source: src/vector.cpp@ 042f82

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 042f82 was 042f82, checked in by Frederik Heber <heber@…>, 16 years ago

fixed indentation from tabs to two spaces.

  • Property mode set to 100755
File size: 27.3 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "molecules.hpp"
8
9
10/************************************ Functions for class vector ************************************/
11
12/** Constructor of class vector.
13 */
14Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
15
16/** Constructor of class vector.
17 */
18Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
19
20/** Desctructor of class vector.
21 */
22Vector::~Vector() {};
23
24/** Calculates square of distance between this and another vector.
25 * \param *y array to second vector
26 * \return \f$| x - y |^2\f$
27 */
28double Vector::DistanceSquared(const Vector *y) const
29{
30 double res = 0.;
31 for (int i=NDIM;i--;)
32 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
33 return (res);
34};
35
36/** Calculates distance between this and another vector.
37 * \param *y array to second vector
38 * \return \f$| x - y |\f$
39 */
40double Vector::Distance(const Vector *y) const
41{
42 double res = 0.;
43 for (int i=NDIM;i--;)
44 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
45 return (sqrt(res));
46};
47
48/** Calculates distance between this and another vector in a periodic cell.
49 * \param *y array to second vector
50 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
51 * \return \f$| x - y |\f$
52 */
53double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
54{
55 double res = Distance(y), tmp, matrix[NDIM*NDIM];
56 Vector Shiftedy, TranslationVector;
57 int N[NDIM];
58 matrix[0] = cell_size[0];
59 matrix[1] = cell_size[1];
60 matrix[2] = cell_size[3];
61 matrix[3] = cell_size[1];
62 matrix[4] = cell_size[2];
63 matrix[5] = cell_size[4];
64 matrix[6] = cell_size[3];
65 matrix[7] = cell_size[4];
66 matrix[8] = cell_size[5];
67 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
68 for (N[0]=-1;N[0]<=1;N[0]++)
69 for (N[1]=-1;N[1]<=1;N[1]++)
70 for (N[2]=-1;N[2]<=1;N[2]++) {
71 // create the translation vector
72 TranslationVector.Zero();
73 for (int i=NDIM;i--;)
74 TranslationVector.x[i] = (double)N[i];
75 TranslationVector.MatrixMultiplication(matrix);
76 // add onto the original vector to compare with
77 Shiftedy.CopyVector(y);
78 Shiftedy.AddVector(&TranslationVector);
79 // get distance and compare with minimum so far
80 tmp = Distance(&Shiftedy);
81 if (tmp < res) res = tmp;
82 }
83 return (res);
84};
85
86/** Calculates distance between this and another vector in a periodic cell.
87 * \param *y array to second vector
88 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
89 * \return \f$| x - y |^2\f$
90 */
91double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
92{
93 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
94 Vector Shiftedy, TranslationVector;
95 int N[NDIM];
96 matrix[0] = cell_size[0];
97 matrix[1] = cell_size[1];
98 matrix[2] = cell_size[3];
99 matrix[3] = cell_size[1];
100 matrix[4] = cell_size[2];
101 matrix[5] = cell_size[4];
102 matrix[6] = cell_size[3];
103 matrix[7] = cell_size[4];
104 matrix[8] = cell_size[5];
105 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
106 for (N[0]=-1;N[0]<=1;N[0]++)
107 for (N[1]=-1;N[1]<=1;N[1]++)
108 for (N[2]=-1;N[2]<=1;N[2]++) {
109 // create the translation vector
110 TranslationVector.Zero();
111 for (int i=NDIM;i--;)
112 TranslationVector.x[i] = (double)N[i];
113 TranslationVector.MatrixMultiplication(matrix);
114 // add onto the original vector to compare with
115 Shiftedy.CopyVector(y);
116 Shiftedy.AddVector(&TranslationVector);
117 // get distance and compare with minimum so far
118 tmp = DistanceSquared(&Shiftedy);
119 if (tmp < res) res = tmp;
120 }
121 return (res);
122};
123
124/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
125 * \param *out ofstream for debugging messages
126 * Tries to translate a vector into each adjacent neighbouring cell.
127 */
128void Vector::KeepPeriodic(ofstream *out, double *matrix)
129{
130// int N[NDIM];
131// bool flag = false;
132 //vector Shifted, TranslationVector;
133 Vector TestVector;
134// *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
135// *out << Verbose(2) << "Vector is: ";
136// Output(out);
137// *out << endl;
138 TestVector.CopyVector(this);
139 TestVector.InverseMatrixMultiplication(matrix);
140 for(int i=NDIM;i--;) { // correct periodically
141 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
142 TestVector.x[i] += ceil(TestVector.x[i]);
143 } else {
144 TestVector.x[i] -= floor(TestVector.x[i]);
145 }
146 }
147 TestVector.MatrixMultiplication(matrix);
148 CopyVector(&TestVector);
149// *out << Verbose(2) << "New corrected vector is: ";
150// Output(out);
151// *out << endl;
152// *out << Verbose(1) << "End of KeepPeriodic." << endl;
153};
154
155/** Calculates scalar product between this and another vector.
156 * \param *y array to second vector
157 * \return \f$\langle x, y \rangle\f$
158 */
159double Vector::ScalarProduct(const Vector *y) const
160{
161 double res = 0.;
162 for (int i=NDIM;i--;)
163 res += x[i]*y->x[i];
164 return (res);
165};
166
167
168/** Calculates VectorProduct between this and another vector.
169 * -# returns the Product in place of vector from which it was initiated
170 * -# ATTENTION: Only three dim.
171 * \param *y array to vector with which to calculate crossproduct
172 * \return \f$ x \times y \f&
173 */
174void Vector::VectorProduct(const Vector *y)
175{
176 Vector tmp;
177 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
178 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
179 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
180 this->CopyVector(&tmp);
181
182};
183
184
185/** projects this vector onto plane defined by \a *y.
186 * \param *y normal vector of plane
187 * \return \f$\langle x, y \rangle\f$
188 */
189void Vector::ProjectOntoPlane(const Vector *y)
190{
191 Vector tmp;
192 tmp.CopyVector(y);
193 tmp.Normalize();
194 tmp.Scale(ScalarProduct(&tmp));
195 this->SubtractVector(&tmp);
196};
197
198/** Calculates the projection of a vector onto another \a *y.
199 * \param *y array to second vector
200 * \return \f$\langle x, y \rangle\f$
201 */
202double Vector::Projection(const Vector *y) const
203{
204 return (ScalarProduct(y));
205};
206
207/** Calculates norm of this vector.
208 * \return \f$|x|\f$
209 */
210double Vector::Norm() const
211{
212 double res = 0.;
213 for (int i=NDIM;i--;)
214 res += this->x[i]*this->x[i];
215 return (sqrt(res));
216};
217
218/** Normalizes this vector.
219 */
220void Vector::Normalize()
221{
222 double res = 0.;
223 for (int i=NDIM;i--;)
224 res += this->x[i]*this->x[i];
225 if (fabs(res) > MYEPSILON)
226 res = 1./sqrt(res);
227 Scale(&res);
228};
229
230/** Zeros all components of this vector.
231 */
232void Vector::Zero()
233{
234 for (int i=NDIM;i--;)
235 this->x[i] = 0.;
236};
237
238/** Zeros all components of this vector.
239 */
240void Vector::One(double one)
241{
242 for (int i=NDIM;i--;)
243 this->x[i] = one;
244};
245
246/** Initialises all components of this vector.
247 */
248void Vector::Init(double x1, double x2, double x3)
249{
250 x[0] = x1;
251 x[1] = x2;
252 x[2] = x3;
253};
254
255/** Calculates the angle between this and another vector.
256 * \param *y array to second vector
257 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
258 */
259double Vector::Angle(const Vector *y) const
260{
261 double angle = this->ScalarProduct(y)/Norm()/y->Norm();
262 // -1-MYEPSILON occured due to numerical imprecision, catch ...
263 //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
264 if (angle < -1)
265 angle = -1;
266 if (angle > 1)
267 angle = 1;
268 return acos(angle);
269};
270
271/** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
272 * \param *axis rotation axis
273 * \param alpha rotation angle in radian
274 */
275void Vector::RotateVector(const Vector *axis, const double alpha)
276{
277 Vector a,y;
278 // normalise this vector with respect to axis
279 a.CopyVector(this);
280 a.Scale(Projection(axis));
281 SubtractVector(&a);
282 // construct normal vector
283 y.MakeNormalVector(axis,this);
284 y.Scale(Norm());
285 // scale normal vector by sine and this vector by cosine
286 y.Scale(sin(alpha));
287 Scale(cos(alpha));
288 // add scaled normal vector onto this vector
289 AddVector(&y);
290 // add part in axis direction
291 AddVector(&a);
292};
293
294/** Sums vector \a to this lhs component-wise.
295 * \param a base vector
296 * \param b vector components to add
297 * \return lhs + a
298 */
299Vector& operator+=(Vector& a, const Vector& b)
300{
301 a.AddVector(&b);
302 return a;
303};
304/** factor each component of \a a times a double \a m.
305 * \param a base vector
306 * \param m factor
307 * \return lhs.x[i] * m
308 */
309Vector& operator*=(Vector& a, const double m)
310{
311 a.Scale(m);
312 return a;
313};
314
315/** Sums two vectors \a and \b component-wise.
316 * \param a first vector
317 * \param b second vector
318 * \return a + b
319 */
320Vector& operator+(const Vector& a, const Vector& b)
321{
322 Vector *x = new Vector;
323 x->CopyVector(&a);
324 x->AddVector(&b);
325 return *x;
326};
327
328/** Factors given vector \a a times \a m.
329 * \param a vector
330 * \param m factor
331 * \return a + b
332 */
333Vector& operator*(const Vector& a, const double m)
334{
335 Vector *x = new Vector;
336 x->CopyVector(&a);
337 x->Scale(m);
338 return *x;
339};
340
341/** Prints a 3dim vector.
342 * prints no end of line.
343 * \param *out output stream
344 */
345bool Vector::Output(ofstream *out) const
346{
347 if (out != NULL) {
348 *out << "(";
349 for (int i=0;i<NDIM;i++) {
350 *out << x[i];
351 if (i != 2)
352 *out << ",";
353 }
354 *out << ")";
355 return true;
356 } else
357 return false;
358};
359
360ostream& operator<<(ostream& ost,Vector& m)
361{
362 ost << "(";
363 for (int i=0;i<NDIM;i++) {
364 ost << m.x[i];
365 if (i != 2)
366 ost << ",";
367 }
368 ost << ")";
369 return ost;
370};
371
372/** Scales each atom coordinate by an individual \a factor.
373 * \param *factor pointer to scaling factor
374 */
375void Vector::Scale(double **factor)
376{
377 for (int i=NDIM;i--;)
378 x[i] *= (*factor)[i];
379};
380
381void Vector::Scale(double *factor)
382{
383 for (int i=NDIM;i--;)
384 x[i] *= *factor;
385};
386
387void Vector::Scale(double factor)
388{
389 for (int i=NDIM;i--;)
390 x[i] *= factor;
391};
392
393/** Translate atom by given vector.
394 * \param trans[] translation vector.
395 */
396void Vector::Translate(const Vector *trans)
397{
398 for (int i=NDIM;i--;)
399 x[i] += trans->x[i];
400};
401
402/** Do a matrix multiplication.
403 * \param *matrix NDIM_NDIM array
404 */
405void Vector::MatrixMultiplication(double *M)
406{
407 Vector C;
408 // do the matrix multiplication
409 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
410 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
411 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
412 // transfer the result into this
413 for (int i=NDIM;i--;)
414 x[i] = C.x[i];
415};
416
417/** Calculate the inverse of a 3x3 matrix.
418 * \param *matrix NDIM_NDIM array
419 */
420double * Vector::InverseMatrix(double *A)
421{
422 double *B = (double *) Malloc(sizeof(double)*NDIM*NDIM, "Vector::InverseMatrix: *B");
423 double detA = RDET3(A);
424 double detAReci;
425
426 for (int i=0;i<NDIM*NDIM;++i)
427 B[i] = 0.;
428 // calculate the inverse B
429 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
430 detAReci = 1./detA;
431 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
432 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
433 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
434 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
435 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
436 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
437 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
438 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
439 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
440 }
441 return B;
442};
443
444/** Do a matrix multiplication with \a *matrix' inverse.
445 * \param *matrix NDIM_NDIM array
446 */
447void Vector::InverseMatrixMultiplication(double *A)
448{
449 Vector C;
450 double B[NDIM*NDIM];
451 double detA = RDET3(A);
452 double detAReci;
453
454 // calculate the inverse B
455 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
456 detAReci = 1./detA;
457 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
458 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
459 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
460 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
461 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
462 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
463 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
464 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
465 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
466
467 // do the matrix multiplication
468 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
469 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
470 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
471 // transfer the result into this
472 for (int i=NDIM;i--;)
473 x[i] = C.x[i];
474 } else {
475 cerr << "ERROR: inverse of matrix does not exists!" << endl;
476 }
477};
478
479
480/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
481 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
482 * \param *x1 first vector
483 * \param *x2 second vector
484 * \param *x3 third vector
485 * \param *factors three-component vector with the factor for each given vector
486 */
487void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
488{
489 for(int i=NDIM;i--;)
490 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
491};
492
493/** Mirrors atom against a given plane.
494 * \param n[] normal vector of mirror plane.
495 */
496void Vector::Mirror(const Vector *n)
497{
498 double projection;
499 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
500 // withdraw projected vector twice from original one
501 cout << Verbose(1) << "Vector: ";
502 Output((ofstream *)&cout);
503 cout << "\t";
504 for (int i=NDIM;i--;)
505 x[i] -= 2.*projection*n->x[i];
506 cout << "Projected vector: ";
507 Output((ofstream *)&cout);
508 cout << endl;
509};
510
511/** Calculates normal vector for three given vectors (being three points in space).
512 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
513 * \param *y1 first vector
514 * \param *y2 second vector
515 * \param *y3 third vector
516 * \return true - success, vectors are linear independent, false - failure due to linear dependency
517 */
518bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
519{
520 Vector x1, x2;
521
522 x1.CopyVector(y1);
523 x1.SubtractVector(y2);
524 x2.CopyVector(y3);
525 x2.SubtractVector(y2);
526 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
527 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
528 return false;
529 }
530// cout << Verbose(4) << "relative, first plane coordinates:";
531// x1.Output((ofstream *)&cout);
532// cout << endl;
533// cout << Verbose(4) << "second plane coordinates:";
534// x2.Output((ofstream *)&cout);
535// cout << endl;
536
537 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
538 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
539 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
540 Normalize();
541
542 return true;
543};
544
545
546/** Calculates orthonormal vector to two given vectors.
547 * Makes this vector orthonormal to two given vectors. This is very similar to the other
548 * vector::MakeNormalVector(), only there three points whereas here two difference
549 * vectors are given.
550 * \param *x1 first vector
551 * \param *x2 second vector
552 * \return true - success, vectors are linear independent, false - failure due to linear dependency
553 */
554bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
555{
556 Vector x1,x2;
557 x1.CopyVector(y1);
558 x2.CopyVector(y2);
559 Zero();
560 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
561 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
562 return false;
563 }
564// cout << Verbose(4) << "relative, first plane coordinates:";
565// x1.Output((ofstream *)&cout);
566// cout << endl;
567// cout << Verbose(4) << "second plane coordinates:";
568// x2.Output((ofstream *)&cout);
569// cout << endl;
570
571 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
572 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
573 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
574 Normalize();
575
576 return true;
577};
578
579/** Calculates orthonormal vector to one given vectors.
580 * Just subtracts the projection onto the given vector from this vector.
581 * \param *x1 vector
582 * \return true - success, false - vector is zero
583 */
584bool Vector::MakeNormalVector(const Vector *y1)
585{
586 bool result = false;
587 Vector x1;
588 x1.CopyVector(y1);
589 x1.Scale(x1.Projection(this));
590 SubtractVector(&x1);
591 for (int i=NDIM;i--;)
592 result = result || (fabs(x[i]) > MYEPSILON);
593
594 return result;
595};
596
597/** Creates this vector as one of the possible orthonormal ones to the given one.
598 * Just scan how many components of given *vector are unequal to zero and
599 * try to get the skp of both to be zero accordingly.
600 * \param *vector given vector
601 * \return true - success, false - failure (null vector given)
602 */
603bool Vector::GetOneNormalVector(const Vector *GivenVector)
604{
605 int Components[NDIM]; // contains indices of non-zero components
606 int Last = 0; // count the number of non-zero entries in vector
607 int j; // loop variables
608 double norm;
609
610 cout << Verbose(4);
611 GivenVector->Output((ofstream *)&cout);
612 cout << endl;
613 for (j=NDIM;j--;)
614 Components[j] = -1;
615 // find two components != 0
616 for (j=0;j<NDIM;j++)
617 if (fabs(GivenVector->x[j]) > MYEPSILON)
618 Components[Last++] = j;
619 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
620
621 switch(Last) {
622 case 3: // threecomponent system
623 case 2: // two component system
624 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
625 x[Components[2]] = 0.;
626 // in skp both remaining parts shall become zero but with opposite sign and third is zero
627 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
628 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
629 return true;
630 break;
631 case 1: // one component system
632 // set sole non-zero component to 0, and one of the other zero component pendants to 1
633 x[(Components[0]+2)%NDIM] = 0.;
634 x[(Components[0]+1)%NDIM] = 1.;
635 x[Components[0]] = 0.;
636 return true;
637 break;
638 default:
639 return false;
640 }
641};
642
643/** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
644 * \param *A first plane vector
645 * \param *B second plane vector
646 * \param *C third plane vector
647 * \return scaling parameter for this vector
648 */
649double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
650{
651// cout << Verbose(3) << "For comparison: ";
652// cout << "A " << A->Projection(this) << "\t";
653// cout << "B " << B->Projection(this) << "\t";
654// cout << "C " << C->Projection(this) << "\t";
655// cout << endl;
656 return A->Projection(this);
657};
658
659/** Creates a new vector as the one with least square distance to a given set of \a vectors.
660 * \param *vectors set of vectors
661 * \param num number of vectors
662 * \return true if success, false if failed due to linear dependency
663 */
664bool Vector::LSQdistance(Vector **vectors, int num)
665{
666 int j;
667
668 for (j=0;j<num;j++) {
669 cout << Verbose(1) << j << "th atom's vector: ";
670 (vectors[j])->Output((ofstream *)&cout);
671 cout << endl;
672 }
673
674 int np = 3;
675 struct LSQ_params par;
676
677 const gsl_multimin_fminimizer_type *T =
678 gsl_multimin_fminimizer_nmsimplex;
679 gsl_multimin_fminimizer *s = NULL;
680 gsl_vector *ss, *y;
681 gsl_multimin_function minex_func;
682
683 size_t iter = 0, i;
684 int status;
685 double size;
686
687 /* Initial vertex size vector */
688 ss = gsl_vector_alloc (np);
689 y = gsl_vector_alloc (np);
690
691 /* Set all step sizes to 1 */
692 gsl_vector_set_all (ss, 1.0);
693
694 /* Starting point */
695 par.vectors = vectors;
696 par.num = num;
697
698 for (i=NDIM;i--;)
699 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
700
701 /* Initialize method and iterate */
702 minex_func.f = &LSQ;
703 minex_func.n = np;
704 minex_func.params = (void *)&par;
705
706 s = gsl_multimin_fminimizer_alloc (T, np);
707 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
708
709 do
710 {
711 iter++;
712 status = gsl_multimin_fminimizer_iterate(s);
713
714 if (status)
715 break;
716
717 size = gsl_multimin_fminimizer_size (s);
718 status = gsl_multimin_test_size (size, 1e-2);
719
720 if (status == GSL_SUCCESS)
721 {
722 printf ("converged to minimum at\n");
723 }
724
725 printf ("%5d ", (int)iter);
726 for (i = 0; i < (size_t)np; i++)
727 {
728 printf ("%10.3e ", gsl_vector_get (s->x, i));
729 }
730 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
731 }
732 while (status == GSL_CONTINUE && iter < 100);
733
734 for (i=(size_t)np;i--;)
735 this->x[i] = gsl_vector_get(s->x, i);
736 gsl_vector_free(y);
737 gsl_vector_free(ss);
738 gsl_multimin_fminimizer_free (s);
739
740 return true;
741};
742
743/** Adds vector \a *y componentwise.
744 * \param *y vector
745 */
746void Vector::AddVector(const Vector *y)
747{
748 for (int i=NDIM;i--;)
749 this->x[i] += y->x[i];
750}
751
752/** Adds vector \a *y componentwise.
753 * \param *y vector
754 */
755void Vector::SubtractVector(const Vector *y)
756{
757 for (int i=NDIM;i--;)
758 this->x[i] -= y->x[i];
759}
760
761/** Copy vector \a *y componentwise.
762 * \param *y vector
763 */
764void Vector::CopyVector(const Vector *y)
765{
766 for (int i=NDIM;i--;)
767 this->x[i] = y->x[i];
768}
769
770
771/** Asks for position, checks for boundary.
772 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
773 * \param check whether bounds shall be checked (true) or not (false)
774 */
775void Vector::AskPosition(double *cell_size, bool check)
776{
777 char coords[3] = {'x','y','z'};
778 int j = -1;
779 for (int i=0;i<3;i++) {
780 j += i+1;
781 do {
782 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
783 cin >> x[i];
784 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
785 }
786};
787
788/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
789 * This is linear system of equations to be solved, however of the three given (skp of this vector\
790 * with either of the three hast to be zero) only two are linear independent. The third equation
791 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
792 * where very often it has to be checked whether a certain value is zero or not and thus forked into
793 * another case.
794 * \param *x1 first vector
795 * \param *x2 second vector
796 * \param *y third vector
797 * \param alpha first angle
798 * \param beta second angle
799 * \param c norm of final vector
800 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
801 * \bug this is not yet working properly
802 */
803bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
804{
805 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
806 double ang; // angle on testing
807 double sign[3];
808 int i,j,k;
809 A = cos(alpha) * x1->Norm() * c;
810 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
811 B2 = cos(beta) * x2->Norm() * c;
812 C = c * c;
813 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
814 int flag = 0;
815 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
816 if (fabs(x1->x[1]) > MYEPSILON) {
817 flag = 1;
818 } else if (fabs(x1->x[2]) > MYEPSILON) {
819 flag = 2;
820 } else {
821 return false;
822 }
823 }
824 switch (flag) {
825 default:
826 case 0:
827 break;
828 case 2:
829 flip(&x1->x[0],&x1->x[1]);
830 flip(&x2->x[0],&x2->x[1]);
831 flip(&y->x[0],&y->x[1]);
832 //flip(&x[0],&x[1]);
833 flip(&x1->x[1],&x1->x[2]);
834 flip(&x2->x[1],&x2->x[2]);
835 flip(&y->x[1],&y->x[2]);
836 //flip(&x[1],&x[2]);
837 case 1:
838 flip(&x1->x[0],&x1->x[1]);
839 flip(&x2->x[0],&x2->x[1]);
840 flip(&y->x[0],&y->x[1]);
841 //flip(&x[0],&x[1]);
842 flip(&x1->x[1],&x1->x[2]);
843 flip(&x2->x[1],&x2->x[2]);
844 flip(&y->x[1],&y->x[2]);
845 //flip(&x[1],&x[2]);
846 break;
847 }
848 // now comes the case system
849 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
850 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
851 D3 = y->x[0]/x1->x[0]*A-B1;
852 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
853 if (fabs(D1) < MYEPSILON) {
854 cout << Verbose(2) << "D1 == 0!\n";
855 if (fabs(D2) > MYEPSILON) {
856 cout << Verbose(3) << "D2 != 0!\n";
857 x[2] = -D3/D2;
858 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
859 E2 = -x1->x[1]/x1->x[0];
860 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
861 F1 = E1*E1 + 1.;
862 F2 = -E1*E2;
863 F3 = E1*E1 + D3*D3/(D2*D2) - C;
864 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
865 if (fabs(F1) < MYEPSILON) {
866 cout << Verbose(4) << "F1 == 0!\n";
867 cout << Verbose(4) << "Gleichungssystem linear\n";
868 x[1] = F3/(2.*F2);
869 } else {
870 p = F2/F1;
871 q = p*p - F3/F1;
872 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
873 if (q < 0) {
874 cout << Verbose(4) << "q < 0" << endl;
875 return false;
876 }
877 x[1] = p + sqrt(q);
878 }
879 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
880 } else {
881 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
882 return false;
883 }
884 } else {
885 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
886 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
887 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
888 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
889 F2 = -(E1*E2 + D2*D3/(D1*D1));
890 F3 = E1*E1 + D3*D3/(D1*D1) - C;
891 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
892 if (fabs(F1) < MYEPSILON) {
893 cout << Verbose(3) << "F1 == 0!\n";
894 cout << Verbose(3) << "Gleichungssystem linear\n";
895 x[2] = F3/(2.*F2);
896 } else {
897 p = F2/F1;
898 q = p*p - F3/F1;
899 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
900 if (q < 0) {
901 cout << Verbose(3) << "q < 0" << endl;
902 return false;
903 }
904 x[2] = p + sqrt(q);
905 }
906 x[1] = (-D2 * x[2] - D3)/D1;
907 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
908 }
909 switch (flag) { // back-flipping
910 default:
911 case 0:
912 break;
913 case 2:
914 flip(&x1->x[0],&x1->x[1]);
915 flip(&x2->x[0],&x2->x[1]);
916 flip(&y->x[0],&y->x[1]);
917 flip(&x[0],&x[1]);
918 flip(&x1->x[1],&x1->x[2]);
919 flip(&x2->x[1],&x2->x[2]);
920 flip(&y->x[1],&y->x[2]);
921 flip(&x[1],&x[2]);
922 case 1:
923 flip(&x1->x[0],&x1->x[1]);
924 flip(&x2->x[0],&x2->x[1]);
925 flip(&y->x[0],&y->x[1]);
926 //flip(&x[0],&x[1]);
927 flip(&x1->x[1],&x1->x[2]);
928 flip(&x2->x[1],&x2->x[2]);
929 flip(&y->x[1],&y->x[2]);
930 flip(&x[1],&x[2]);
931 break;
932 }
933 // one z component is only determined by its radius (without sign)
934 // thus check eight possible sign flips and determine by checking angle with second vector
935 for (i=0;i<8;i++) {
936 // set sign vector accordingly
937 for (j=2;j>=0;j--) {
938 k = (i & pot(2,j)) << j;
939 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
940 sign[j] = (k == 0) ? 1. : -1.;
941 }
942 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
943 // apply sign matrix
944 for (j=NDIM;j--;)
945 x[j] *= sign[j];
946 // calculate angle and check
947 ang = x2->Angle (this);
948 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
949 if (fabs(ang - cos(beta)) < MYEPSILON) {
950 break;
951 }
952 // unapply sign matrix (is its own inverse)
953 for (j=NDIM;j--;)
954 x[j] *= sign[j];
955 }
956 return true;
957};
Note: See TracBrowser for help on using the repository browser.