | 
|---|
| 252 | else | 
|---|
| 253 | sign = 0.; | 
|---|
| 254 |  | 
|---|
| 255 | temp.Normalize(); | 
|---|
| 256 | temp.Scale(sign); | 
|---|
| 257 | return temp; | 
|---|
| 258 | }; | 
|---|
| 259 |  | 
|---|
| 260 |  | 
|---|
| 261 | /** Calculates the minimum distance of this vector to the plane. | 
|---|
| 262 | * \sa Vector::GetDistanceVectorToPlane() | 
|---|
| 263 | * \param *out output stream for debugging | 
|---|
| 264 | * \param *PlaneNormal normal of plane | 
|---|
| 265 | * \param *PlaneOffset offset of plane | 
|---|
| 266 | * \return distance to plane | 
|---|
| 267 | */ | 
|---|
| 268 | double Vector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const | 
|---|
| 269 | { | 
|---|
| 270 | return GetDistanceVectorToPlane(PlaneNormal,PlaneOffset).Norm(); | 
|---|
| 271 | }; | 
|---|
| 272 |  | 
|---|
| 273 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
| 274 | * \param *y array to second vector | 
|---|
| 275 | */ | 
|---|
| 276 | void Vector::ProjectIt(const Vector &y) | 
|---|
| 277 | { | 
|---|
| 278 | (*this) += (-ScalarProduct(y))*y; | 
|---|
| 279 | }; | 
|---|
| 280 |  | 
|---|
| 281 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
| 282 | * \param *y array to second vector | 
|---|
| 283 | * \return Vector | 
|---|
| 284 | */ | 
|---|
| 285 | Vector Vector::Projection(const Vector &y) const | 
|---|
| 286 | { | 
|---|
| 287 | Vector helper = y; | 
|---|
| 288 | helper.Scale((ScalarProduct(y)/y.NormSquared())); | 
|---|
| 289 |  | 
|---|
| 290 | return helper; | 
|---|
| 291 | }; | 
|---|
| 292 |  | 
|---|
| 293 | /** Calculates norm of this vector. | 
|---|
| 294 | * \return \f$|x|\f$ | 
|---|
| 295 | */ | 
|---|
| 296 | double Vector::Norm() const | 
|---|
| 297 | { | 
|---|
| 298 | return (sqrt(NormSquared())); | 
|---|
| 299 | }; | 
|---|
| 300 |  | 
|---|
| 301 | /** Calculates squared norm of this vector. | 
|---|
| 302 | * \return \f$|x|^2\f$ | 
|---|
| 303 | */ | 
|---|
| 304 | double Vector::NormSquared() const | 
|---|
| 305 | { | 
|---|
| 306 | return (ScalarProduct(*this)); | 
|---|
| 307 | }; | 
|---|
| 308 |  | 
|---|
| 309 | /** Normalizes this vector. | 
|---|
| 310 | */ | 
|---|
| 311 | void Vector::Normalize() | 
|---|
| 312 | { | 
|---|
| 313 | double factor = Norm(); | 
|---|
| 314 | (*this) *= 1/factor; | 
|---|
| 315 | }; | 
|---|
| 316 |  | 
|---|
| 317 | /** Zeros all components of this vector. | 
|---|
| 318 | */ | 
|---|
| 319 | void Vector::Zero() | 
|---|
| 320 | { | 
|---|
| 321 | at(0)=at(1)=at(2)=0; | 
|---|
| 322 | }; | 
|---|
| 323 |  | 
|---|
| 324 | /** Zeros all components of this vector. | 
|---|
| 325 | */ | 
|---|
| 326 | void Vector::One(const double one) | 
|---|
| 327 | { | 
|---|
| 328 | at(0)=at(1)=at(2)=one; | 
|---|
| 329 | }; | 
|---|
| 330 |  | 
|---|
| 331 | /** Checks whether vector has all components zero. | 
|---|
| 332 | * @return true - vector is zero, false - vector is not | 
|---|
| 333 | */ | 
|---|
| 334 | bool Vector::IsZero() const | 
|---|
| 335 | { | 
|---|
| 336 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON); | 
|---|
| 337 | }; | 
|---|
| 338 |  | 
|---|
| 339 | /** Checks whether vector has length of 1. | 
|---|
| 340 | * @return true - vector is normalized, false - vector is not | 
|---|
| 341 | */ | 
|---|
| 342 | bool Vector::IsOne() const | 
|---|
| 343 | { | 
|---|
| 344 | return (fabs(Norm() - 1.) < MYEPSILON); | 
|---|
| 345 | }; | 
|---|
| 346 |  | 
|---|
| 347 | /** Checks whether vector is normal to \a *normal. | 
|---|
| 348 | * @return true - vector is normalized, false - vector is not | 
|---|
| 349 | */ | 
|---|
| 350 | bool Vector::IsNormalTo(const Vector &normal) const | 
|---|
| 351 | { | 
|---|
| 352 | if (ScalarProduct(normal) < MYEPSILON) | 
|---|
| 353 | return true; | 
|---|
| 354 | else | 
|---|
| 355 | return false; | 
|---|
| 356 | }; | 
|---|
| 357 |  | 
|---|
| 358 | /** Checks whether vector is normal to \a *normal. | 
|---|
| 359 | * @return true - vector is normalized, false - vector is not | 
|---|
| 360 | */ | 
|---|
| 361 | bool Vector::IsEqualTo(const Vector &a) const | 
|---|
| 362 | { | 
|---|
| 363 | bool status = true; | 
|---|
| 364 | for (int i=0;i<NDIM;i++) { | 
|---|
| 365 | if (fabs(x[i] - a[i]) > MYEPSILON) | 
|---|
| 366 | status = false; | 
|---|
| 367 | } | 
|---|
| 368 | return status; | 
|---|
| 369 | }; | 
|---|
| 370 |  | 
|---|
| 371 | /** Calculates the angle between this and another vector. | 
|---|
| 372 | * \param *y array to second vector | 
|---|
| 373 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$ | 
|---|
| 374 | */ | 
|---|
| 375 | double Vector::Angle(const Vector &y) const | 
|---|
| 376 | { | 
|---|
| 377 | double norm1 = Norm(), norm2 = y.Norm(); | 
|---|
| 378 | double angle = -1; | 
|---|
| 379 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON)) | 
|---|
| 380 | angle = this->ScalarProduct(y)/norm1/norm2; | 
|---|
| 381 | // -1-MYEPSILON occured due to numerical imprecision, catch ... | 
|---|
| 382 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl; | 
|---|
| 383 | if (angle < -1) | 
|---|
| 384 | angle = -1; | 
|---|
| 385 | if (angle > 1) | 
|---|
| 386 | angle = 1; | 
|---|
| 387 | return acos(angle); | 
|---|
| 388 | }; | 
|---|
| 389 |  | 
|---|
| 390 |  | 
|---|
| 391 | double& Vector::operator[](size_t i){ | 
|---|
| 392 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range"); | 
|---|
| 393 | return x[i]; | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | const double& Vector::operator[](size_t i) const{ | 
|---|
| 397 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range"); | 
|---|
| 398 | return x[i]; | 
|---|
| 399 | } | 
|---|
| 400 |  | 
|---|
| 401 | double& Vector::at(size_t i){ | 
|---|
| 402 | return (*this)[i]; | 
|---|
| 403 | } | 
|---|
| 404 |  | 
|---|
| 405 | const double& Vector::at(size_t i) const{ | 
|---|
| 406 | return (*this)[i]; | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | double* Vector::get(){ | 
|---|
| 410 | return x; | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | /** Compares vector \a to vector \a b component-wise. | 
|---|
| 414 | * \param a base vector | 
|---|
| 415 | * \param b vector components to add | 
|---|
| 416 | * \return a == b | 
|---|
| 417 | */ | 
|---|
| 418 | bool Vector::operator==(const Vector& b) const | 
|---|
| 419 | { | 
|---|
| 420 | return IsEqualTo(b); | 
|---|
| 421 | }; | 
|---|
| 422 |  | 
|---|
| 423 | bool Vector::operator!=(const Vector& b) const | 
|---|
| 424 | { | 
|---|
| 425 | return !IsEqualTo(b); | 
|---|
| 426 | } | 
|---|
| 427 |  | 
|---|
| 428 | /** Sums vector \a to this lhs component-wise. | 
|---|
| 429 | * \param a base vector | 
|---|
| 430 | * \param b vector components to add | 
|---|
| 431 | * \return lhs + a | 
|---|
| 432 | */ | 
|---|
| 433 | const Vector& Vector::operator+=(const Vector& b) | 
|---|
| 434 | { | 
|---|
| 435 | this->AddVector(b); | 
|---|
| 436 | return *this; | 
|---|
| 437 | }; | 
|---|
| 438 |  | 
|---|
| 439 | /** Subtracts vector \a from this lhs component-wise. | 
|---|
| 440 | * \param a base vector | 
|---|
| 441 | * \param b vector components to add | 
|---|
| 442 | * \return lhs - a | 
|---|
| 443 | */ | 
|---|
| 444 | const Vector& Vector::operator-=(const Vector& b) | 
|---|
| 445 | { | 
|---|
| 446 | this->SubtractVector(b); | 
|---|
| 447 | return *this; | 
|---|
| 448 | }; | 
|---|
| 449 |  | 
|---|
| 450 | /** factor each component of \a a times a double \a m. | 
|---|
| 451 | * \param a base vector | 
|---|
| 452 | * \param m factor | 
|---|
| 453 | * \return lhs.x[i] * m | 
|---|
| 454 | */ | 
|---|
| 455 | const Vector& operator*=(Vector& a, const double m) | 
|---|
| 456 | { | 
|---|
| 457 | a.Scale(m); | 
|---|
| 458 | return a; | 
|---|
| 459 | }; | 
|---|
| 460 |  | 
|---|
| 461 | /** Sums two vectors \a  and \b component-wise. | 
|---|
| 462 | * \param a first vector | 
|---|
| 463 | * \param b second vector | 
|---|
| 464 | * \return a + b | 
|---|
| 465 | */ | 
|---|
| 466 | Vector const Vector::operator+(const Vector& b) const | 
|---|
| 467 | { | 
|---|
| 468 | Vector x = *this; | 
|---|
| 469 | x.AddVector(b); | 
|---|
| 470 | return x; | 
|---|
| 471 | }; | 
|---|
| 472 |  | 
|---|
| 473 | /** Subtracts vector \a from \b component-wise. | 
|---|
| 474 | * \param a first vector | 
|---|
| 475 | * \param b second vector | 
|---|
| 476 | * \return a - b | 
|---|
| 477 | */ | 
|---|
| 478 | Vector const Vector::operator-(const Vector& b) const | 
|---|
| 479 | { | 
|---|
| 480 | Vector x = *this; | 
|---|
| 481 | x.SubtractVector(b); | 
|---|
| 482 | return x; | 
|---|
| 483 | }; | 
|---|
| 484 |  | 
|---|
| 485 | /** Factors given vector \a a times \a m. | 
|---|
| 486 | * \param a vector | 
|---|
| 487 | * \param m factor | 
|---|
| 488 | * \return m * a | 
|---|
| 489 | */ | 
|---|
| 490 | Vector const operator*(const Vector& a, const double m) | 
|---|
| 491 | { | 
|---|
| 492 | Vector x(a); | 
|---|
| 493 | x.Scale(m); | 
|---|
| 494 | return x; | 
|---|
| 495 | }; | 
|---|
| 496 |  | 
|---|
| 497 | /** Factors given vector \a a times \a m. | 
|---|
| 498 | * \param m factor | 
|---|
| 499 | * \param a vector | 
|---|
| 500 | * \return m * a | 
|---|
| 501 | */ | 
|---|
| 502 | Vector const operator*(const double m, const Vector& a ) | 
|---|
| 503 | { | 
|---|
| 504 | Vector x(a); | 
|---|
| 505 | x.Scale(m); | 
|---|
| 506 | return x; | 
|---|
| 507 | }; | 
|---|
| 508 |  | 
|---|
| 509 | ostream& operator<<(ostream& ost, const Vector& m) | 
|---|
| 510 | { | 
|---|
| 511 | ost << "("; | 
|---|
| 512 | for (int i=0;i<NDIM;i++) { | 
|---|
| 513 | ost << m[i]; | 
|---|
| 514 | if (i != 2) | 
|---|
| 515 | ost << ","; | 
|---|
| 516 | } | 
|---|
| 517 | ost << ")"; | 
|---|
| 518 | return ost; | 
|---|
| 519 | }; | 
|---|
| 520 |  | 
|---|
| 521 |  | 
|---|
| 522 | void Vector::ScaleAll(const double *factor) | 
|---|
| 523 | { | 
|---|
| 524 | for (int i=NDIM;i--;) | 
|---|
| 525 | x[i] *= factor[i]; | 
|---|
| 526 | }; | 
|---|
| 527 |  | 
|---|
| 528 |  | 
|---|
| 529 |  | 
|---|
| 530 | void Vector::Scale(const double factor) | 
|---|
| 531 | { | 
|---|
| 532 | for (int i=NDIM;i--;) | 
|---|
| 533 | x[i] *= factor; | 
|---|
| 534 | }; | 
|---|
| 535 |  | 
|---|
| 536 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box. | 
|---|
| 537 | * \param *M matrix of box | 
|---|
| 538 | * \param *Minv inverse matrix | 
|---|
| 539 | */ | 
|---|
| 540 | void Vector::WrapPeriodically(const double * const M, const double * const Minv) | 
|---|
| 541 | { | 
|---|
| 542 | MatrixMultiplication(Minv); | 
|---|
| 543 | // truncate to [0,1] for each axis | 
|---|
| 544 | for (int i=0;i<NDIM;i++) { | 
|---|
| 545 | x[i] += 0.5;  // set to center of box | 
|---|
| 546 | while (x[i] >= 1.) | 
|---|
| 547 | x[i] -= 1.; | 
|---|
| 548 | while (x[i] < 0.) | 
|---|
| 549 | x[i] += 1.; | 
|---|
| 550 | } | 
|---|
| 551 | MatrixMultiplication(M); | 
|---|
| 552 | }; | 
|---|
| 553 |  | 
|---|
| 554 | /** Do a matrix multiplication. | 
|---|
| 555 | * \param *matrix NDIM_NDIM array | 
|---|
| 556 | */ | 
|---|
| 557 | void Vector::MatrixMultiplication(const double * const M) | 
|---|
| 558 | { | 
|---|
| 559 | // do the matrix multiplication | 
|---|
| 560 | at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2]; | 
|---|
| 561 | at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2]; | 
|---|
| 562 | at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2]; | 
|---|
| 563 | }; | 
|---|
| 564 |  | 
|---|
| 565 | /** Do a matrix multiplication with the \a *A' inverse. | 
|---|
| 566 | * \param *matrix NDIM_NDIM array | 
|---|
| 567 | */ | 
|---|
| 568 | bool Vector::InverseMatrixMultiplication(const double * const A) | 
|---|
| 569 | { | 
|---|
| 570 | double B[NDIM*NDIM]; | 
|---|
| 571 | double detA = RDET3(A); | 
|---|
| 572 | double detAReci; | 
|---|
| 573 |  | 
|---|
| 574 | // calculate the inverse B | 
|---|
| 575 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
| 576 | detAReci = 1./detA; | 
|---|
| 577 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11 | 
|---|
| 578 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12 | 
|---|
| 579 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13 | 
|---|
| 580 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21 | 
|---|
| 581 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22 | 
|---|
| 582 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23 | 
|---|
| 583 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31 | 
|---|
| 584 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32 | 
|---|
| 585 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33 | 
|---|
| 586 |  | 
|---|
| 587 | // do the matrix multiplication | 
|---|
| 588 | at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2]; | 
|---|
| 589 | at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2]; | 
|---|
| 590 | at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2]; | 
|---|
| 591 |  | 
|---|
| 592 | return true; | 
|---|
| 593 | } else { | 
|---|
| 594 | return false; | 
|---|
| 595 | } | 
|---|
| 596 | }; | 
|---|
| 597 |  | 
|---|
| 598 |  | 
|---|
| 599 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three. | 
|---|
| 600 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2] | 
|---|
| 601 | * \param *x1 first vector | 
|---|
| 602 | * \param *x2 second vector | 
|---|
| 603 | * \param *x3 third vector | 
|---|
| 604 | * \param *factors three-component vector with the factor for each given vector | 
|---|
| 605 | */ | 
|---|
| 606 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors) | 
|---|
| 607 | { | 
|---|
| 608 | (*this) = (factors[0]*x1) + | 
|---|
| 609 | (factors[1]*x2) + | 
|---|
| 610 | (factors[2]*x3); | 
|---|
| 611 | }; | 
|---|
| 612 |  | 
|---|
| 613 | /** Mirrors atom against a given plane. | 
|---|
| 614 | * \param n[] normal vector of mirror plane. | 
|---|
| 615 | */ | 
|---|
| 616 | void Vector::Mirror(const Vector &n) | 
|---|
| 617 | { | 
|---|
| 618 | double projection; | 
|---|
| 619 | projection = ScalarProduct(n)/n.NormSquared();    // remove constancy from n (keep as logical one) | 
|---|
| 620 | // withdraw projected vector twice from original one | 
|---|
| 621 | for (int i=NDIM;i--;) | 
|---|
| 622 | at(i) -= 2.*projection*n[i]; | 
|---|
| 623 | }; | 
|---|
| 624 |  | 
|---|
| 625 | /** Calculates orthonormal vector to one given vectors. | 
|---|
| 626 | * Just subtracts the projection onto the given vector from this vector. | 
|---|
| 627 | * The removed part of the vector is Vector::Projection() | 
|---|
| 628 | * \param *x1 vector | 
|---|
| 629 | * \return true - success, false - vector is zero | 
|---|
| 630 | */ | 
|---|
| 631 | bool Vector::MakeNormalTo(const Vector &y1) | 
|---|
| 632 | { | 
|---|
| 633 | bool result = false; | 
|---|
| 634 | double factor = y1.ScalarProduct(*this)/y1.NormSquared(); | 
|---|
| 635 | Vector x1; | 
|---|
| 636 | x1 = factor * y1; | 
|---|
| 637 | SubtractVector(x1); | 
|---|
| 638 | for (int i=NDIM;i--;) | 
|---|
| 639 | result = result || (fabs(x[i]) > MYEPSILON); | 
|---|
| 640 |  | 
|---|
| 641 | return result; | 
|---|
| 642 | }; | 
|---|
| 643 |  | 
|---|
| 644 | /** Creates this vector as one of the possible orthonormal ones to the given one. | 
|---|
| 645 | * Just scan how many components of given *vector are unequal to zero and | 
|---|
| 646 | * try to get the skp of both to be zero accordingly. | 
|---|
| 647 | * \param *vector given vector | 
|---|
| 648 | * \return true - success, false - failure (null vector given) | 
|---|
| 649 | */ | 
|---|
| 650 | bool Vector::GetOneNormalVector(const Vector &GivenVector) | 
|---|
| 651 | { | 
|---|
| 652 | int Components[NDIM]; // contains indices of non-zero components | 
|---|
| 653 | int Last = 0;   // count the number of non-zero entries in vector | 
|---|
| 654 | int j;  // loop variables | 
|---|
| 655 | double norm; | 
|---|
| 656 |  | 
|---|
| 657 | for (j=NDIM;j--;) | 
|---|
| 658 | Components[j] = -1; | 
|---|
| 659 |  | 
|---|
| 660 | // in two component-systems we need to find the one position that is zero | 
|---|
| 661 | int zeroPos = -1; | 
|---|
| 662 | // find two components != 0 | 
|---|
| 663 | for (j=0;j<NDIM;j++){ | 
|---|
| 664 | if (fabs(GivenVector[j]) > MYEPSILON) | 
|---|
| 665 | Components[Last++] = j; | 
|---|
| 666 | else | 
|---|
| 667 | // this our zero Position | 
|---|
| 668 | zeroPos = j; | 
|---|
| 669 | } | 
|---|
| 670 |  | 
|---|
| 671 | switch(Last) { | 
|---|
| 672 | case 3:  // threecomponent system | 
|---|
| 673 | // the position of the zero is arbitrary in three component systems | 
|---|
| 674 | zeroPos = Components[2]; | 
|---|
| 675 | case 2:  // two component system | 
|---|
| 676 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]])); | 
|---|
| 677 | at(zeroPos) = 0.; | 
|---|
| 678 | // in skp both remaining parts shall become zero but with opposite sign and third is zero | 
|---|
| 679 | at(Components[1]) = -1./GivenVector[Components[1]] / norm; | 
|---|
| 680 | at(Components[0]) = 1./GivenVector[Components[0]] / norm; | 
|---|
| 681 | return true; | 
|---|
| 682 | break; | 
|---|
| 683 | case 1: // one component system | 
|---|
| 684 | // set sole non-zero component to 0, and one of the other zero component pendants to 1 | 
|---|
| 685 | at((Components[0]+2)%NDIM) = 0.; | 
|---|
| 686 | at((Components[0]+1)%NDIM) = 1.; | 
|---|
| 687 | at(Components[0]) = 0.; | 
|---|
| 688 | return true; | 
|---|
| 689 | break; | 
|---|
| 690 | default: | 
|---|
| 691 | return false; | 
|---|
| 692 | } | 
|---|
| 693 | }; | 
|---|
| 694 |  | 
|---|
| 695 | /** Adds vector \a *y componentwise. | 
|---|
| 696 | * \param *y vector | 
|---|
| 697 | */ | 
|---|
| 698 | void Vector::AddVector(const Vector &y) | 
|---|
| 699 | { | 
|---|
| 700 | for(int i=NDIM;i--;) | 
|---|
| 701 | x[i] += y[i]; | 
|---|
| 702 | } | 
|---|
| 703 |  | 
|---|
| 704 | /** Adds vector \a *y componentwise. | 
|---|
| 705 | * \param *y vector | 
|---|
| 706 | */ | 
|---|
| 707 | void Vector::SubtractVector(const Vector &y) | 
|---|
| 708 | { | 
|---|
| 709 | for(int i=NDIM;i--;) | 
|---|
| 710 | x[i] -= y[i]; | 
|---|
| 711 | } | 
|---|
| 712 |  | 
|---|
| 713 | /** | 
|---|
| 714 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and | 
|---|
| 715 | * their offset. | 
|---|
| 716 | * | 
|---|
| 717 | * @param offest for the origin of the parallelepiped | 
|---|
| 718 | * @param three vectors forming the matrix that defines the shape of the parallelpiped | 
|---|
| 719 | */ | 
|---|
| 720 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const | 
|---|
| 721 | { | 
|---|
| 722 | Vector a = (*this)-offset; | 
|---|
| 723 | a.InverseMatrixMultiplication(parallelepiped); | 
|---|
| 724 | bool isInside = true; | 
|---|
| 725 |  | 
|---|
| 726 | for (int i=NDIM;i--;) | 
|---|
| 727 | isInside = isInside && ((a[i] <= 1) && (a[i] >= 0)); | 
|---|
| 728 |  | 
|---|
| 729 | return isInside; | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 |  | 
|---|
| 733 | // some comonly used vectors | 
|---|
| 734 | const Vector zeroVec(0,0,0); | 
|---|
| 735 | const Vector e1(1,0,0); | 
|---|
| 736 | const Vector e2(0,1,0); | 
|---|
| 737 | const Vector e3(0,0,1); | 
|---|