source: src/vector.cpp@ a679d1

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since a679d1 was a679d1, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Replaced Matrix access with direct access at several places

  • Property mode set to 100644
File size: 15.4 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include "vector.hpp"
10#include "Matrix.hpp"
11#include "verbose.hpp"
12#include "World.hpp"
13#include "Helpers/Assert.hpp"
14#include "Helpers/fast_functions.hpp"
15#include "Exceptions/MathException.hpp"
16
17#include <iostream>
18#include <gsl/gsl_blas.h>
19
20
21using namespace std;
22
23
24/************************************ Functions for class vector ************************************/
25
26/** Constructor of class vector.
27 */
28Vector::Vector()
29{
30 content = gsl_vector_calloc (NDIM);
31};
32
33/**
34 * Copy constructor
35 */
36
37Vector::Vector(const Vector& src)
38{
39 content = gsl_vector_alloc(NDIM);
40 gsl_vector_memcpy(content, src.content);
41}
42
43/** Constructor of class vector.
44 */
45Vector::Vector(const double x1, const double x2, const double x3)
46{
47 content = gsl_vector_alloc(NDIM);
48 gsl_vector_set(content,0,x1);
49 gsl_vector_set(content,1,x2);
50 gsl_vector_set(content,2,x3);
51};
52
53Vector::Vector(gsl_vector *_content) :
54 content(_content)
55{}
56
57/**
58 * Assignment operator
59 */
60Vector& Vector::operator=(const Vector& src){
61 // check for self assignment
62 if(&src!=this){
63 gsl_vector_memcpy(content, src.content);
64 }
65 return *this;
66}
67
68/** Desctructor of class vector.
69 */
70Vector::~Vector() {
71 gsl_vector_free(content);
72};
73
74/** Calculates square of distance between this and another vector.
75 * \param *y array to second vector
76 * \return \f$| x - y |^2\f$
77 */
78double Vector::DistanceSquared(const Vector &y) const
79{
80 double res = 0.;
81 for (int i=NDIM;i--;)
82 res += (at(i)-y[i])*(at(i)-y[i]);
83 return (res);
84};
85
86/** Calculates distance between this and another vector.
87 * \param *y array to second vector
88 * \return \f$| x - y |\f$
89 */
90double Vector::distance(const Vector &y) const
91{
92 return (sqrt(DistanceSquared(y)));
93};
94
95Vector Vector::getClosestPoint(const Vector &point) const{
96 // the closest point to a single point space is always the single point itself
97 return *this;
98}
99
100/** Calculates distance between this and another vector in a periodic cell.
101 * \param *y array to second vector
102 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
103 * \return \f$| x - y |\f$
104 */
105double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
106{
107 return sqrt(PeriodicDistanceSquared);
108};
109
110/** Calculates distance between this and another vector in a periodic cell.
111 * \param *y array to second vector
112 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
113 * \return \f$| x - y |^2\f$
114 */
115double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
116{
117 double res = DistanceSquared(y), tmp;
118 Matrix matrix = ReturnFullMatrixforSymmetric(cell_size);
119 Vector Shiftedy, TranslationVector;
120 int N[NDIM];
121
122 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
123 for (N[0]=-1;N[0]<=1;N[0]++)
124 for (N[1]=-1;N[1]<=1;N[1]++)
125 for (N[2]=-1;N[2]<=1;N[2]++) {
126 // create the translation vector
127 TranslationVector.Zero();
128 for (int i=NDIM;i--;)
129 TranslationVector[i] = (double)N[i];
130 TranslationVector.MatrixMultiplication(matrix);
131 // add onto the original vector to compare with
132 Shiftedy = y + TranslationVector;
133 // get distance and compare with minimum so far
134 tmp = DistanceSquared(Shiftedy);
135 if (tmp < res) res = tmp;
136 }
137 return (res);
138};
139
140/** Calculates scalar product between this and another vector.
141 * \param *y array to second vector
142 * \return \f$\langle x, y \rangle\f$
143 */
144double Vector::ScalarProduct(const Vector &y) const
145{
146 double res = 0.;
147 gsl_blas_ddot(content, y.content, &res);
148 return (res);
149};
150
151
152/** Calculates VectorProduct between this and another vector.
153 * -# returns the Product in place of vector from which it was initiated
154 * -# ATTENTION: Only three dim.
155 * \param *y array to vector with which to calculate crossproduct
156 * \return \f$ x \times y \f&
157 */
158void Vector::VectorProduct(const Vector &y)
159{
160 Vector tmp;
161 for(int i=NDIM;i--;)
162 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
163 (*this) = tmp;
164};
165
166
167/** projects this vector onto plane defined by \a *y.
168 * \param *y normal vector of plane
169 * \return \f$\langle x, y \rangle\f$
170 */
171void Vector::ProjectOntoPlane(const Vector &y)
172{
173 Vector tmp;
174 tmp = y;
175 tmp.Normalize();
176 tmp.Scale(ScalarProduct(tmp));
177 *this -= tmp;
178};
179
180/** Calculates the minimum distance of this vector to the plane.
181 * \sa Vector::GetDistanceVectorToPlane()
182 * \param *out output stream for debugging
183 * \param *PlaneNormal normal of plane
184 * \param *PlaneOffset offset of plane
185 * \return distance to plane
186 */
187double Vector::DistanceToSpace(const Space &space) const
188{
189 return space.distance(*this);
190};
191
192/** Calculates the projection of a vector onto another \a *y.
193 * \param *y array to second vector
194 */
195void Vector::ProjectIt(const Vector &y)
196{
197 (*this) += (-ScalarProduct(y))*y;
198};
199
200/** Calculates the projection of a vector onto another \a *y.
201 * \param *y array to second vector
202 * \return Vector
203 */
204Vector Vector::Projection(const Vector &y) const
205{
206 Vector helper = y;
207 helper.Scale((ScalarProduct(y)/y.NormSquared()));
208
209 return helper;
210};
211
212/** Calculates norm of this vector.
213 * \return \f$|x|\f$
214 */
215double Vector::Norm() const
216{
217 return (sqrt(NormSquared()));
218};
219
220/** Calculates squared norm of this vector.
221 * \return \f$|x|^2\f$
222 */
223double Vector::NormSquared() const
224{
225 return (ScalarProduct(*this));
226};
227
228/** Normalizes this vector.
229 */
230void Vector::Normalize()
231{
232 double factor = Norm();
233 (*this) *= 1/factor;
234};
235
236/** Zeros all components of this vector.
237 */
238void Vector::Zero()
239{
240 at(0)=at(1)=at(2)=0;
241};
242
243/** Zeros all components of this vector.
244 */
245void Vector::One(const double one)
246{
247 at(0)=at(1)=at(2)=one;
248};
249
250/** Checks whether vector has all components zero.
251 * @return true - vector is zero, false - vector is not
252 */
253bool Vector::IsZero() const
254{
255 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
256};
257
258/** Checks whether vector has length of 1.
259 * @return true - vector is normalized, false - vector is not
260 */
261bool Vector::IsOne() const
262{
263 return (fabs(Norm() - 1.) < MYEPSILON);
264};
265
266/** Checks whether vector is normal to \a *normal.
267 * @return true - vector is normalized, false - vector is not
268 */
269bool Vector::IsNormalTo(const Vector &normal) const
270{
271 if (ScalarProduct(normal) < MYEPSILON)
272 return true;
273 else
274 return false;
275};
276
277/** Checks whether vector is normal to \a *normal.
278 * @return true - vector is normalized, false - vector is not
279 */
280bool Vector::IsEqualTo(const Vector &a) const
281{
282 bool status = true;
283 for (int i=0;i<NDIM;i++) {
284 if (fabs(at(i) - a[i]) > MYEPSILON)
285 status = false;
286 }
287 return status;
288};
289
290/** Calculates the angle between this and another vector.
291 * \param *y array to second vector
292 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
293 */
294double Vector::Angle(const Vector &y) const
295{
296 double norm1 = Norm(), norm2 = y.Norm();
297 double angle = -1;
298 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
299 angle = this->ScalarProduct(y)/norm1/norm2;
300 // -1-MYEPSILON occured due to numerical imprecision, catch ...
301 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
302 if (angle < -1)
303 angle = -1;
304 if (angle > 1)
305 angle = 1;
306 return acos(angle);
307};
308
309
310double& Vector::operator[](size_t i){
311 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
312 return *gsl_vector_ptr (content, i);
313}
314
315const double& Vector::operator[](size_t i) const{
316 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
317 return *gsl_vector_ptr (content, i);
318}
319
320double& Vector::at(size_t i){
321 return (*this)[i];
322}
323
324const double& Vector::at(size_t i) const{
325 return (*this)[i];
326}
327
328gsl_vector* Vector::get(){
329 return content;
330}
331
332/** Compares vector \a to vector \a b component-wise.
333 * \param a base vector
334 * \param b vector components to add
335 * \return a == b
336 */
337bool Vector::operator==(const Vector& b) const
338{
339 return IsEqualTo(b);
340};
341
342bool Vector::operator!=(const Vector& b) const
343{
344 return !IsEqualTo(b);
345}
346
347/** Sums vector \a to this lhs component-wise.
348 * \param a base vector
349 * \param b vector components to add
350 * \return lhs + a
351 */
352const Vector& Vector::operator+=(const Vector& b)
353{
354 this->AddVector(b);
355 return *this;
356};
357
358/** Subtracts vector \a from this lhs component-wise.
359 * \param a base vector
360 * \param b vector components to add
361 * \return lhs - a
362 */
363const Vector& Vector::operator-=(const Vector& b)
364{
365 this->SubtractVector(b);
366 return *this;
367};
368
369/** factor each component of \a a times a double \a m.
370 * \param a base vector
371 * \param m factor
372 * \return lhs.x[i] * m
373 */
374const Vector& operator*=(Vector& a, const double m)
375{
376 a.Scale(m);
377 return a;
378};
379
380/** Sums two vectors \a and \b component-wise.
381 * \param a first vector
382 * \param b second vector
383 * \return a + b
384 */
385Vector const Vector::operator+(const Vector& b) const
386{
387 Vector x = *this;
388 x.AddVector(b);
389 return x;
390};
391
392/** Subtracts vector \a from \b component-wise.
393 * \param a first vector
394 * \param b second vector
395 * \return a - b
396 */
397Vector const Vector::operator-(const Vector& b) const
398{
399 Vector x = *this;
400 x.SubtractVector(b);
401 return x;
402};
403
404Vector &Vector::operator*=(const Matrix &mat){
405 (*this) = mat*(*this);
406 return *this;
407}
408
409Vector operator*(const Matrix &mat,const Vector &vec){
410 gsl_vector *res = gsl_vector_calloc(NDIM);
411 gsl_blas_dgemv( CblasNoTrans, 1.0, mat.content, vec.content, 0.0, res);
412 return Vector(res);
413}
414
415
416/** Factors given vector \a a times \a m.
417 * \param a vector
418 * \param m factor
419 * \return m * a
420 */
421Vector const operator*(const Vector& a, const double m)
422{
423 Vector x(a);
424 x.Scale(m);
425 return x;
426};
427
428/** Factors given vector \a a times \a m.
429 * \param m factor
430 * \param a vector
431 * \return m * a
432 */
433Vector const operator*(const double m, const Vector& a )
434{
435 Vector x(a);
436 x.Scale(m);
437 return x;
438};
439
440ostream& operator<<(ostream& ost, const Vector& m)
441{
442 ost << "(";
443 for (int i=0;i<NDIM;i++) {
444 ost << m[i];
445 if (i != 2)
446 ost << ",";
447 }
448 ost << ")";
449 return ost;
450};
451
452
453void Vector::ScaleAll(const double *factor)
454{
455 for (int i=NDIM;i--;)
456 at(i) *= factor[i];
457};
458
459
460
461void Vector::Scale(const double factor)
462{
463 gsl_vector_scale(content,factor);
464};
465
466/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
467 * \param *M matrix of box
468 * \param *Minv inverse matrix
469 */
470void Vector::WrapPeriodically(const Matrix &M, const Matrix &Minv)
471{
472 MatrixMultiplication(Minv);
473 // truncate to [0,1] for each axis
474 for (int i=0;i<NDIM;i++) {
475 //at(i) += 0.5; // set to center of box
476 while (at(i) >= 1.)
477 at(i) -= 1.;
478 while (at(i) < 0.)
479 at(i) += 1.;
480 }
481 MatrixMultiplication(M);
482};
483
484std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
485 double factor = ScalarProduct(rhs)/rhs.NormSquared();
486 Vector res= factor * rhs;
487 return make_pair(res,(*this)-res);
488}
489
490std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
491 Vector helper = *this;
492 pointset res;
493 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
494 pair<Vector,Vector> currPart = helper.partition(*iter);
495 res.push_back(currPart.first);
496 helper = currPart.second;
497 }
498 return make_pair(res,helper);
499}
500
501/** Do a matrix multiplication.
502 * \param *matrix NDIM_NDIM array
503 */
504void Vector::MatrixMultiplication(const Matrix &M)
505{
506 (*this) *= M;
507};
508
509/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
510 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
511 * \param *x1 first vector
512 * \param *x2 second vector
513 * \param *x3 third vector
514 * \param *factors three-component vector with the factor for each given vector
515 */
516void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
517{
518 (*this) = (factors[0]*x1) +
519 (factors[1]*x2) +
520 (factors[2]*x3);
521};
522
523/** Calculates orthonormal vector to one given vectors.
524 * Just subtracts the projection onto the given vector from this vector.
525 * The removed part of the vector is Vector::Projection()
526 * \param *x1 vector
527 * \return true - success, false - vector is zero
528 */
529bool Vector::MakeNormalTo(const Vector &y1)
530{
531 bool result = false;
532 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
533 Vector x1 = factor * y1;
534 SubtractVector(x1);
535 for (int i=NDIM;i--;)
536 result = result || (fabs(at(i)) > MYEPSILON);
537
538 return result;
539};
540
541/** Creates this vector as one of the possible orthonormal ones to the given one.
542 * Just scan how many components of given *vector are unequal to zero and
543 * try to get the skp of both to be zero accordingly.
544 * \param *vector given vector
545 * \return true - success, false - failure (null vector given)
546 */
547bool Vector::GetOneNormalVector(const Vector &GivenVector)
548{
549 int Components[NDIM]; // contains indices of non-zero components
550 int Last = 0; // count the number of non-zero entries in vector
551 int j; // loop variables
552 double norm;
553
554 for (j=NDIM;j--;)
555 Components[j] = -1;
556
557 // in two component-systems we need to find the one position that is zero
558 int zeroPos = -1;
559 // find two components != 0
560 for (j=0;j<NDIM;j++){
561 if (fabs(GivenVector[j]) > MYEPSILON)
562 Components[Last++] = j;
563 else
564 // this our zero Position
565 zeroPos = j;
566 }
567
568 switch(Last) {
569 case 3: // threecomponent system
570 // the position of the zero is arbitrary in three component systems
571 zeroPos = Components[2];
572 case 2: // two component system
573 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
574 at(zeroPos) = 0.;
575 // in skp both remaining parts shall become zero but with opposite sign and third is zero
576 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
577 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
578 return true;
579 break;
580 case 1: // one component system
581 // set sole non-zero component to 0, and one of the other zero component pendants to 1
582 at((Components[0]+2)%NDIM) = 0.;
583 at((Components[0]+1)%NDIM) = 1.;
584 at(Components[0]) = 0.;
585 return true;
586 break;
587 default:
588 return false;
589 }
590};
591
592/** Adds vector \a *y componentwise.
593 * \param *y vector
594 */
595void Vector::AddVector(const Vector &y)
596{
597 gsl_vector_add(content, y.content);
598}
599
600/** Adds vector \a *y componentwise.
601 * \param *y vector
602 */
603void Vector::SubtractVector(const Vector &y)
604{
605 gsl_vector_sub(content, y.content);
606}
607
608/**
609 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
610 * their offset.
611 *
612 * @param offest for the origin of the parallelepiped
613 * @param three vectors forming the matrix that defines the shape of the parallelpiped
614 */
615bool Vector::IsInParallelepiped(const Vector &offset, const double * const _parallelepiped) const
616{
617 Vector a = (*this)-offset;
618 Matrix parallelepiped = Matrix(_parallelepiped).invert();
619 a.MatrixMultiplication(parallelepiped);
620 bool isInside = true;
621
622 for (int i=NDIM;i--;)
623 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
624
625 return isInside;
626}
627
628
629// some comonly used vectors
630const Vector zeroVec(0,0,0);
631const Vector e1(1,0,0);
632const Vector e2(0,1,0);
633const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.