| 1 | /** \file vector.cpp
 | 
|---|
| 2 |  *
 | 
|---|
| 3 |  * Function implementations for the class vector.
 | 
|---|
| 4 |  *
 | 
|---|
| 5 |  */
 | 
|---|
| 6 | 
 | 
|---|
| 7 | #include "molecules.hpp"
 | 
|---|
| 8 | 
 | 
|---|
| 9 | 
 | 
|---|
| 10 | /************************************ Functions for class vector ************************************/
 | 
|---|
| 11 | 
 | 
|---|
| 12 | /** Constructor of class vector.
 | 
|---|
| 13 |  */
 | 
|---|
| 14 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
 | 
|---|
| 15 | 
 | 
|---|
| 16 | /** Constructor of class vector.
 | 
|---|
| 17 |  */
 | 
|---|
| 18 | Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
 | 
|---|
| 19 | 
 | 
|---|
| 20 | /** Desctructor of class vector.
 | 
|---|
| 21 |  */
 | 
|---|
| 22 | Vector::~Vector() {};
 | 
|---|
| 23 | 
 | 
|---|
| 24 | /** Calculates square of distance between this and another vector.
 | 
|---|
| 25 |  * \param *y array to second vector
 | 
|---|
| 26 |  * \return \f$| x - y |^2\f$
 | 
|---|
| 27 |  */
 | 
|---|
| 28 | double Vector::DistanceSquared(const Vector *y) const
 | 
|---|
| 29 | {
 | 
|---|
| 30 |         double res = 0.;
 | 
|---|
| 31 |         for (int i=NDIM;i--;)
 | 
|---|
| 32 |                 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
| 33 |         return (res);
 | 
|---|
| 34 | };
 | 
|---|
| 35 | 
 | 
|---|
| 36 | /** Calculates distance between this and another vector.
 | 
|---|
| 37 |  * \param *y array to second vector
 | 
|---|
| 38 |  * \return \f$| x - y |\f$
 | 
|---|
| 39 |  */
 | 
|---|
| 40 | double Vector::Distance(const Vector *y) const
 | 
|---|
| 41 | {
 | 
|---|
| 42 |         double res = 0.;
 | 
|---|
| 43 |         for (int i=NDIM;i--;)
 | 
|---|
| 44 |                 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
| 45 |         return (sqrt(res));
 | 
|---|
| 46 | };
 | 
|---|
| 47 | 
 | 
|---|
| 48 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
| 49 |  * \param *y array to second vector
 | 
|---|
| 50 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
| 51 |  * \return \f$| x - y |\f$
 | 
|---|
| 52 |  */
 | 
|---|
| 53 | double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
 | 
|---|
| 54 | {
 | 
|---|
| 55 |         double res = Distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
| 56 |         Vector Shiftedy, TranslationVector;
 | 
|---|
| 57 |         int N[NDIM];
 | 
|---|
| 58 |         matrix[0] = cell_size[0];
 | 
|---|
| 59 |         matrix[1] = cell_size[1];
 | 
|---|
| 60 |         matrix[2] = cell_size[3];
 | 
|---|
| 61 |         matrix[3] = cell_size[1];
 | 
|---|
| 62 |         matrix[4] = cell_size[2];
 | 
|---|
| 63 |         matrix[5] = cell_size[4];
 | 
|---|
| 64 |         matrix[6] = cell_size[3];
 | 
|---|
| 65 |         matrix[7] = cell_size[4];
 | 
|---|
| 66 |         matrix[8] = cell_size[5];
 | 
|---|
| 67 |         // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
| 68 |         for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
| 69 |                 for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
| 70 |                         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
| 71 |                                 // create the translation vector
 | 
|---|
| 72 |                                 TranslationVector.Zero();
 | 
|---|
| 73 |                                 for (int i=NDIM;i--;)
 | 
|---|
| 74 |                                         TranslationVector.x[i] = (double)N[i];
 | 
|---|
| 75 |                                 TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
| 76 |                                 // add onto the original vector to compare with
 | 
|---|
| 77 |                                 Shiftedy.CopyVector(y);
 | 
|---|
| 78 |                                 Shiftedy.AddVector(&TranslationVector);
 | 
|---|
| 79 |                                 // get distance and compare with minimum so far
 | 
|---|
| 80 |                                 tmp = Distance(&Shiftedy);
 | 
|---|
| 81 |                                 if (tmp < res) res = tmp;
 | 
|---|
| 82 |                         }
 | 
|---|
| 83 |         return (res);
 | 
|---|
| 84 | };
 | 
|---|
| 85 | 
 | 
|---|
| 86 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
| 87 |  * \param *y array to second vector
 | 
|---|
| 88 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
| 89 |  * \return \f$| x - y |^2\f$
 | 
|---|
| 90 |  */
 | 
|---|
| 91 | double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
 | 
|---|
| 92 | {
 | 
|---|
| 93 |         double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
| 94 |         Vector Shiftedy, TranslationVector;
 | 
|---|
| 95 |         int N[NDIM];
 | 
|---|
| 96 |         matrix[0] = cell_size[0];
 | 
|---|
| 97 |         matrix[1] = cell_size[1];
 | 
|---|
| 98 |         matrix[2] = cell_size[3];
 | 
|---|
| 99 |         matrix[3] = cell_size[1];
 | 
|---|
| 100 |         matrix[4] = cell_size[2];
 | 
|---|
| 101 |         matrix[5] = cell_size[4];
 | 
|---|
| 102 |         matrix[6] = cell_size[3];
 | 
|---|
| 103 |         matrix[7] = cell_size[4];
 | 
|---|
| 104 |         matrix[8] = cell_size[5];
 | 
|---|
| 105 |         // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
| 106 |         for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
| 107 |                 for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
| 108 |                         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
| 109 |                                 // create the translation vector
 | 
|---|
| 110 |                                 TranslationVector.Zero();
 | 
|---|
| 111 |                                 for (int i=NDIM;i--;)
 | 
|---|
| 112 |                                         TranslationVector.x[i] = (double)N[i];
 | 
|---|
| 113 |                                 TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
| 114 |                                 // add onto the original vector to compare with
 | 
|---|
| 115 |                                 Shiftedy.CopyVector(y);
 | 
|---|
| 116 |                                 Shiftedy.AddVector(&TranslationVector);
 | 
|---|
| 117 |                                 // get distance and compare with minimum so far
 | 
|---|
| 118 |                                 tmp = DistanceSquared(&Shiftedy);
 | 
|---|
| 119 |                                 if (tmp < res) res = tmp;
 | 
|---|
| 120 |                         }
 | 
|---|
| 121 |         return (res);
 | 
|---|
| 122 | };
 | 
|---|
| 123 | 
 | 
|---|
| 124 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
| 125 |  * \param *out ofstream for debugging messages
 | 
|---|
| 126 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
| 127 |  */
 | 
|---|
| 128 | void Vector::KeepPeriodic(ofstream *out, double *matrix)
 | 
|---|
| 129 | {
 | 
|---|
| 130 | //      int N[NDIM];
 | 
|---|
| 131 | //      bool flag = false;
 | 
|---|
| 132 |         //vector Shifted, TranslationVector;
 | 
|---|
| 133 |         Vector TestVector;
 | 
|---|
| 134 | //      *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
| 135 | //      *out << Verbose(2) << "Vector is: ";
 | 
|---|
| 136 | //      Output(out);
 | 
|---|
| 137 | //      *out << endl;
 | 
|---|
| 138 |         TestVector.CopyVector(this);
 | 
|---|
| 139 |         TestVector.InverseMatrixMultiplication(matrix);
 | 
|---|
| 140 |         for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
| 141 |                 if (TestVector.x[i] < 0) {      // get every coefficient into the interval [0,1)
 | 
|---|
| 142 |                         TestVector.x[i] += ceil(TestVector.x[i]);
 | 
|---|
| 143 |                 } else {
 | 
|---|
| 144 |                         TestVector.x[i] -= floor(TestVector.x[i]);
 | 
|---|
| 145 |                 }
 | 
|---|
| 146 |         }
 | 
|---|
| 147 |         TestVector.MatrixMultiplication(matrix);
 | 
|---|
| 148 |         CopyVector(&TestVector);
 | 
|---|
| 149 | //      *out << Verbose(2) << "New corrected vector is: ";
 | 
|---|
| 150 | //      Output(out);
 | 
|---|
| 151 | //      *out << endl;
 | 
|---|
| 152 | //      *out << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
| 153 | };
 | 
|---|
| 154 | 
 | 
|---|
| 155 | /** Calculates scalar product between this and another vector.
 | 
|---|
| 156 |  * \param *y array to second vector
 | 
|---|
| 157 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
| 158 |  */
 | 
|---|
| 159 | double Vector::ScalarProduct(const Vector *y) const
 | 
|---|
| 160 | {
 | 
|---|
| 161 |         double res = 0.;
 | 
|---|
| 162 |         for (int i=NDIM;i--;)
 | 
|---|
| 163 |                 res += x[i]*y->x[i];
 | 
|---|
| 164 |         return (res);
 | 
|---|
| 165 | };
 | 
|---|
| 166 | 
 | 
|---|
| 167 | 
 | 
|---|
| 168 | /** Calculates VectorProduct between this and another vector.
 | 
|---|
| 169 |  *      -# returns the Product in place of vector from which it was initiated
 | 
|---|
| 170 |  *      -# ATTENTION: Only three dim.
 | 
|---|
| 171 |  *      \param *y array to vector with which to calculate crossproduct
 | 
|---|
| 172 |  *      \return \f$ x \times y \f&
 | 
|---|
| 173 |  */
 | 
|---|
| 174 | void Vector::VectorProduct(const Vector *y)
 | 
|---|
| 175 | {
 | 
|---|
| 176 |         Vector tmp;
 | 
|---|
| 177 |         tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
 | 
|---|
| 178 |         tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
 | 
|---|
| 179 |         tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
 | 
|---|
| 180 |         this->CopyVector(&tmp);
 | 
|---|
| 181 | 
 | 
|---|
| 182 | };
 | 
|---|
| 183 | 
 | 
|---|
| 184 | 
 | 
|---|
| 185 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
| 186 |  * \param *y normal vector of plane
 | 
|---|
| 187 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
| 188 |  */
 | 
|---|
| 189 | void Vector::ProjectOntoPlane(const Vector *y)
 | 
|---|
| 190 | {
 | 
|---|
| 191 |         Vector tmp;
 | 
|---|
| 192 |         tmp.CopyVector(y);
 | 
|---|
| 193 |         tmp.Normalize();
 | 
|---|
| 194 |         tmp.Scale(ScalarProduct(&tmp));
 | 
|---|
| 195 |         this->SubtractVector(&tmp);
 | 
|---|
| 196 | };
 | 
|---|
| 197 | 
 | 
|---|
| 198 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
| 199 |  * \param *y array to second vector
 | 
|---|
| 200 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
| 201 |  */
 | 
|---|
| 202 | double Vector::Projection(const Vector *y) const
 | 
|---|
| 203 | {
 | 
|---|
| 204 |         return (ScalarProduct(y));
 | 
|---|
| 205 | };
 | 
|---|
| 206 | 
 | 
|---|
| 207 | /** Calculates norm of this vector.
 | 
|---|
| 208 |  * \return \f$|x|\f$
 | 
|---|
| 209 |  */
 | 
|---|
| 210 | double Vector::Norm() const
 | 
|---|
| 211 | {
 | 
|---|
| 212 |         double res = 0.;
 | 
|---|
| 213 |         for (int i=NDIM;i--;)
 | 
|---|
| 214 |                 res += this->x[i]*this->x[i];
 | 
|---|
| 215 |         return (sqrt(res));
 | 
|---|
| 216 | };
 | 
|---|
| 217 | 
 | 
|---|
| 218 | /** Normalizes this vector.
 | 
|---|
| 219 |  */
 | 
|---|
| 220 | void Vector::Normalize()
 | 
|---|
| 221 | {
 | 
|---|
| 222 |         double res = 0.;
 | 
|---|
| 223 |         for (int i=NDIM;i--;)
 | 
|---|
| 224 |                 res += this->x[i]*this->x[i];
 | 
|---|
| 225 |         if (fabs(res) > MYEPSILON)
 | 
|---|
| 226 |                 res = 1./sqrt(res);
 | 
|---|
| 227 |         Scale(&res);
 | 
|---|
| 228 | };
 | 
|---|
| 229 | 
 | 
|---|
| 230 | /** Zeros all components of this vector.
 | 
|---|
| 231 |  */
 | 
|---|
| 232 | void Vector::Zero()
 | 
|---|
| 233 | {
 | 
|---|
| 234 |         for (int i=NDIM;i--;)
 | 
|---|
| 235 |                 this->x[i] = 0.;
 | 
|---|
| 236 | };
 | 
|---|
| 237 | 
 | 
|---|
| 238 | /** Zeros all components of this vector.
 | 
|---|
| 239 |  */
 | 
|---|
| 240 | void Vector::One(double one)
 | 
|---|
| 241 | {
 | 
|---|
| 242 |         for (int i=NDIM;i--;)
 | 
|---|
| 243 |                 this->x[i] = one;
 | 
|---|
| 244 | };
 | 
|---|
| 245 | 
 | 
|---|
| 246 | /** Initialises all components of this vector.
 | 
|---|
| 247 |  */
 | 
|---|
| 248 | void Vector::Init(double x1, double x2, double x3)
 | 
|---|
| 249 | {
 | 
|---|
| 250 |         x[0] = x1;
 | 
|---|
| 251 |         x[1] = x2;
 | 
|---|
| 252 |         x[2] = x3;
 | 
|---|
| 253 | };
 | 
|---|
| 254 | 
 | 
|---|
| 255 | /** Calculates the angle between this and another vector.
 | 
|---|
| 256 |  * \param *y array to second vector
 | 
|---|
| 257 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
| 258 |  */
 | 
|---|
| 259 | double Vector::Angle(const Vector *y) const
 | 
|---|
| 260 | {
 | 
|---|
| 261 |         return acos(this->ScalarProduct(y)/Norm()/y->Norm());
 | 
|---|
| 262 | };
 | 
|---|
| 263 | 
 | 
|---|
| 264 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
 | 
|---|
| 265 |  * \param *axis rotation axis
 | 
|---|
| 266 |  * \param alpha rotation angle in radian
 | 
|---|
| 267 |  */
 | 
|---|
| 268 | void Vector::RotateVector(const Vector *axis, const double alpha)
 | 
|---|
| 269 | {
 | 
|---|
| 270 |         Vector a,y;
 | 
|---|
| 271 |         // normalise this vector with respect to axis
 | 
|---|
| 272 |         a.CopyVector(this);
 | 
|---|
| 273 |         a.Scale(Projection(axis));
 | 
|---|
| 274 |         SubtractVector(&a);
 | 
|---|
| 275 |         // construct normal vector
 | 
|---|
| 276 |         y.MakeNormalVector(axis,this);
 | 
|---|
| 277 |         y.Scale(Norm());
 | 
|---|
| 278 |         // scale normal vector by sine and this vector by cosine
 | 
|---|
| 279 |         y.Scale(sin(alpha));
 | 
|---|
| 280 |         Scale(cos(alpha));
 | 
|---|
| 281 |         // add scaled normal vector onto this vector
 | 
|---|
| 282 |         AddVector(&y);
 | 
|---|
| 283 |         // add part in axis direction
 | 
|---|
| 284 |         AddVector(&a);
 | 
|---|
| 285 | };
 | 
|---|
| 286 | 
 | 
|---|
| 287 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
| 288 |  * \param a base vector
 | 
|---|
| 289 |  * \param b vector components to add
 | 
|---|
| 290 |  * \return lhs + a
 | 
|---|
| 291 |  */
 | 
|---|
| 292 | Vector& operator+=(Vector& a, const Vector& b)
 | 
|---|
| 293 | {
 | 
|---|
| 294 |         a.AddVector(&b);
 | 
|---|
| 295 |         return a;
 | 
|---|
| 296 | };
 | 
|---|
| 297 | /** factor each component of \a a times a double \a m.
 | 
|---|
| 298 |  * \param a base vector
 | 
|---|
| 299 |  * \param m factor
 | 
|---|
| 300 |  * \return lhs.x[i] * m
 | 
|---|
| 301 |  */
 | 
|---|
| 302 | Vector& operator*=(Vector& a, const double m)
 | 
|---|
| 303 | {
 | 
|---|
| 304 |         a.Scale(m);
 | 
|---|
| 305 |         return a;
 | 
|---|
| 306 | };
 | 
|---|
| 307 | 
 | 
|---|
| 308 | /** Sums two vectors \a and \b component-wise.
 | 
|---|
| 309 |  * \param a first vector
 | 
|---|
| 310 |  * \param b second vector
 | 
|---|
| 311 |  * \return a + b
 | 
|---|
| 312 |  */
 | 
|---|
| 313 | Vector& operator+(const Vector& a, const Vector& b)
 | 
|---|
| 314 | {
 | 
|---|
| 315 |         Vector *x = new Vector;
 | 
|---|
| 316 |         x->CopyVector(&a);
 | 
|---|
| 317 |         x->AddVector(&b);
 | 
|---|
| 318 |         return *x;
 | 
|---|
| 319 | };
 | 
|---|
| 320 | 
 | 
|---|
| 321 | /** Factors given vector \a a times \a m.
 | 
|---|
| 322 |  * \param a vector
 | 
|---|
| 323 |  * \param m factor
 | 
|---|
| 324 |  * \return a + b
 | 
|---|
| 325 |  */
 | 
|---|
| 326 | Vector& operator*(const Vector& a, const double m)
 | 
|---|
| 327 | {
 | 
|---|
| 328 |         Vector *x = new Vector;
 | 
|---|
| 329 |         x->CopyVector(&a);
 | 
|---|
| 330 |         x->Scale(m);
 | 
|---|
| 331 |         return *x;
 | 
|---|
| 332 | };
 | 
|---|
| 333 | 
 | 
|---|
| 334 | /** Prints a 3dim vector.
 | 
|---|
| 335 |  * prints no end of line.
 | 
|---|
| 336 |  * \param *out output stream
 | 
|---|
| 337 |  */
 | 
|---|
| 338 | bool Vector::Output(ofstream *out) const
 | 
|---|
| 339 | {
 | 
|---|
| 340 |         if (out != NULL) {
 | 
|---|
| 341 |                 *out << "(";
 | 
|---|
| 342 |                 for (int i=0;i<NDIM;i++) {
 | 
|---|
| 343 |                         *out << x[i];
 | 
|---|
| 344 |                         if (i != 2)
 | 
|---|
| 345 |                                 *out << ",";
 | 
|---|
| 346 |                 }
 | 
|---|
| 347 |                 *out << ")";
 | 
|---|
| 348 |                 return true;
 | 
|---|
| 349 |         } else
 | 
|---|
| 350 |                 return false;
 | 
|---|
| 351 | };
 | 
|---|
| 352 | 
 | 
|---|
| 353 | ostream& operator<<(ostream& ost,Vector& m)
 | 
|---|
| 354 | {
 | 
|---|
| 355 |         ost << "(";
 | 
|---|
| 356 |         for (int i=0;i<NDIM;i++) {
 | 
|---|
| 357 |                 ost << m.x[i];
 | 
|---|
| 358 |                 if (i != 2)
 | 
|---|
| 359 |                         ost << ",";
 | 
|---|
| 360 |         }
 | 
|---|
| 361 |         ost << ")";
 | 
|---|
| 362 |         return ost;
 | 
|---|
| 363 | };
 | 
|---|
| 364 | 
 | 
|---|
| 365 | /** Scales each atom coordinate by an individual \a factor.
 | 
|---|
| 366 |  * \param *factor pointer to scaling factor
 | 
|---|
| 367 |  */
 | 
|---|
| 368 | void Vector::Scale(double **factor)
 | 
|---|
| 369 | {
 | 
|---|
| 370 |         for (int i=NDIM;i--;)
 | 
|---|
| 371 |                 x[i] *= (*factor)[i];
 | 
|---|
| 372 | };
 | 
|---|
| 373 | 
 | 
|---|
| 374 | void Vector::Scale(double *factor)
 | 
|---|
| 375 | {
 | 
|---|
| 376 |         for (int i=NDIM;i--;)
 | 
|---|
| 377 |                 x[i] *= *factor;
 | 
|---|
| 378 | };
 | 
|---|
| 379 | 
 | 
|---|
| 380 | void Vector::Scale(double factor)
 | 
|---|
| 381 | {
 | 
|---|
| 382 |         for (int i=NDIM;i--;)
 | 
|---|
| 383 |                 x[i] *= factor;
 | 
|---|
| 384 | };
 | 
|---|
| 385 | 
 | 
|---|
| 386 | /** Translate atom by given vector.
 | 
|---|
| 387 |  * \param trans[] translation vector.
 | 
|---|
| 388 |  */
 | 
|---|
| 389 | void Vector::Translate(const Vector *trans)
 | 
|---|
| 390 | {
 | 
|---|
| 391 |         for (int i=NDIM;i--;)
 | 
|---|
| 392 |                 x[i] += trans->x[i];
 | 
|---|
| 393 | };
 | 
|---|
| 394 | 
 | 
|---|
| 395 | /** Do a matrix multiplication.
 | 
|---|
| 396 |  * \param *matrix NDIM_NDIM array
 | 
|---|
| 397 |  */
 | 
|---|
| 398 | void Vector::MatrixMultiplication(double *M)
 | 
|---|
| 399 | {
 | 
|---|
| 400 |         Vector C;
 | 
|---|
| 401 |         // do the matrix multiplication
 | 
|---|
| 402 |         C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
| 403 |         C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
| 404 |         C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
| 405 |         // transfer the result into this
 | 
|---|
| 406 |         for (int i=NDIM;i--;)
 | 
|---|
| 407 |                 x[i] = C.x[i];
 | 
|---|
| 408 | };
 | 
|---|
| 409 | 
 | 
|---|
| 410 | /** Do a matrix multiplication with \a *matrix' inverse.
 | 
|---|
| 411 |  * \param *matrix NDIM_NDIM array
 | 
|---|
| 412 |  */
 | 
|---|
| 413 | void Vector::InverseMatrixMultiplication(double *A)
 | 
|---|
| 414 | {
 | 
|---|
| 415 |         Vector C;
 | 
|---|
| 416 |         double B[NDIM*NDIM];
 | 
|---|
| 417 |         double detA = RDET3(A);
 | 
|---|
| 418 |         double detAReci;
 | 
|---|
| 419 | 
 | 
|---|
| 420 |         // calculate the inverse B
 | 
|---|
| 421 |         if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
| 422 |                 detAReci = 1./detA;
 | 
|---|
| 423 |                 B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);            // A_11
 | 
|---|
| 424 |                 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);            // A_12
 | 
|---|
| 425 |                 B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);            // A_13
 | 
|---|
| 426 |                 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);            // A_21
 | 
|---|
| 427 |                 B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);            // A_22
 | 
|---|
| 428 |                 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);            // A_23
 | 
|---|
| 429 |                 B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);            // A_31
 | 
|---|
| 430 |                 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);            // A_32
 | 
|---|
| 431 |                 B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);            // A_33
 | 
|---|
| 432 | 
 | 
|---|
| 433 |                 // do the matrix multiplication
 | 
|---|
| 434 |                 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
| 435 |                 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
| 436 |                 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
| 437 |                 // transfer the result into this
 | 
|---|
| 438 |                 for (int i=NDIM;i--;)
 | 
|---|
| 439 |                         x[i] = C.x[i];
 | 
|---|
| 440 |         } else {
 | 
|---|
| 441 |                 cerr << "ERROR: inverse of matrix does not exists!" << endl;
 | 
|---|
| 442 |         }
 | 
|---|
| 443 | };
 | 
|---|
| 444 | 
 | 
|---|
| 445 | 
 | 
|---|
| 446 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
| 447 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
| 448 |  * \param *x1 first vector
 | 
|---|
| 449 |  * \param *x2 second vector
 | 
|---|
| 450 |  * \param *x3 third vector
 | 
|---|
| 451 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
| 452 |  */
 | 
|---|
| 453 | void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
 | 
|---|
| 454 | {
 | 
|---|
| 455 |         for(int i=NDIM;i--;)
 | 
|---|
| 456 |                 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
 | 
|---|
| 457 | };
 | 
|---|
| 458 | 
 | 
|---|
| 459 | /** Mirrors atom against a given plane.
 | 
|---|
| 460 |  * \param n[] normal vector of mirror plane.
 | 
|---|
| 461 |  */
 | 
|---|
| 462 | void Vector::Mirror(const Vector *n)
 | 
|---|
| 463 | {
 | 
|---|
| 464 |         double projection;
 | 
|---|
| 465 |         projection = ScalarProduct(n)/n->ScalarProduct(n);              // remove constancy from n (keep as logical one)
 | 
|---|
| 466 |         // withdraw projected vector twice from original one
 | 
|---|
| 467 |         cout << Verbose(1) << "Vector: ";
 | 
|---|
| 468 |         Output((ofstream *)&cout);
 | 
|---|
| 469 |         cout << "\t";
 | 
|---|
| 470 |         for (int i=NDIM;i--;)
 | 
|---|
| 471 |                 x[i] -= 2.*projection*n->x[i];
 | 
|---|
| 472 |         cout << "Projected vector: ";
 | 
|---|
| 473 |         Output((ofstream *)&cout);
 | 
|---|
| 474 |         cout << endl;
 | 
|---|
| 475 | };
 | 
|---|
| 476 | 
 | 
|---|
| 477 | /** Calculates normal vector for three given vectors (being three points in space).
 | 
|---|
| 478 |  * Makes this vector orthonormal to the three given points, making up a place in 3d space.
 | 
|---|
| 479 |  * \param *y1 first vector
 | 
|---|
| 480 |  * \param *y2 second vector
 | 
|---|
| 481 |  * \param *y3 third vector
 | 
|---|
| 482 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
| 483 |  */
 | 
|---|
| 484 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
 | 
|---|
| 485 | {
 | 
|---|
| 486 |         Vector x1, x2;
 | 
|---|
| 487 | 
 | 
|---|
| 488 |         x1.CopyVector(y1);
 | 
|---|
| 489 |         x1.SubtractVector(y2);
 | 
|---|
| 490 |         x2.CopyVector(y3);
 | 
|---|
| 491 |         x2.SubtractVector(y2);
 | 
|---|
| 492 |         if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
| 493 |                 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
 | 
|---|
| 494 |                 return false;
 | 
|---|
| 495 |         }
 | 
|---|
| 496 | //      cout << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| 497 | //      x1.Output((ofstream *)&cout);
 | 
|---|
| 498 | //      cout << endl;
 | 
|---|
| 499 | //      cout << Verbose(4) << "second plane coordinates:";
 | 
|---|
| 500 | //      x2.Output((ofstream *)&cout);
 | 
|---|
| 501 | //      cout << endl;
 | 
|---|
| 502 | 
 | 
|---|
| 503 |         this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
| 504 |         this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
| 505 |         this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
| 506 |         Normalize();
 | 
|---|
| 507 | 
 | 
|---|
| 508 |         return true;
 | 
|---|
| 509 | };
 | 
|---|
| 510 | 
 | 
|---|
| 511 | 
 | 
|---|
| 512 | /** Calculates orthonormal vector to two given vectors.
 | 
|---|
| 513 |  * Makes this vector orthonormal to two given vectors. This is very similar to the other
 | 
|---|
| 514 |  * vector::MakeNormalVector(), only there three points whereas here two difference
 | 
|---|
| 515 |  * vectors are given.
 | 
|---|
| 516 |  * \param *x1 first vector
 | 
|---|
| 517 |  * \param *x2 second vector
 | 
|---|
| 518 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
| 519 |  */
 | 
|---|
| 520 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
 | 
|---|
| 521 | {
 | 
|---|
| 522 |         Vector x1,x2;
 | 
|---|
| 523 |         x1.CopyVector(y1);
 | 
|---|
| 524 |         x2.CopyVector(y2);
 | 
|---|
| 525 |         Zero();
 | 
|---|
| 526 |         if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
| 527 |                 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
 | 
|---|
| 528 |                 return false;
 | 
|---|
| 529 |         }
 | 
|---|
| 530 | //      cout << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| 531 | //      x1.Output((ofstream *)&cout);
 | 
|---|
| 532 | //      cout << endl;
 | 
|---|
| 533 | //      cout << Verbose(4) << "second plane coordinates:";
 | 
|---|
| 534 | //      x2.Output((ofstream *)&cout);
 | 
|---|
| 535 | //      cout << endl;
 | 
|---|
| 536 | 
 | 
|---|
| 537 |         this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
| 538 |         this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
| 539 |         this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
| 540 |         Normalize();
 | 
|---|
| 541 | 
 | 
|---|
| 542 |         return true;
 | 
|---|
| 543 | };
 | 
|---|
| 544 | 
 | 
|---|
| 545 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
| 546 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
| 547 |  * \param *x1 vector
 | 
|---|
| 548 |  * \return true - success, false - vector is zero
 | 
|---|
| 549 |  */
 | 
|---|
| 550 | bool Vector::MakeNormalVector(const Vector *y1)
 | 
|---|
| 551 | {
 | 
|---|
| 552 |         bool result = false;
 | 
|---|
| 553 |         Vector x1;
 | 
|---|
| 554 |         x1.CopyVector(y1);
 | 
|---|
| 555 |         x1.Scale(x1.Projection(this));
 | 
|---|
| 556 |         SubtractVector(&x1);
 | 
|---|
| 557 |         for (int i=NDIM;i--;)
 | 
|---|
| 558 |                 result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
| 559 | 
 | 
|---|
| 560 |         return result;
 | 
|---|
| 561 | };
 | 
|---|
| 562 | 
 | 
|---|
| 563 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
| 564 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
| 565 |  * try to get the skp of both to be zero accordingly.
 | 
|---|
| 566 |  * \param *vector given vector
 | 
|---|
| 567 |  * \return true - success, false - failure (null vector given)
 | 
|---|
| 568 |  */
 | 
|---|
| 569 | bool Vector::GetOneNormalVector(const Vector *GivenVector)
 | 
|---|
| 570 | {
 | 
|---|
| 571 |         int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
| 572 |         int Last = 0;    // count the number of non-zero entries in vector
 | 
|---|
| 573 |         int j;  // loop variables
 | 
|---|
| 574 |         double norm;
 | 
|---|
| 575 | 
 | 
|---|
| 576 |         cout << Verbose(4);
 | 
|---|
| 577 |         GivenVector->Output((ofstream *)&cout);
 | 
|---|
| 578 |         cout << endl;
 | 
|---|
| 579 |         for (j=NDIM;j--;)
 | 
|---|
| 580 |                 Components[j] = -1;
 | 
|---|
| 581 |         // find two components != 0
 | 
|---|
| 582 |         for (j=0;j<NDIM;j++)
 | 
|---|
| 583 |                 if (fabs(GivenVector->x[j]) > MYEPSILON)
 | 
|---|
| 584 |                         Components[Last++] = j;
 | 
|---|
| 585 |         cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
 | 
|---|
| 586 | 
 | 
|---|
| 587 |         switch(Last) {
 | 
|---|
| 588 |                 case 3: // threecomponent system
 | 
|---|
| 589 |                 case 2: // two component system
 | 
|---|
| 590 |                         norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
 | 
|---|
| 591 |                         x[Components[2]] = 0.;
 | 
|---|
| 592 |                         // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
| 593 |                         x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
 | 
|---|
| 594 |                         x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
 | 
|---|
| 595 |                         return true;
 | 
|---|
| 596 |                         break;
 | 
|---|
| 597 |                 case 1: // one component system
 | 
|---|
| 598 |                         // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
| 599 |                         x[(Components[0]+2)%NDIM] = 0.;
 | 
|---|
| 600 |                         x[(Components[0]+1)%NDIM] = 1.;
 | 
|---|
| 601 |                         x[Components[0]] = 0.;
 | 
|---|
| 602 |                         return true;
 | 
|---|
| 603 |                         break;
 | 
|---|
| 604 |                 default:
 | 
|---|
| 605 |                         return false;
 | 
|---|
| 606 |         }
 | 
|---|
| 607 | };
 | 
|---|
| 608 | 
 | 
|---|
| 609 | /** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
 | 
|---|
| 610 |  * \param *A first plane vector
 | 
|---|
| 611 |  * \param *B second plane vector
 | 
|---|
| 612 |  * \param *C third plane vector
 | 
|---|
| 613 |  * \return scaling parameter for this vector
 | 
|---|
| 614 |  */
 | 
|---|
| 615 | double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
 | 
|---|
| 616 | {
 | 
|---|
| 617 | //      cout << Verbose(3) << "For comparison: ";
 | 
|---|
| 618 | //      cout << "A " << A->Projection(this) << "\t";
 | 
|---|
| 619 | //      cout << "B " << B->Projection(this) << "\t";
 | 
|---|
| 620 | //      cout << "C " << C->Projection(this) << "\t";
 | 
|---|
| 621 | //      cout << endl;
 | 
|---|
| 622 |         return A->Projection(this);
 | 
|---|
| 623 | };
 | 
|---|
| 624 | 
 | 
|---|
| 625 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
 | 
|---|
| 626 |  * \param *vectors set of vectors
 | 
|---|
| 627 |  * \param num number of vectors
 | 
|---|
| 628 |  * \return true if success, false if failed due to linear dependency
 | 
|---|
| 629 |  */
 | 
|---|
| 630 | bool Vector::LSQdistance(Vector **vectors, int num)
 | 
|---|
| 631 | {
 | 
|---|
| 632 |         int j;
 | 
|---|
| 633 | 
 | 
|---|
| 634 |         for (j=0;j<num;j++) {
 | 
|---|
| 635 |                 cout << Verbose(1) << j << "th atom's vector: ";
 | 
|---|
| 636 |                 (vectors[j])->Output((ofstream *)&cout);
 | 
|---|
| 637 |                 cout << endl;
 | 
|---|
| 638 |         }
 | 
|---|
| 639 | 
 | 
|---|
| 640 |         int np = 3;
 | 
|---|
| 641 |         struct LSQ_params par;
 | 
|---|
| 642 | 
 | 
|---|
| 643 |          const gsl_multimin_fminimizer_type *T =
 | 
|---|
| 644 |                  gsl_multimin_fminimizer_nmsimplex;
 | 
|---|
| 645 |          gsl_multimin_fminimizer *s = NULL;
 | 
|---|
| 646 |          gsl_vector *ss, *y;
 | 
|---|
| 647 |          gsl_multimin_function minex_func;
 | 
|---|
| 648 | 
 | 
|---|
| 649 |          size_t iter = 0, i;
 | 
|---|
| 650 |          int status;
 | 
|---|
| 651 |          double size;
 | 
|---|
| 652 | 
 | 
|---|
| 653 |          /* Initial vertex size vector */
 | 
|---|
| 654 |          ss = gsl_vector_alloc (np);
 | 
|---|
| 655 |          y = gsl_vector_alloc (np);
 | 
|---|
| 656 | 
 | 
|---|
| 657 |          /* Set all step sizes to 1 */
 | 
|---|
| 658 |          gsl_vector_set_all (ss, 1.0);
 | 
|---|
| 659 | 
 | 
|---|
| 660 |          /* Starting point */
 | 
|---|
| 661 |          par.vectors = vectors;
 | 
|---|
| 662 |          par.num = num;
 | 
|---|
| 663 | 
 | 
|---|
| 664 |          for (i=NDIM;i--;)
 | 
|---|
| 665 |                 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
 | 
|---|
| 666 | 
 | 
|---|
| 667 |          /* Initialize method and iterate */
 | 
|---|
| 668 |          minex_func.f = &LSQ;
 | 
|---|
| 669 |          minex_func.n = np;
 | 
|---|
| 670 |          minex_func.params = (void *)∥
 | 
|---|
| 671 | 
 | 
|---|
| 672 |          s = gsl_multimin_fminimizer_alloc (T, np);
 | 
|---|
| 673 |          gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
 | 
|---|
| 674 | 
 | 
|---|
| 675 |          do
 | 
|---|
| 676 |                  {
 | 
|---|
| 677 |                          iter++;
 | 
|---|
| 678 |                          status = gsl_multimin_fminimizer_iterate(s);
 | 
|---|
| 679 | 
 | 
|---|
| 680 |                          if (status)
 | 
|---|
| 681 |                                  break;
 | 
|---|
| 682 | 
 | 
|---|
| 683 |                          size = gsl_multimin_fminimizer_size (s);
 | 
|---|
| 684 |                          status = gsl_multimin_test_size (size, 1e-2);
 | 
|---|
| 685 | 
 | 
|---|
| 686 |                          if (status == GSL_SUCCESS)
 | 
|---|
| 687 |                                  {
 | 
|---|
| 688 |                                          printf ("converged to minimum at\n");
 | 
|---|
| 689 |                                  }
 | 
|---|
| 690 | 
 | 
|---|
| 691 |                          printf ("%5d ", (int)iter);
 | 
|---|
| 692 |                          for (i = 0; i < (size_t)np; i++)
 | 
|---|
| 693 |                                  {
 | 
|---|
| 694 |                                          printf ("%10.3e ", gsl_vector_get (s->x, i));
 | 
|---|
| 695 |                                  }
 | 
|---|
| 696 |                          printf ("f() = %7.3f size = %.3f\n", s->fval, size);
 | 
|---|
| 697 |                  }
 | 
|---|
| 698 |          while (status == GSL_CONTINUE && iter < 100);
 | 
|---|
| 699 | 
 | 
|---|
| 700 |         for (i=(size_t)np;i--;)
 | 
|---|
| 701 |                 this->x[i] = gsl_vector_get(s->x, i);
 | 
|---|
| 702 |          gsl_vector_free(y);
 | 
|---|
| 703 |          gsl_vector_free(ss);
 | 
|---|
| 704 |          gsl_multimin_fminimizer_free (s);
 | 
|---|
| 705 | 
 | 
|---|
| 706 |         return true;
 | 
|---|
| 707 | };
 | 
|---|
| 708 | 
 | 
|---|
| 709 | /** Adds vector \a *y componentwise.
 | 
|---|
| 710 |  * \param *y vector
 | 
|---|
| 711 |  */
 | 
|---|
| 712 | void Vector::AddVector(const Vector *y)
 | 
|---|
| 713 | {
 | 
|---|
| 714 |         for (int i=NDIM;i--;)
 | 
|---|
| 715 |                 this->x[i] += y->x[i];
 | 
|---|
| 716 | }
 | 
|---|
| 717 | 
 | 
|---|
| 718 | /** Adds vector \a *y componentwise.
 | 
|---|
| 719 |  * \param *y vector
 | 
|---|
| 720 |  */
 | 
|---|
| 721 | void Vector::SubtractVector(const Vector *y)
 | 
|---|
| 722 | {
 | 
|---|
| 723 |         for (int i=NDIM;i--;)
 | 
|---|
| 724 |                 this->x[i] -= y->x[i];
 | 
|---|
| 725 | }
 | 
|---|
| 726 | 
 | 
|---|
| 727 | /** Copy vector \a *y componentwise.
 | 
|---|
| 728 |  * \param *y vector
 | 
|---|
| 729 |  */
 | 
|---|
| 730 | void Vector::CopyVector(const Vector *y)
 | 
|---|
| 731 | {
 | 
|---|
| 732 |         for (int i=NDIM;i--;)
 | 
|---|
| 733 |                 this->x[i] = y->x[i];
 | 
|---|
| 734 | }
 | 
|---|
| 735 | 
 | 
|---|
| 736 | 
 | 
|---|
| 737 | /** Asks for position, checks for boundary.
 | 
|---|
| 738 |  * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
 | 
|---|
| 739 |  * \param check whether bounds shall be checked (true) or not (false)
 | 
|---|
| 740 |  */
 | 
|---|
| 741 | void Vector::AskPosition(double *cell_size, bool check)
 | 
|---|
| 742 | {
 | 
|---|
| 743 |         char coords[3] = {'x','y','z'};
 | 
|---|
| 744 |         int j = -1;
 | 
|---|
| 745 |         for (int i=0;i<3;i++) {
 | 
|---|
| 746 |                 j += i+1;
 | 
|---|
| 747 |                 do {
 | 
|---|
| 748 |                         cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
 | 
|---|
| 749 |                         cin >> x[i];
 | 
|---|
| 750 |                 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
 | 
|---|
| 751 |         }
 | 
|---|
| 752 | };
 | 
|---|
| 753 | 
 | 
|---|
| 754 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
 | 
|---|
| 755 |  * This is linear system of equations to be solved, however of the three given (skp of this vector\
 | 
|---|
| 756 |  * with either of the three hast to be zero) only two are linear independent. The third equation
 | 
|---|
| 757 |  * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
 | 
|---|
| 758 |  * where very often it has to be checked whether a certain value is zero or not and thus forked into
 | 
|---|
| 759 |  * another case.
 | 
|---|
| 760 |  * \param *x1 first vector
 | 
|---|
| 761 |  * \param *x2 second vector
 | 
|---|
| 762 |  * \param *y third vector
 | 
|---|
| 763 |  * \param alpha first angle
 | 
|---|
| 764 |  * \param beta second angle
 | 
|---|
| 765 |  * \param c norm of final vector
 | 
|---|
| 766 |  * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
 | 
|---|
| 767 |  * \bug this is not yet working properly
 | 
|---|
| 768 |  */
 | 
|---|
| 769 | bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
 | 
|---|
| 770 | {
 | 
|---|
| 771 |         double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
 | 
|---|
| 772 |         double ang; // angle on testing
 | 
|---|
| 773 |         double sign[3];
 | 
|---|
| 774 |         int i,j,k;
 | 
|---|
| 775 |         A = cos(alpha) * x1->Norm() * c;
 | 
|---|
| 776 |         B1 = cos(beta + M_PI/2.) * y->Norm() * c;
 | 
|---|
| 777 |         B2 = cos(beta) * x2->Norm() * c;
 | 
|---|
| 778 |         C = c * c;
 | 
|---|
| 779 |         cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
 | 
|---|
| 780 |         int flag = 0;
 | 
|---|
| 781 |         if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
 | 
|---|
| 782 |                 if (fabs(x1->x[1]) > MYEPSILON) {
 | 
|---|
| 783 |                         flag = 1;
 | 
|---|
| 784 |                 } else if (fabs(x1->x[2]) > MYEPSILON) {
 | 
|---|
| 785 |                          flag = 2;
 | 
|---|
| 786 |                 } else {
 | 
|---|
| 787 |                         return false;
 | 
|---|
| 788 |                 }
 | 
|---|
| 789 |         }
 | 
|---|
| 790 |         switch (flag) {
 | 
|---|
| 791 |                 default:
 | 
|---|
| 792 |                 case 0:
 | 
|---|
| 793 |                         break;
 | 
|---|
| 794 |                 case 2:
 | 
|---|
| 795 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
| 796 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
| 797 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
| 798 |                         //flip(&x[0],&x[1]);
 | 
|---|
| 799 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
| 800 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
| 801 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
| 802 |                         //flip(&x[1],&x[2]);
 | 
|---|
| 803 |                 case 1:
 | 
|---|
| 804 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
| 805 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
| 806 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
| 807 |                         //flip(&x[0],&x[1]);
 | 
|---|
| 808 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
| 809 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
| 810 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
| 811 |                         //flip(&x[1],&x[2]);
 | 
|---|
| 812 |                         break;
 | 
|---|
| 813 |         }
 | 
|---|
| 814 |         // now comes the case system
 | 
|---|
| 815 |         D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
 | 
|---|
| 816 |         D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
 | 
|---|
| 817 |         D3 = y->x[0]/x1->x[0]*A-B1;
 | 
|---|
| 818 |         cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
 | 
|---|
| 819 |         if (fabs(D1) < MYEPSILON) {
 | 
|---|
| 820 |                 cout << Verbose(2) << "D1 == 0!\n";
 | 
|---|
| 821 |                 if (fabs(D2) > MYEPSILON) {
 | 
|---|
| 822 |                         cout << Verbose(3) << "D2 != 0!\n";
 | 
|---|
| 823 |                         x[2] = -D3/D2;
 | 
|---|
| 824 |                         E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
 | 
|---|
| 825 |                         E2 = -x1->x[1]/x1->x[0];
 | 
|---|
| 826 |                         cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
| 827 |                         F1 = E1*E1 + 1.;
 | 
|---|
| 828 |                         F2 = -E1*E2;
 | 
|---|
| 829 |                         F3 = E1*E1 + D3*D3/(D2*D2) - C;
 | 
|---|
| 830 |                         cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
| 831 |                         if (fabs(F1) < MYEPSILON) {
 | 
|---|
| 832 |                                 cout << Verbose(4) << "F1 == 0!\n";
 | 
|---|
| 833 |                                 cout << Verbose(4) << "Gleichungssystem linear\n";
 | 
|---|
| 834 |                                 x[1] = F3/(2.*F2);
 | 
|---|
| 835 |                         } else {
 | 
|---|
| 836 |                                 p = F2/F1;
 | 
|---|
| 837 |                                 q = p*p - F3/F1;
 | 
|---|
| 838 |                                 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
 | 
|---|
| 839 |                                 if (q < 0) {
 | 
|---|
| 840 |                                         cout << Verbose(4) << "q < 0" << endl;
 | 
|---|
| 841 |                                         return false;
 | 
|---|
| 842 |                                 }
 | 
|---|
| 843 |                                 x[1] = p + sqrt(q);
 | 
|---|
| 844 |                         }
 | 
|---|
| 845 |                         x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
| 846 |                 } else {
 | 
|---|
| 847 |                         cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
 | 
|---|
| 848 |                         return false;
 | 
|---|
| 849 |                 }
 | 
|---|
| 850 |         } else {
 | 
|---|
| 851 |                 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
 | 
|---|
| 852 |                 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
 | 
|---|
| 853 |                 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
| 854 |                 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
 | 
|---|
| 855 |                 F2 = -(E1*E2 + D2*D3/(D1*D1));
 | 
|---|
| 856 |                 F3 = E1*E1 + D3*D3/(D1*D1) - C;
 | 
|---|
| 857 |                 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
| 858 |                 if (fabs(F1) < MYEPSILON) {
 | 
|---|
| 859 |                         cout << Verbose(3) << "F1 == 0!\n";
 | 
|---|
| 860 |                         cout << Verbose(3) << "Gleichungssystem linear\n";
 | 
|---|
| 861 |                         x[2] = F3/(2.*F2);
 | 
|---|
| 862 |                 } else {
 | 
|---|
| 863 |                         p = F2/F1;
 | 
|---|
| 864 |                         q = p*p - F3/F1;
 | 
|---|
| 865 |                         cout << Verbose(3) << "p " << p << "\tq " << q << endl;
 | 
|---|
| 866 |                         if (q < 0) {
 | 
|---|
| 867 |                                 cout << Verbose(3) << "q < 0" << endl;
 | 
|---|
| 868 |                                 return false;
 | 
|---|
| 869 |                         }
 | 
|---|
| 870 |                         x[2] = p + sqrt(q);
 | 
|---|
| 871 |                 }
 | 
|---|
| 872 |                 x[1] = (-D2 * x[2] - D3)/D1;
 | 
|---|
| 873 |                 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
| 874 |         }
 | 
|---|
| 875 |         switch (flag) { // back-flipping
 | 
|---|
| 876 |                 default:
 | 
|---|
| 877 |                 case 0:
 | 
|---|
| 878 |                         break;
 | 
|---|
| 879 |                 case 2:
 | 
|---|
| 880 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
| 881 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
| 882 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
| 883 |                         flip(&x[0],&x[1]);
 | 
|---|
| 884 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
| 885 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
| 886 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
| 887 |                         flip(&x[1],&x[2]);
 | 
|---|
| 888 |                 case 1:
 | 
|---|
| 889 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
| 890 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
| 891 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
| 892 |                         //flip(&x[0],&x[1]);
 | 
|---|
| 893 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
| 894 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
| 895 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
| 896 |                         flip(&x[1],&x[2]);
 | 
|---|
| 897 |                         break;
 | 
|---|
| 898 |         }
 | 
|---|
| 899 |         // one z component is only determined by its radius (without sign)
 | 
|---|
| 900 |         // thus check eight possible sign flips and determine by checking angle with second vector
 | 
|---|
| 901 |         for (i=0;i<8;i++) {
 | 
|---|
| 902 |                 // set sign vector accordingly
 | 
|---|
| 903 |                 for (j=2;j>=0;j--) {
 | 
|---|
| 904 |                         k = (i & pot(2,j)) << j;
 | 
|---|
| 905 |                         cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
 | 
|---|
| 906 |                         sign[j] = (k == 0) ? 1. : -1.;
 | 
|---|
| 907 |                 }
 | 
|---|
| 908 |                 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
 | 
|---|
| 909 |                 // apply sign matrix
 | 
|---|
| 910 |                 for (j=NDIM;j--;)
 | 
|---|
| 911 |                         x[j] *= sign[j];
 | 
|---|
| 912 |                 // calculate angle and check
 | 
|---|
| 913 |                 ang = x2->Angle (this);
 | 
|---|
| 914 |                 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
 | 
|---|
| 915 |                 if (fabs(ang - cos(beta)) < MYEPSILON) {
 | 
|---|
| 916 |                         break;
 | 
|---|
| 917 |                 }
 | 
|---|
| 918 |                 // unapply sign matrix (is its own inverse)
 | 
|---|
| 919 |                 for (j=NDIM;j--;)
 | 
|---|
| 920 |                         x[j] *= sign[j];
 | 
|---|
| 921 |         }
 | 
|---|
| 922 |         return true;
 | 
|---|
| 923 | };
 | 
|---|