source: src/vector.cpp@ 99593f

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 99593f was 99593f, checked in by Frederik Heber <heber@…>, 16 years ago

Extension to the periodic boundary case for analysis_correlation.cpp

other stuff:

  • Property mode set to 100644
File size: 37.9 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "defs.hpp"
9#include "helpers.hpp"
10#include "memoryallocator.hpp"
11#include "leastsquaremin.hpp"
12#include "vector.hpp"
13#include "verbose.hpp"
14
15/************************************ Functions for class vector ************************************/
16
17/** Constructor of class vector.
18 */
19Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
20
21/** Constructor of class vector.
22 */
23Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
24
25/** Desctructor of class vector.
26 */
27Vector::~Vector() {};
28
29/** Calculates square of distance between this and another vector.
30 * \param *y array to second vector
31 * \return \f$| x - y |^2\f$
32 */
33double Vector::DistanceSquared(const Vector * const y) const
34{
35 double res = 0.;
36 for (int i=NDIM;i--;)
37 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
38 return (res);
39};
40
41/** Calculates distance between this and another vector.
42 * \param *y array to second vector
43 * \return \f$| x - y |\f$
44 */
45double Vector::Distance(const Vector * const y) const
46{
47 double res = 0.;
48 for (int i=NDIM;i--;)
49 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
50 return (sqrt(res));
51};
52
53/** Calculates distance between this and another vector in a periodic cell.
54 * \param *y array to second vector
55 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
56 * \return \f$| x - y |\f$
57 */
58double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
59{
60 double res = Distance(y), tmp, matrix[NDIM*NDIM];
61 Vector Shiftedy, TranslationVector;
62 int N[NDIM];
63 matrix[0] = cell_size[0];
64 matrix[1] = cell_size[1];
65 matrix[2] = cell_size[3];
66 matrix[3] = cell_size[1];
67 matrix[4] = cell_size[2];
68 matrix[5] = cell_size[4];
69 matrix[6] = cell_size[3];
70 matrix[7] = cell_size[4];
71 matrix[8] = cell_size[5];
72 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
73 for (N[0]=-1;N[0]<=1;N[0]++)
74 for (N[1]=-1;N[1]<=1;N[1]++)
75 for (N[2]=-1;N[2]<=1;N[2]++) {
76 // create the translation vector
77 TranslationVector.Zero();
78 for (int i=NDIM;i--;)
79 TranslationVector.x[i] = (double)N[i];
80 TranslationVector.MatrixMultiplication(matrix);
81 // add onto the original vector to compare with
82 Shiftedy.CopyVector(y);
83 Shiftedy.AddVector(&TranslationVector);
84 // get distance and compare with minimum so far
85 tmp = Distance(&Shiftedy);
86 if (tmp < res) res = tmp;
87 }
88 return (res);
89};
90
91/** Calculates distance between this and another vector in a periodic cell.
92 * \param *y array to second vector
93 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
94 * \return \f$| x - y |^2\f$
95 */
96double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
97{
98 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
99 Vector Shiftedy, TranslationVector;
100 int N[NDIM];
101 matrix[0] = cell_size[0];
102 matrix[1] = cell_size[1];
103 matrix[2] = cell_size[3];
104 matrix[3] = cell_size[1];
105 matrix[4] = cell_size[2];
106 matrix[5] = cell_size[4];
107 matrix[6] = cell_size[3];
108 matrix[7] = cell_size[4];
109 matrix[8] = cell_size[5];
110 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
111 for (N[0]=-1;N[0]<=1;N[0]++)
112 for (N[1]=-1;N[1]<=1;N[1]++)
113 for (N[2]=-1;N[2]<=1;N[2]++) {
114 // create the translation vector
115 TranslationVector.Zero();
116 for (int i=NDIM;i--;)
117 TranslationVector.x[i] = (double)N[i];
118 TranslationVector.MatrixMultiplication(matrix);
119 // add onto the original vector to compare with
120 Shiftedy.CopyVector(y);
121 Shiftedy.AddVector(&TranslationVector);
122 // get distance and compare with minimum so far
123 tmp = DistanceSquared(&Shiftedy);
124 if (tmp < res) res = tmp;
125 }
126 return (res);
127};
128
129/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
130 * \param *out ofstream for debugging messages
131 * Tries to translate a vector into each adjacent neighbouring cell.
132 */
133void Vector::KeepPeriodic(ofstream *out, const double * const matrix)
134{
135// int N[NDIM];
136// bool flag = false;
137 //vector Shifted, TranslationVector;
138 Vector TestVector;
139// *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
140// *out << Verbose(2) << "Vector is: ";
141// Output(out);
142// *out << endl;
143 TestVector.CopyVector(this);
144 TestVector.InverseMatrixMultiplication(matrix);
145 for(int i=NDIM;i--;) { // correct periodically
146 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
147 TestVector.x[i] += ceil(TestVector.x[i]);
148 } else {
149 TestVector.x[i] -= floor(TestVector.x[i]);
150 }
151 }
152 TestVector.MatrixMultiplication(matrix);
153 CopyVector(&TestVector);
154// *out << Verbose(2) << "New corrected vector is: ";
155// Output(out);
156// *out << endl;
157// *out << Verbose(1) << "End of KeepPeriodic." << endl;
158};
159
160/** Calculates scalar product between this and another vector.
161 * \param *y array to second vector
162 * \return \f$\langle x, y \rangle\f$
163 */
164double Vector::ScalarProduct(const Vector * const y) const
165{
166 double res = 0.;
167 for (int i=NDIM;i--;)
168 res += x[i]*y->x[i];
169 return (res);
170};
171
172
173/** Calculates VectorProduct between this and another vector.
174 * -# returns the Product in place of vector from which it was initiated
175 * -# ATTENTION: Only three dim.
176 * \param *y array to vector with which to calculate crossproduct
177 * \return \f$ x \times y \f&
178 */
179void Vector::VectorProduct(const Vector * const y)
180{
181 Vector tmp;
182 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
183 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
184 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
185 this->CopyVector(&tmp);
186};
187
188
189/** projects this vector onto plane defined by \a *y.
190 * \param *y normal vector of plane
191 * \return \f$\langle x, y \rangle\f$
192 */
193void Vector::ProjectOntoPlane(const Vector * const y)
194{
195 Vector tmp;
196 tmp.CopyVector(y);
197 tmp.Normalize();
198 tmp.Scale(ScalarProduct(&tmp));
199 this->SubtractVector(&tmp);
200};
201
202/** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
203 * According to [Bronstein] the vectorial plane equation is:
204 * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
205 * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
206 * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
207 * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
208 * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
209 * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
210 * of the line yields the intersection point on the plane.
211 * \param *out output stream for debugging
212 * \param *PlaneNormal Plane's normal vector
213 * \param *PlaneOffset Plane's offset vector
214 * \param *Origin first vector of line
215 * \param *LineVector second vector of line
216 * \return true - \a this contains intersection point on return, false - line is parallel to plane
217 */
218bool Vector::GetIntersectionWithPlane(ofstream *out, const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
219{
220 double factor;
221 Vector Direction, helper;
222
223 // find intersection of a line defined by Offset and Direction with a plane defined by triangle
224 Direction.CopyVector(LineVector);
225 Direction.SubtractVector(Origin);
226 Direction.Normalize();
227 //*out << Verbose(4) << "INFO: Direction is " << Direction << "." << endl;
228 factor = Direction.ScalarProduct(PlaneNormal);
229 if (factor < MYEPSILON) { // Uniqueness: line parallel to plane?
230 *out << Verbose(2) << "WARNING: Line is parallel to plane, no intersection." << endl;
231 return false;
232 }
233 helper.CopyVector(PlaneOffset);
234 helper.SubtractVector(Origin);
235 factor = helper.ScalarProduct(PlaneNormal)/factor;
236 if (factor < MYEPSILON) { // Origin is in-plane
237 //*out << Verbose(2) << "Origin of line is in-plane, simple." << endl;
238 CopyVector(Origin);
239 return true;
240 }
241 //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
242 Direction.Scale(factor);
243 CopyVector(Origin);
244 //*out << Verbose(4) << "INFO: Scaled direction is " << Direction << "." << endl;
245 AddVector(&Direction);
246
247 // test whether resulting vector really is on plane
248 helper.CopyVector(this);
249 helper.SubtractVector(PlaneOffset);
250 if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
251 //*out << Verbose(2) << "INFO: Intersection at " << *this << " is good." << endl;
252 return true;
253 } else {
254 *out << Verbose(2) << "WARNING: Intersection point " << *this << " is not on plane." << endl;
255 return false;
256 }
257};
258
259/** Calculates the minimum distance of this vector to the plane.
260 * \param *out output stream for debugging
261 * \param *PlaneNormal normal of plane
262 * \param *PlaneOffset offset of plane
263 * \return distance to plane
264 */
265double Vector::DistanceToPlane(ofstream *out, const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
266{
267 Vector temp;
268
269 // first create part that is orthonormal to PlaneNormal with withdraw
270 temp.CopyVector(this);
271 temp.SubtractVector(PlaneOffset);
272 temp.MakeNormalVector(PlaneNormal);
273 temp.Scale(-1.);
274 // then add connecting vector from plane to point
275 temp.AddVector(this);
276 temp.SubtractVector(PlaneOffset);
277 double sign = temp.ScalarProduct(PlaneNormal);
278 sign /= fabs(sign);
279
280 return (temp.Norm()*sign);
281};
282
283/** Calculates the intersection of the two lines that are both on the same plane.
284 * We construct auxiliary plane with its vector normal to one line direction and the PlaneNormal, then a vector
285 * from the first line's offset onto the plane. Finally, scale by factor is 1/cos(angle(line1,line2..)) = 1/SP(...), and
286 * project onto the first line's direction and add its offset.
287 * \param *out output stream for debugging
288 * \param *Line1a first vector of first line
289 * \param *Line1b second vector of first line
290 * \param *Line2a first vector of second line
291 * \param *Line2b second vector of second line
292 * \param *PlaneNormal normal of plane, is supplemental/arbitrary
293 * \return true - \a this will contain the intersection on return, false - lines are parallel
294 */
295bool Vector::GetIntersectionOfTwoLinesOnPlane(ofstream *out, const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
296{
297 bool result = true;
298 Vector Direction, OtherDirection;
299 Vector AuxiliaryNormal;
300 Vector Distance;
301 const Vector *Normal = NULL;
302 Vector *ConstructedNormal = NULL;
303 bool FreeNormal = false;
304
305 // construct both direction vectors
306 Zero();
307 Direction.CopyVector(Line1b);
308 Direction.SubtractVector(Line1a);
309 if (Direction.IsZero())
310 return false;
311 OtherDirection.CopyVector(Line2b);
312 OtherDirection.SubtractVector(Line2a);
313 if (OtherDirection.IsZero())
314 return false;
315
316 Direction.Normalize();
317 OtherDirection.Normalize();
318
319 //*out << Verbose(4) << "INFO: Normalized Direction " << Direction << " and OtherDirection " << OtherDirection << "." << endl;
320
321 if (fabs(OtherDirection.ScalarProduct(&Direction) - 1.) < MYEPSILON) { // lines are parallel
322 if ((Line1a == Line2a) || (Line1a == Line2b))
323 CopyVector(Line1a);
324 else if ((Line1b == Line2b) || (Line1b == Line2b))
325 CopyVector(Line1b);
326 else
327 return false;
328 *out << Verbose(4) << "INFO: Intersection is " << *this << "." << endl;
329 return true;
330 } else {
331 // check whether we have a plane normal vector
332 if (PlaneNormal == NULL) {
333 ConstructedNormal = new Vector;
334 ConstructedNormal->MakeNormalVector(&Direction, &OtherDirection);
335 Normal = ConstructedNormal;
336 FreeNormal = true;
337 } else
338 Normal = PlaneNormal;
339
340 AuxiliaryNormal.MakeNormalVector(&OtherDirection, Normal);
341 //*out << Verbose(4) << "INFO: PlaneNormal is " << *Normal << " and AuxiliaryNormal " << AuxiliaryNormal << "." << endl;
342
343 Distance.CopyVector(Line2a);
344 Distance.SubtractVector(Line1a);
345 //*out << Verbose(4) << "INFO: Distance is " << Distance << "." << endl;
346 if (Distance.IsZero()) {
347 // offsets are equal, match found
348 CopyVector(Line1a);
349 result = true;
350 } else {
351 CopyVector(Distance.Projection(&AuxiliaryNormal));
352 //*out << Verbose(4) << "INFO: Projected Distance is " << *this << "." << endl;
353 double factor = Direction.ScalarProduct(&AuxiliaryNormal);
354 //*out << Verbose(4) << "INFO: Scaling factor is " << factor << "." << endl;
355 Scale(1./(factor*factor));
356 //*out << Verbose(4) << "INFO: Scaled Distance is " << *this << "." << endl;
357 CopyVector(Projection(&Direction));
358 //*out << Verbose(4) << "INFO: Distance, projected into Direction, is " << *this << "." << endl;
359 if (this->IsZero())
360 result = false;
361 else
362 result = true;
363 AddVector(Line1a);
364 }
365
366 if (FreeNormal)
367 delete(ConstructedNormal);
368 }
369 if (result)
370 *out << Verbose(4) << "INFO: Intersection is " << *this << "." << endl;
371
372 return result;
373};
374
375/** Calculates the projection of a vector onto another \a *y.
376 * \param *y array to second vector
377 */
378void Vector::ProjectIt(const Vector * const y)
379{
380 Vector helper(*y);
381 helper.Scale(-(ScalarProduct(y)));
382 AddVector(&helper);
383};
384
385/** Calculates the projection of a vector onto another \a *y.
386 * \param *y array to second vector
387 * \return Vector
388 */
389Vector Vector::Projection(const Vector * const y) const
390{
391 Vector helper(*y);
392 helper.Scale((ScalarProduct(y)/y->NormSquared()));
393
394 return helper;
395};
396
397/** Calculates norm of this vector.
398 * \return \f$|x|\f$
399 */
400double Vector::Norm() const
401{
402 double res = 0.;
403 for (int i=NDIM;i--;)
404 res += this->x[i]*this->x[i];
405 return (sqrt(res));
406};
407
408/** Calculates squared norm of this vector.
409 * \return \f$|x|^2\f$
410 */
411double Vector::NormSquared() const
412{
413 return (ScalarProduct(this));
414};
415
416/** Normalizes this vector.
417 */
418void Vector::Normalize()
419{
420 double res = 0.;
421 for (int i=NDIM;i--;)
422 res += this->x[i]*this->x[i];
423 if (fabs(res) > MYEPSILON)
424 res = 1./sqrt(res);
425 Scale(&res);
426};
427
428/** Zeros all components of this vector.
429 */
430void Vector::Zero()
431{
432 for (int i=NDIM;i--;)
433 this->x[i] = 0.;
434};
435
436/** Zeros all components of this vector.
437 */
438void Vector::One(const double one)
439{
440 for (int i=NDIM;i--;)
441 this->x[i] = one;
442};
443
444/** Initialises all components of this vector.
445 */
446void Vector::Init(const double x1, const double x2, const double x3)
447{
448 x[0] = x1;
449 x[1] = x2;
450 x[2] = x3;
451};
452
453/** Checks whether vector has all components zero.
454 * @return true - vector is zero, false - vector is not
455 */
456bool Vector::IsZero() const
457{
458 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
459};
460
461/** Checks whether vector has length of 1.
462 * @return true - vector is normalized, false - vector is not
463 */
464bool Vector::IsOne() const
465{
466 return (fabs(Norm() - 1.) < MYEPSILON);
467};
468
469/** Checks whether vector is normal to \a *normal.
470 * @return true - vector is normalized, false - vector is not
471 */
472bool Vector::IsNormalTo(const Vector * const normal) const
473{
474 if (ScalarProduct(normal) < MYEPSILON)
475 return true;
476 else
477 return false;
478};
479
480/** Calculates the angle between this and another vector.
481 * \param *y array to second vector
482 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
483 */
484double Vector::Angle(const Vector * const y) const
485{
486 double norm1 = Norm(), norm2 = y->Norm();
487 double angle = -1;
488 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
489 angle = this->ScalarProduct(y)/norm1/norm2;
490 // -1-MYEPSILON occured due to numerical imprecision, catch ...
491 //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
492 if (angle < -1)
493 angle = -1;
494 if (angle > 1)
495 angle = 1;
496 return acos(angle);
497};
498
499/** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
500 * \param *axis rotation axis
501 * \param alpha rotation angle in radian
502 */
503void Vector::RotateVector(const Vector * const axis, const double alpha)
504{
505 Vector a,y;
506 // normalise this vector with respect to axis
507 a.CopyVector(this);
508 a.ProjectOntoPlane(axis);
509 // construct normal vector
510 bool rotatable = y.MakeNormalVector(axis,&a);
511 // The normal vector cannot be created if there is linar dependency.
512 // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
513 if (!rotatable) {
514 return;
515 }
516 y.Scale(Norm());
517 // scale normal vector by sine and this vector by cosine
518 y.Scale(sin(alpha));
519 a.Scale(cos(alpha));
520 CopyVector(Projection(axis));
521 // add scaled normal vector onto this vector
522 AddVector(&y);
523 // add part in axis direction
524 AddVector(&a);
525};
526
527/** Compares vector \a to vector \a b component-wise.
528 * \param a base vector
529 * \param b vector components to add
530 * \return a == b
531 */
532bool operator==(const Vector& a, const Vector& b)
533{
534 bool status = true;
535 for (int i=0;i<NDIM;i++)
536 status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
537 return status;
538};
539
540/** Sums vector \a to this lhs component-wise.
541 * \param a base vector
542 * \param b vector components to add
543 * \return lhs + a
544 */
545Vector& operator+=(Vector& a, const Vector& b)
546{
547 a.AddVector(&b);
548 return a;
549};
550
551/** Subtracts vector \a from this lhs component-wise.
552 * \param a base vector
553 * \param b vector components to add
554 * \return lhs - a
555 */
556Vector& operator-=(Vector& a, const Vector& b)
557{
558 a.SubtractVector(&b);
559 return a;
560};
561
562/** factor each component of \a a times a double \a m.
563 * \param a base vector
564 * \param m factor
565 * \return lhs.x[i] * m
566 */
567Vector& operator*=(Vector& a, const double m)
568{
569 a.Scale(m);
570 return a;
571};
572
573/** Sums two vectors \a and \b component-wise.
574 * \param a first vector
575 * \param b second vector
576 * \return a + b
577 */
578Vector& operator+(const Vector& a, const Vector& b)
579{
580 Vector *x = new Vector;
581 x->CopyVector(&a);
582 x->AddVector(&b);
583 return *x;
584};
585
586/** Subtracts vector \a from \b component-wise.
587 * \param a first vector
588 * \param b second vector
589 * \return a - b
590 */
591Vector& operator-(const Vector& a, const Vector& b)
592{
593 Vector *x = new Vector;
594 x->CopyVector(&a);
595 x->SubtractVector(&b);
596 return *x;
597};
598
599/** Factors given vector \a a times \a m.
600 * \param a vector
601 * \param m factor
602 * \return m * a
603 */
604Vector& operator*(const Vector& a, const double m)
605{
606 Vector *x = new Vector;
607 x->CopyVector(&a);
608 x->Scale(m);
609 return *x;
610};
611
612/** Factors given vector \a a times \a m.
613 * \param m factor
614 * \param a vector
615 * \return m * a
616 */
617Vector& operator*(const double m, const Vector& a )
618{
619 Vector *x = new Vector;
620 x->CopyVector(&a);
621 x->Scale(m);
622 return *x;
623};
624
625/** Prints a 3dim vector.
626 * prints no end of line.
627 * \param *out output stream
628 */
629bool Vector::Output(ofstream *out) const
630{
631 if (out != NULL) {
632 *out << "(";
633 for (int i=0;i<NDIM;i++) {
634 *out << x[i];
635 if (i != 2)
636 *out << ",";
637 }
638 *out << ")";
639 return true;
640 } else
641 return false;
642};
643
644ostream& operator<<(ostream& ost, const Vector& m)
645{
646 ost << "(";
647 for (int i=0;i<NDIM;i++) {
648 ost << m.x[i];
649 if (i != 2)
650 ost << ",";
651 }
652 ost << ")";
653 return ost;
654};
655
656/** Scales each atom coordinate by an individual \a factor.
657 * \param *factor pointer to scaling factor
658 */
659void Vector::Scale(const double ** const factor)
660{
661 for (int i=NDIM;i--;)
662 x[i] *= (*factor)[i];
663};
664
665void Vector::Scale(const double * const factor)
666{
667 for (int i=NDIM;i--;)
668 x[i] *= *factor;
669};
670
671void Vector::Scale(const double factor)
672{
673 for (int i=NDIM;i--;)
674 x[i] *= factor;
675};
676
677/** Translate atom by given vector.
678 * \param trans[] translation vector.
679 */
680void Vector::Translate(const Vector * const trans)
681{
682 for (int i=NDIM;i--;)
683 x[i] += trans->x[i];
684};
685
686/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
687 * \param *M matrix of box
688 * \param *Minv inverse matrix
689 */
690void Vector::WrapPeriodically(const double * const M, const double * const Minv)
691{
692 MatrixMultiplication(Minv);
693 // truncate to [0,1] for each axis
694 for (int i=0;i<NDIM;i++) {
695 x[i] += 0.5; // set to center of box
696 while (x[i] >= 1.)
697 x[i] -= 1.;
698 while (x[i] < 0.)
699 x[i] += 1.;
700 }
701 MatrixMultiplication(M);
702};
703
704/** Do a matrix multiplication.
705 * \param *matrix NDIM_NDIM array
706 */
707void Vector::MatrixMultiplication(const double * const M)
708{
709 Vector C;
710 // do the matrix multiplication
711 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
712 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
713 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
714 // transfer the result into this
715 for (int i=NDIM;i--;)
716 x[i] = C.x[i];
717};
718
719/** Do a matrix multiplication with the \a *A' inverse.
720 * \param *matrix NDIM_NDIM array
721 */
722void Vector::InverseMatrixMultiplication(const double * const A)
723{
724 Vector C;
725 double B[NDIM*NDIM];
726 double detA = RDET3(A);
727 double detAReci;
728
729 // calculate the inverse B
730 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
731 detAReci = 1./detA;
732 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
733 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
734 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
735 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
736 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
737 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
738 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
739 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
740 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
741
742 // do the matrix multiplication
743 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
744 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
745 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
746 // transfer the result into this
747 for (int i=NDIM;i--;)
748 x[i] = C.x[i];
749 } else {
750 cerr << "ERROR: inverse of matrix does not exists: det A = " << detA << "." << endl;
751 }
752};
753
754
755/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
756 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
757 * \param *x1 first vector
758 * \param *x2 second vector
759 * \param *x3 third vector
760 * \param *factors three-component vector with the factor for each given vector
761 */
762void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
763{
764 for(int i=NDIM;i--;)
765 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
766};
767
768/** Mirrors atom against a given plane.
769 * \param n[] normal vector of mirror plane.
770 */
771void Vector::Mirror(const Vector * const n)
772{
773 double projection;
774 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
775 // withdraw projected vector twice from original one
776 cout << Verbose(1) << "Vector: ";
777 Output((ofstream *)&cout);
778 cout << "\t";
779 for (int i=NDIM;i--;)
780 x[i] -= 2.*projection*n->x[i];
781 cout << "Projected vector: ";
782 Output((ofstream *)&cout);
783 cout << endl;
784};
785
786/** Calculates normal vector for three given vectors (being three points in space).
787 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
788 * \param *y1 first vector
789 * \param *y2 second vector
790 * \param *y3 third vector
791 * \return true - success, vectors are linear independent, false - failure due to linear dependency
792 */
793bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
794{
795 Vector x1, x2;
796
797 x1.CopyVector(y1);
798 x1.SubtractVector(y2);
799 x2.CopyVector(y3);
800 x2.SubtractVector(y2);
801 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
802 cout << Verbose(4) << "WARNING: Given vectors are linear dependent." << endl;
803 return false;
804 }
805// cout << Verbose(4) << "relative, first plane coordinates:";
806// x1.Output((ofstream *)&cout);
807// cout << endl;
808// cout << Verbose(4) << "second plane coordinates:";
809// x2.Output((ofstream *)&cout);
810// cout << endl;
811
812 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
813 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
814 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
815 Normalize();
816
817 return true;
818};
819
820
821/** Calculates orthonormal vector to two given vectors.
822 * Makes this vector orthonormal to two given vectors. This is very similar to the other
823 * vector::MakeNormalVector(), only there three points whereas here two difference
824 * vectors are given.
825 * \param *x1 first vector
826 * \param *x2 second vector
827 * \return true - success, vectors are linear independent, false - failure due to linear dependency
828 */
829bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
830{
831 Vector x1,x2;
832 x1.CopyVector(y1);
833 x2.CopyVector(y2);
834 Zero();
835 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
836 cout << Verbose(4) << "WARNING: Given vectors are linear dependent." << endl;
837 return false;
838 }
839// cout << Verbose(4) << "relative, first plane coordinates:";
840// x1.Output((ofstream *)&cout);
841// cout << endl;
842// cout << Verbose(4) << "second plane coordinates:";
843// x2.Output((ofstream *)&cout);
844// cout << endl;
845
846 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
847 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
848 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
849 Normalize();
850
851 return true;
852};
853
854/** Calculates orthonormal vector to one given vectors.
855 * Just subtracts the projection onto the given vector from this vector.
856 * The removed part of the vector is Vector::Projection()
857 * \param *x1 vector
858 * \return true - success, false - vector is zero
859 */
860bool Vector::MakeNormalVector(const Vector * const y1)
861{
862 bool result = false;
863 double factor = y1->ScalarProduct(this)/y1->NormSquared();
864 Vector x1;
865 x1.CopyVector(y1);
866 x1.Scale(factor);
867 SubtractVector(&x1);
868 for (int i=NDIM;i--;)
869 result = result || (fabs(x[i]) > MYEPSILON);
870
871 return result;
872};
873
874/** Creates this vector as one of the possible orthonormal ones to the given one.
875 * Just scan how many components of given *vector are unequal to zero and
876 * try to get the skp of both to be zero accordingly.
877 * \param *vector given vector
878 * \return true - success, false - failure (null vector given)
879 */
880bool Vector::GetOneNormalVector(const Vector * const GivenVector)
881{
882 int Components[NDIM]; // contains indices of non-zero components
883 int Last = 0; // count the number of non-zero entries in vector
884 int j; // loop variables
885 double norm;
886
887 cout << Verbose(4);
888 GivenVector->Output((ofstream *)&cout);
889 cout << endl;
890 for (j=NDIM;j--;)
891 Components[j] = -1;
892 // find two components != 0
893 for (j=0;j<NDIM;j++)
894 if (fabs(GivenVector->x[j]) > MYEPSILON)
895 Components[Last++] = j;
896 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
897
898 switch(Last) {
899 case 3: // threecomponent system
900 case 2: // two component system
901 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
902 x[Components[2]] = 0.;
903 // in skp both remaining parts shall become zero but with opposite sign and third is zero
904 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
905 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
906 return true;
907 break;
908 case 1: // one component system
909 // set sole non-zero component to 0, and one of the other zero component pendants to 1
910 x[(Components[0]+2)%NDIM] = 0.;
911 x[(Components[0]+1)%NDIM] = 1.;
912 x[Components[0]] = 0.;
913 return true;
914 break;
915 default:
916 return false;
917 }
918};
919
920/** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
921 * \param *A first plane vector
922 * \param *B second plane vector
923 * \param *C third plane vector
924 * \return scaling parameter for this vector
925 */
926double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
927{
928// cout << Verbose(3) << "For comparison: ";
929// cout << "A " << A->Projection(this) << "\t";
930// cout << "B " << B->Projection(this) << "\t";
931// cout << "C " << C->Projection(this) << "\t";
932// cout << endl;
933 return A->ScalarProduct(this);
934};
935
936/** Creates a new vector as the one with least square distance to a given set of \a vectors.
937 * \param *vectors set of vectors
938 * \param num number of vectors
939 * \return true if success, false if failed due to linear dependency
940 */
941bool Vector::LSQdistance(const Vector **vectors, int num)
942{
943 int j;
944
945 for (j=0;j<num;j++) {
946 cout << Verbose(1) << j << "th atom's vector: ";
947 (vectors[j])->Output((ofstream *)&cout);
948 cout << endl;
949 }
950
951 int np = 3;
952 struct LSQ_params par;
953
954 const gsl_multimin_fminimizer_type *T =
955 gsl_multimin_fminimizer_nmsimplex;
956 gsl_multimin_fminimizer *s = NULL;
957 gsl_vector *ss, *y;
958 gsl_multimin_function minex_func;
959
960 size_t iter = 0, i;
961 int status;
962 double size;
963
964 /* Initial vertex size vector */
965 ss = gsl_vector_alloc (np);
966 y = gsl_vector_alloc (np);
967
968 /* Set all step sizes to 1 */
969 gsl_vector_set_all (ss, 1.0);
970
971 /* Starting point */
972 par.vectors = vectors;
973 par.num = num;
974
975 for (i=NDIM;i--;)
976 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
977
978 /* Initialize method and iterate */
979 minex_func.f = &LSQ;
980 minex_func.n = np;
981 minex_func.params = (void *)&par;
982
983 s = gsl_multimin_fminimizer_alloc (T, np);
984 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
985
986 do
987 {
988 iter++;
989 status = gsl_multimin_fminimizer_iterate(s);
990
991 if (status)
992 break;
993
994 size = gsl_multimin_fminimizer_size (s);
995 status = gsl_multimin_test_size (size, 1e-2);
996
997 if (status == GSL_SUCCESS)
998 {
999 printf ("converged to minimum at\n");
1000 }
1001
1002 printf ("%5d ", (int)iter);
1003 for (i = 0; i < (size_t)np; i++)
1004 {
1005 printf ("%10.3e ", gsl_vector_get (s->x, i));
1006 }
1007 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1008 }
1009 while (status == GSL_CONTINUE && iter < 100);
1010
1011 for (i=(size_t)np;i--;)
1012 this->x[i] = gsl_vector_get(s->x, i);
1013 gsl_vector_free(y);
1014 gsl_vector_free(ss);
1015 gsl_multimin_fminimizer_free (s);
1016
1017 return true;
1018};
1019
1020/** Adds vector \a *y componentwise.
1021 * \param *y vector
1022 */
1023void Vector::AddVector(const Vector * const y)
1024{
1025 for (int i=NDIM;i--;)
1026 this->x[i] += y->x[i];
1027}
1028
1029/** Adds vector \a *y componentwise.
1030 * \param *y vector
1031 */
1032void Vector::SubtractVector(const Vector * const y)
1033{
1034 for (int i=NDIM;i--;)
1035 this->x[i] -= y->x[i];
1036}
1037
1038/** Copy vector \a *y componentwise.
1039 * \param *y vector
1040 */
1041void Vector::CopyVector(const Vector * const y)
1042{
1043 for (int i=NDIM;i--;)
1044 this->x[i] = y->x[i];
1045}
1046
1047/** Copy vector \a y componentwise.
1048 * \param y vector
1049 */
1050void Vector::CopyVector(const Vector &y)
1051{
1052 for (int i=NDIM;i--;)
1053 this->x[i] = y.x[i];
1054}
1055
1056
1057/** Asks for position, checks for boundary.
1058 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
1059 * \param check whether bounds shall be checked (true) or not (false)
1060 */
1061void Vector::AskPosition(const double * const cell_size, const bool check)
1062{
1063 char coords[3] = {'x','y','z'};
1064 int j = -1;
1065 for (int i=0;i<3;i++) {
1066 j += i+1;
1067 do {
1068 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
1069 cin >> x[i];
1070 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
1071 }
1072};
1073
1074/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
1075 * This is linear system of equations to be solved, however of the three given (skp of this vector\
1076 * with either of the three hast to be zero) only two are linear independent. The third equation
1077 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
1078 * where very often it has to be checked whether a certain value is zero or not and thus forked into
1079 * another case.
1080 * \param *x1 first vector
1081 * \param *x2 second vector
1082 * \param *y third vector
1083 * \param alpha first angle
1084 * \param beta second angle
1085 * \param c norm of final vector
1086 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
1087 * \bug this is not yet working properly
1088 */
1089bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
1090{
1091 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
1092 double ang; // angle on testing
1093 double sign[3];
1094 int i,j,k;
1095 A = cos(alpha) * x1->Norm() * c;
1096 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
1097 B2 = cos(beta) * x2->Norm() * c;
1098 C = c * c;
1099 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
1100 int flag = 0;
1101 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
1102 if (fabs(x1->x[1]) > MYEPSILON) {
1103 flag = 1;
1104 } else if (fabs(x1->x[2]) > MYEPSILON) {
1105 flag = 2;
1106 } else {
1107 return false;
1108 }
1109 }
1110 switch (flag) {
1111 default:
1112 case 0:
1113 break;
1114 case 2:
1115 flip(x1->x[0],x1->x[1]);
1116 flip(x2->x[0],x2->x[1]);
1117 flip(y->x[0],y->x[1]);
1118 //flip(x[0],x[1]);
1119 flip(x1->x[1],x1->x[2]);
1120 flip(x2->x[1],x2->x[2]);
1121 flip(y->x[1],y->x[2]);
1122 //flip(x[1],x[2]);
1123 case 1:
1124 flip(x1->x[0],x1->x[1]);
1125 flip(x2->x[0],x2->x[1]);
1126 flip(y->x[0],y->x[1]);
1127 //flip(x[0],x[1]);
1128 flip(x1->x[1],x1->x[2]);
1129 flip(x2->x[1],x2->x[2]);
1130 flip(y->x[1],y->x[2]);
1131 //flip(x[1],x[2]);
1132 break;
1133 }
1134 // now comes the case system
1135 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
1136 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
1137 D3 = y->x[0]/x1->x[0]*A-B1;
1138 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
1139 if (fabs(D1) < MYEPSILON) {
1140 cout << Verbose(2) << "D1 == 0!\n";
1141 if (fabs(D2) > MYEPSILON) {
1142 cout << Verbose(3) << "D2 != 0!\n";
1143 x[2] = -D3/D2;
1144 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
1145 E2 = -x1->x[1]/x1->x[0];
1146 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1147 F1 = E1*E1 + 1.;
1148 F2 = -E1*E2;
1149 F3 = E1*E1 + D3*D3/(D2*D2) - C;
1150 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1151 if (fabs(F1) < MYEPSILON) {
1152 cout << Verbose(4) << "F1 == 0!\n";
1153 cout << Verbose(4) << "Gleichungssystem linear\n";
1154 x[1] = F3/(2.*F2);
1155 } else {
1156 p = F2/F1;
1157 q = p*p - F3/F1;
1158 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
1159 if (q < 0) {
1160 cout << Verbose(4) << "q < 0" << endl;
1161 return false;
1162 }
1163 x[1] = p + sqrt(q);
1164 }
1165 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1166 } else {
1167 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
1168 return false;
1169 }
1170 } else {
1171 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
1172 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
1173 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1174 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
1175 F2 = -(E1*E2 + D2*D3/(D1*D1));
1176 F3 = E1*E1 + D3*D3/(D1*D1) - C;
1177 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1178 if (fabs(F1) < MYEPSILON) {
1179 cout << Verbose(3) << "F1 == 0!\n";
1180 cout << Verbose(3) << "Gleichungssystem linear\n";
1181 x[2] = F3/(2.*F2);
1182 } else {
1183 p = F2/F1;
1184 q = p*p - F3/F1;
1185 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
1186 if (q < 0) {
1187 cout << Verbose(3) << "q < 0" << endl;
1188 return false;
1189 }
1190 x[2] = p + sqrt(q);
1191 }
1192 x[1] = (-D2 * x[2] - D3)/D1;
1193 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1194 }
1195 switch (flag) { // back-flipping
1196 default:
1197 case 0:
1198 break;
1199 case 2:
1200 flip(x1->x[0],x1->x[1]);
1201 flip(x2->x[0],x2->x[1]);
1202 flip(y->x[0],y->x[1]);
1203 flip(x[0],x[1]);
1204 flip(x1->x[1],x1->x[2]);
1205 flip(x2->x[1],x2->x[2]);
1206 flip(y->x[1],y->x[2]);
1207 flip(x[1],x[2]);
1208 case 1:
1209 flip(x1->x[0],x1->x[1]);
1210 flip(x2->x[0],x2->x[1]);
1211 flip(y->x[0],y->x[1]);
1212 //flip(x[0],x[1]);
1213 flip(x1->x[1],x1->x[2]);
1214 flip(x2->x[1],x2->x[2]);
1215 flip(y->x[1],y->x[2]);
1216 flip(x[1],x[2]);
1217 break;
1218 }
1219 // one z component is only determined by its radius (without sign)
1220 // thus check eight possible sign flips and determine by checking angle with second vector
1221 for (i=0;i<8;i++) {
1222 // set sign vector accordingly
1223 for (j=2;j>=0;j--) {
1224 k = (i & pot(2,j)) << j;
1225 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
1226 sign[j] = (k == 0) ? 1. : -1.;
1227 }
1228 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
1229 // apply sign matrix
1230 for (j=NDIM;j--;)
1231 x[j] *= sign[j];
1232 // calculate angle and check
1233 ang = x2->Angle (this);
1234 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
1235 if (fabs(ang - cos(beta)) < MYEPSILON) {
1236 break;
1237 }
1238 // unapply sign matrix (is its own inverse)
1239 for (j=NDIM;j--;)
1240 x[j] *= sign[j];
1241 }
1242 return true;
1243};
1244
1245/**
1246 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
1247 * their offset.
1248 *
1249 * @param offest for the origin of the parallelepiped
1250 * @param three vectors forming the matrix that defines the shape of the parallelpiped
1251 */
1252bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
1253{
1254 Vector a;
1255 a.CopyVector(this);
1256 a.SubtractVector(&offset);
1257 a.InverseMatrixMultiplication(parallelepiped);
1258 bool isInside = true;
1259
1260 for (int i=NDIM;i--;)
1261 isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
1262
1263 return isInside;
1264}
Note: See TracBrowser for help on using the repository browser.