1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "defs.hpp"
|
---|
9 | #include "gslmatrix.hpp"
|
---|
10 | #include "leastsquaremin.hpp"
|
---|
11 | #include "memoryallocator.hpp"
|
---|
12 | #include "vector.hpp"
|
---|
13 | #include "Helpers/fast_functions.hpp"
|
---|
14 | #include "Helpers/Assert.hpp"
|
---|
15 | #include "Plane.hpp"
|
---|
16 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
17 |
|
---|
18 | #include <gsl/gsl_linalg.h>
|
---|
19 | #include <gsl/gsl_matrix.h>
|
---|
20 | #include <gsl/gsl_permutation.h>
|
---|
21 | #include <gsl/gsl_vector.h>
|
---|
22 |
|
---|
23 | /************************************ Functions for class vector ************************************/
|
---|
24 |
|
---|
25 | /** Constructor of class vector.
|
---|
26 | */
|
---|
27 | Vector::Vector()
|
---|
28 | {
|
---|
29 | x[0] = x[1] = x[2] = 0.;
|
---|
30 | };
|
---|
31 |
|
---|
32 | /** Constructor of class vector.
|
---|
33 | */
|
---|
34 | Vector::Vector(const double x1, const double x2, const double x3)
|
---|
35 | {
|
---|
36 | x[0] = x1;
|
---|
37 | x[1] = x2;
|
---|
38 | x[2] = x3;
|
---|
39 | };
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Copy constructor
|
---|
43 | */
|
---|
44 | Vector::Vector(const Vector& src)
|
---|
45 | {
|
---|
46 | x[0] = src[0];
|
---|
47 | x[1] = src[1];
|
---|
48 | x[2] = src[2];
|
---|
49 | }
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * Assignment operator
|
---|
53 | */
|
---|
54 | Vector& Vector::operator=(const Vector& src){
|
---|
55 | // check for self assignment
|
---|
56 | if(&src!=this){
|
---|
57 | x[0] = src[0];
|
---|
58 | x[1] = src[1];
|
---|
59 | x[2] = src[2];
|
---|
60 | }
|
---|
61 | return *this;
|
---|
62 | }
|
---|
63 |
|
---|
64 | /** Desctructor of class vector.
|
---|
65 | */
|
---|
66 | Vector::~Vector() {};
|
---|
67 |
|
---|
68 | /** Calculates square of distance between this and another vector.
|
---|
69 | * \param *y array to second vector
|
---|
70 | * \return \f$| x - y |^2\f$
|
---|
71 | */
|
---|
72 | double Vector::DistanceSquared(const Vector * const y) const
|
---|
73 | {
|
---|
74 | double res = 0.;
|
---|
75 | for (int i=NDIM;i--;)
|
---|
76 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
77 | return (res);
|
---|
78 | };
|
---|
79 |
|
---|
80 | /** Calculates distance between this and another vector.
|
---|
81 | * \param *y array to second vector
|
---|
82 | * \return \f$| x - y |\f$
|
---|
83 | */
|
---|
84 | double Vector::Distance(const Vector * const y) const
|
---|
85 | {
|
---|
86 | double res = 0.;
|
---|
87 | for (int i=NDIM;i--;)
|
---|
88 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
89 | return (sqrt(res));
|
---|
90 | };
|
---|
91 |
|
---|
92 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
93 | * \param *y array to second vector
|
---|
94 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
95 | * \return \f$| x - y |\f$
|
---|
96 | */
|
---|
97 | double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
|
---|
98 | {
|
---|
99 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
100 | Vector Shiftedy, TranslationVector;
|
---|
101 | int N[NDIM];
|
---|
102 | matrix[0] = cell_size[0];
|
---|
103 | matrix[1] = cell_size[1];
|
---|
104 | matrix[2] = cell_size[3];
|
---|
105 | matrix[3] = cell_size[1];
|
---|
106 | matrix[4] = cell_size[2];
|
---|
107 | matrix[5] = cell_size[4];
|
---|
108 | matrix[6] = cell_size[3];
|
---|
109 | matrix[7] = cell_size[4];
|
---|
110 | matrix[8] = cell_size[5];
|
---|
111 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
112 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
113 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
114 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
115 | // create the translation vector
|
---|
116 | TranslationVector.Zero();
|
---|
117 | for (int i=NDIM;i--;)
|
---|
118 | TranslationVector.x[i] = (double)N[i];
|
---|
119 | TranslationVector.MatrixMultiplication(matrix);
|
---|
120 | // add onto the original vector to compare with
|
---|
121 | Shiftedy.CopyVector(y);
|
---|
122 | Shiftedy.AddVector(&TranslationVector);
|
---|
123 | // get distance and compare with minimum so far
|
---|
124 | tmp = Distance(&Shiftedy);
|
---|
125 | if (tmp < res) res = tmp;
|
---|
126 | }
|
---|
127 | return (res);
|
---|
128 | };
|
---|
129 |
|
---|
130 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
131 | * \param *y array to second vector
|
---|
132 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
133 | * \return \f$| x - y |^2\f$
|
---|
134 | */
|
---|
135 | double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
|
---|
136 | {
|
---|
137 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
---|
138 | Vector Shiftedy, TranslationVector;
|
---|
139 | int N[NDIM];
|
---|
140 | matrix[0] = cell_size[0];
|
---|
141 | matrix[1] = cell_size[1];
|
---|
142 | matrix[2] = cell_size[3];
|
---|
143 | matrix[3] = cell_size[1];
|
---|
144 | matrix[4] = cell_size[2];
|
---|
145 | matrix[5] = cell_size[4];
|
---|
146 | matrix[6] = cell_size[3];
|
---|
147 | matrix[7] = cell_size[4];
|
---|
148 | matrix[8] = cell_size[5];
|
---|
149 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
150 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
151 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
152 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
153 | // create the translation vector
|
---|
154 | TranslationVector.Zero();
|
---|
155 | for (int i=NDIM;i--;)
|
---|
156 | TranslationVector.x[i] = (double)N[i];
|
---|
157 | TranslationVector.MatrixMultiplication(matrix);
|
---|
158 | // add onto the original vector to compare with
|
---|
159 | Shiftedy.CopyVector(y);
|
---|
160 | Shiftedy.AddVector(&TranslationVector);
|
---|
161 | // get distance and compare with minimum so far
|
---|
162 | tmp = DistanceSquared(&Shiftedy);
|
---|
163 | if (tmp < res) res = tmp;
|
---|
164 | }
|
---|
165 | return (res);
|
---|
166 | };
|
---|
167 |
|
---|
168 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
169 | * \param *out ofstream for debugging messages
|
---|
170 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
171 | */
|
---|
172 | void Vector::KeepPeriodic(const double * const matrix)
|
---|
173 | {
|
---|
174 | // int N[NDIM];
|
---|
175 | // bool flag = false;
|
---|
176 | //vector Shifted, TranslationVector;
|
---|
177 | Vector TestVector;
|
---|
178 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
179 | // Log() << Verbose(2) << "Vector is: ";
|
---|
180 | // Output(out);
|
---|
181 | // Log() << Verbose(0) << endl;
|
---|
182 | TestVector.CopyVector(this);
|
---|
183 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
184 | for(int i=NDIM;i--;) { // correct periodically
|
---|
185 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
186 | TestVector.x[i] += ceil(TestVector.x[i]);
|
---|
187 | } else {
|
---|
188 | TestVector.x[i] -= floor(TestVector.x[i]);
|
---|
189 | }
|
---|
190 | }
|
---|
191 | TestVector.MatrixMultiplication(matrix);
|
---|
192 | CopyVector(&TestVector);
|
---|
193 | // Log() << Verbose(2) << "New corrected vector is: ";
|
---|
194 | // Output(out);
|
---|
195 | // Log() << Verbose(0) << endl;
|
---|
196 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
197 | };
|
---|
198 |
|
---|
199 | /** Calculates scalar product between this and another vector.
|
---|
200 | * \param *y array to second vector
|
---|
201 | * \return \f$\langle x, y \rangle\f$
|
---|
202 | */
|
---|
203 | double Vector::ScalarProduct(const Vector * const y) const
|
---|
204 | {
|
---|
205 | double res = 0.;
|
---|
206 | for (int i=NDIM;i--;)
|
---|
207 | res += x[i]*y->x[i];
|
---|
208 | return (res);
|
---|
209 | };
|
---|
210 |
|
---|
211 |
|
---|
212 | /** Calculates VectorProduct between this and another vector.
|
---|
213 | * -# returns the Product in place of vector from which it was initiated
|
---|
214 | * -# ATTENTION: Only three dim.
|
---|
215 | * \param *y array to vector with which to calculate crossproduct
|
---|
216 | * \return \f$ x \times y \f&
|
---|
217 | */
|
---|
218 | void Vector::VectorProduct(const Vector * const y)
|
---|
219 | {
|
---|
220 | Vector tmp;
|
---|
221 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
|
---|
222 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
|
---|
223 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
|
---|
224 | this->CopyVector(&tmp);
|
---|
225 | };
|
---|
226 |
|
---|
227 |
|
---|
228 | /** projects this vector onto plane defined by \a *y.
|
---|
229 | * \param *y normal vector of plane
|
---|
230 | * \return \f$\langle x, y \rangle\f$
|
---|
231 | */
|
---|
232 | void Vector::ProjectOntoPlane(const Vector * const y)
|
---|
233 | {
|
---|
234 | Vector tmp;
|
---|
235 | tmp.CopyVector(y);
|
---|
236 | tmp.Normalize();
|
---|
237 | tmp.Scale(ScalarProduct(&tmp));
|
---|
238 | this->SubtractVector(&tmp);
|
---|
239 | };
|
---|
240 |
|
---|
241 | /** Calculates the minimum distance of this vector to the plane.
|
---|
242 | * \param *out output stream for debugging
|
---|
243 | * \param *PlaneNormal normal of plane
|
---|
244 | * \param *PlaneOffset offset of plane
|
---|
245 | * \return distance to plane
|
---|
246 | */
|
---|
247 | double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
|
---|
248 | {
|
---|
249 | Vector temp;
|
---|
250 |
|
---|
251 | // first create part that is orthonormal to PlaneNormal with withdraw
|
---|
252 | temp.CopyVector(this);
|
---|
253 | temp.SubtractVector(PlaneOffset);
|
---|
254 | temp.MakeNormalTo(*PlaneNormal);
|
---|
255 | temp.Scale(-1.);
|
---|
256 | // then add connecting vector from plane to point
|
---|
257 | temp.AddVector(this);
|
---|
258 | temp.SubtractVector(PlaneOffset);
|
---|
259 | double sign = temp.ScalarProduct(PlaneNormal);
|
---|
260 | if (fabs(sign) > MYEPSILON)
|
---|
261 | sign /= fabs(sign);
|
---|
262 | else
|
---|
263 | sign = 0.;
|
---|
264 |
|
---|
265 | return (temp.Norm()*sign);
|
---|
266 | };
|
---|
267 |
|
---|
268 | /** Calculates the projection of a vector onto another \a *y.
|
---|
269 | * \param *y array to second vector
|
---|
270 | */
|
---|
271 | void Vector::ProjectIt(const Vector * const y)
|
---|
272 | {
|
---|
273 | Vector helper(*y);
|
---|
274 | helper.Scale(-(ScalarProduct(y)));
|
---|
275 | AddVector(&helper);
|
---|
276 | };
|
---|
277 |
|
---|
278 | /** Calculates the projection of a vector onto another \a *y.
|
---|
279 | * \param *y array to second vector
|
---|
280 | * \return Vector
|
---|
281 | */
|
---|
282 | Vector Vector::Projection(const Vector * const y) const
|
---|
283 | {
|
---|
284 | Vector helper(*y);
|
---|
285 | helper.Scale((ScalarProduct(y)/y->NormSquared()));
|
---|
286 |
|
---|
287 | return helper;
|
---|
288 | };
|
---|
289 |
|
---|
290 | /** Calculates norm of this vector.
|
---|
291 | * \return \f$|x|\f$
|
---|
292 | */
|
---|
293 | double Vector::Norm() const
|
---|
294 | {
|
---|
295 | double res = 0.;
|
---|
296 | for (int i=NDIM;i--;)
|
---|
297 | res += this->x[i]*this->x[i];
|
---|
298 | return (sqrt(res));
|
---|
299 | };
|
---|
300 |
|
---|
301 | /** Calculates squared norm of this vector.
|
---|
302 | * \return \f$|x|^2\f$
|
---|
303 | */
|
---|
304 | double Vector::NormSquared() const
|
---|
305 | {
|
---|
306 | return (ScalarProduct(this));
|
---|
307 | };
|
---|
308 |
|
---|
309 | /** Normalizes this vector.
|
---|
310 | */
|
---|
311 | void Vector::Normalize()
|
---|
312 | {
|
---|
313 | double res = 0.;
|
---|
314 | for (int i=NDIM;i--;)
|
---|
315 | res += this->x[i]*this->x[i];
|
---|
316 | if (fabs(res) > MYEPSILON)
|
---|
317 | res = 1./sqrt(res);
|
---|
318 | Scale(&res);
|
---|
319 | };
|
---|
320 |
|
---|
321 | /** Zeros all components of this vector.
|
---|
322 | */
|
---|
323 | void Vector::Zero()
|
---|
324 | {
|
---|
325 | for (int i=NDIM;i--;)
|
---|
326 | this->x[i] = 0.;
|
---|
327 | };
|
---|
328 |
|
---|
329 | /** Zeros all components of this vector.
|
---|
330 | */
|
---|
331 | void Vector::One(const double one)
|
---|
332 | {
|
---|
333 | for (int i=NDIM;i--;)
|
---|
334 | this->x[i] = one;
|
---|
335 | };
|
---|
336 |
|
---|
337 | /** Initialises all components of this vector.
|
---|
338 | */
|
---|
339 | void Vector::Init(const double x1, const double x2, const double x3)
|
---|
340 | {
|
---|
341 | x[0] = x1;
|
---|
342 | x[1] = x2;
|
---|
343 | x[2] = x3;
|
---|
344 | };
|
---|
345 |
|
---|
346 | /** Checks whether vector has all components zero.
|
---|
347 | * @return true - vector is zero, false - vector is not
|
---|
348 | */
|
---|
349 | bool Vector::IsZero() const
|
---|
350 | {
|
---|
351 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
|
---|
352 | };
|
---|
353 |
|
---|
354 | /** Checks whether vector has length of 1.
|
---|
355 | * @return true - vector is normalized, false - vector is not
|
---|
356 | */
|
---|
357 | bool Vector::IsOne() const
|
---|
358 | {
|
---|
359 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
360 | };
|
---|
361 |
|
---|
362 | /** Checks whether vector is normal to \a *normal.
|
---|
363 | * @return true - vector is normalized, false - vector is not
|
---|
364 | */
|
---|
365 | bool Vector::IsNormalTo(const Vector * const normal) const
|
---|
366 | {
|
---|
367 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
368 | return true;
|
---|
369 | else
|
---|
370 | return false;
|
---|
371 | };
|
---|
372 |
|
---|
373 | /** Checks whether vector is normal to \a *normal.
|
---|
374 | * @return true - vector is normalized, false - vector is not
|
---|
375 | */
|
---|
376 | bool Vector::IsEqualTo(const Vector * const a) const
|
---|
377 | {
|
---|
378 | bool status = true;
|
---|
379 | for (int i=0;i<NDIM;i++) {
|
---|
380 | if (fabs(x[i] - a->x[i]) > MYEPSILON)
|
---|
381 | status = false;
|
---|
382 | }
|
---|
383 | return status;
|
---|
384 | };
|
---|
385 |
|
---|
386 | /** Calculates the angle between this and another vector.
|
---|
387 | * \param *y array to second vector
|
---|
388 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
389 | */
|
---|
390 | double Vector::Angle(const Vector * const y) const
|
---|
391 | {
|
---|
392 | double norm1 = Norm(), norm2 = y->Norm();
|
---|
393 | double angle = -1;
|
---|
394 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
395 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
396 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
397 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
398 | if (angle < -1)
|
---|
399 | angle = -1;
|
---|
400 | if (angle > 1)
|
---|
401 | angle = 1;
|
---|
402 | return acos(angle);
|
---|
403 | };
|
---|
404 |
|
---|
405 |
|
---|
406 | double& Vector::operator[](size_t i){
|
---|
407 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
408 | return x[i];
|
---|
409 | }
|
---|
410 |
|
---|
411 | const double& Vector::operator[](size_t i) const{
|
---|
412 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
413 | return x[i];
|
---|
414 | }
|
---|
415 |
|
---|
416 | double& Vector::at(size_t i){
|
---|
417 | return (*this)[i];
|
---|
418 | }
|
---|
419 |
|
---|
420 | const double& Vector::at(size_t i) const{
|
---|
421 | return (*this)[i];
|
---|
422 | }
|
---|
423 |
|
---|
424 | double* Vector::get(){
|
---|
425 | return x;
|
---|
426 | }
|
---|
427 |
|
---|
428 | /** Compares vector \a to vector \a b component-wise.
|
---|
429 | * \param a base vector
|
---|
430 | * \param b vector components to add
|
---|
431 | * \return a == b
|
---|
432 | */
|
---|
433 | bool operator==(const Vector& a, const Vector& b)
|
---|
434 | {
|
---|
435 | bool status = true;
|
---|
436 | for (int i=0;i<NDIM;i++)
|
---|
437 | status = status && (fabs(a[i] - b[i]) < MYEPSILON);
|
---|
438 | return status;
|
---|
439 | };
|
---|
440 |
|
---|
441 | /** Sums vector \a to this lhs component-wise.
|
---|
442 | * \param a base vector
|
---|
443 | * \param b vector components to add
|
---|
444 | * \return lhs + a
|
---|
445 | */
|
---|
446 | const Vector& operator+=(Vector& a, const Vector& b)
|
---|
447 | {
|
---|
448 | a.AddVector(&b);
|
---|
449 | return a;
|
---|
450 | };
|
---|
451 |
|
---|
452 | /** Subtracts vector \a from this lhs component-wise.
|
---|
453 | * \param a base vector
|
---|
454 | * \param b vector components to add
|
---|
455 | * \return lhs - a
|
---|
456 | */
|
---|
457 | const Vector& operator-=(Vector& a, const Vector& b)
|
---|
458 | {
|
---|
459 | a.SubtractVector(&b);
|
---|
460 | return a;
|
---|
461 | };
|
---|
462 |
|
---|
463 | /** factor each component of \a a times a double \a m.
|
---|
464 | * \param a base vector
|
---|
465 | * \param m factor
|
---|
466 | * \return lhs.x[i] * m
|
---|
467 | */
|
---|
468 | const Vector& operator*=(Vector& a, const double m)
|
---|
469 | {
|
---|
470 | a.Scale(m);
|
---|
471 | return a;
|
---|
472 | };
|
---|
473 |
|
---|
474 | /** Sums two vectors \a and \b component-wise.
|
---|
475 | * \param a first vector
|
---|
476 | * \param b second vector
|
---|
477 | * \return a + b
|
---|
478 | */
|
---|
479 | Vector const operator+(const Vector& a, const Vector& b)
|
---|
480 | {
|
---|
481 | Vector x(a);
|
---|
482 | x.AddVector(&b);
|
---|
483 | return x;
|
---|
484 | };
|
---|
485 |
|
---|
486 | /** Subtracts vector \a from \b component-wise.
|
---|
487 | * \param a first vector
|
---|
488 | * \param b second vector
|
---|
489 | * \return a - b
|
---|
490 | */
|
---|
491 | Vector const operator-(const Vector& a, const Vector& b)
|
---|
492 | {
|
---|
493 | Vector x(a);
|
---|
494 | x.SubtractVector(&b);
|
---|
495 | return x;
|
---|
496 | };
|
---|
497 |
|
---|
498 | /** Factors given vector \a a times \a m.
|
---|
499 | * \param a vector
|
---|
500 | * \param m factor
|
---|
501 | * \return m * a
|
---|
502 | */
|
---|
503 | Vector const operator*(const Vector& a, const double m)
|
---|
504 | {
|
---|
505 | Vector x(a);
|
---|
506 | x.Scale(m);
|
---|
507 | return x;
|
---|
508 | };
|
---|
509 |
|
---|
510 | /** Factors given vector \a a times \a m.
|
---|
511 | * \param m factor
|
---|
512 | * \param a vector
|
---|
513 | * \return m * a
|
---|
514 | */
|
---|
515 | Vector const operator*(const double m, const Vector& a )
|
---|
516 | {
|
---|
517 | Vector x(a);
|
---|
518 | x.Scale(m);
|
---|
519 | return x;
|
---|
520 | };
|
---|
521 |
|
---|
522 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
523 | {
|
---|
524 | ost << "(";
|
---|
525 | for (int i=0;i<NDIM;i++) {
|
---|
526 | ost << m[i];
|
---|
527 | if (i != 2)
|
---|
528 | ost << ",";
|
---|
529 | }
|
---|
530 | ost << ")";
|
---|
531 | return ost;
|
---|
532 | };
|
---|
533 |
|
---|
534 | /** Scales each atom coordinate by an individual \a factor.
|
---|
535 | * \param *factor pointer to scaling factor
|
---|
536 | */
|
---|
537 | void Vector::Scale(const double ** const factor)
|
---|
538 | {
|
---|
539 | for (int i=NDIM;i--;)
|
---|
540 | x[i] *= (*factor)[i];
|
---|
541 | };
|
---|
542 |
|
---|
543 | void Vector::Scale(const double * const factor)
|
---|
544 | {
|
---|
545 | for (int i=NDIM;i--;)
|
---|
546 | x[i] *= *factor;
|
---|
547 | };
|
---|
548 |
|
---|
549 | void Vector::Scale(const double factor)
|
---|
550 | {
|
---|
551 | for (int i=NDIM;i--;)
|
---|
552 | x[i] *= factor;
|
---|
553 | };
|
---|
554 |
|
---|
555 | /** Translate atom by given vector.
|
---|
556 | * \param trans[] translation vector.
|
---|
557 | */
|
---|
558 | void Vector::Translate(const Vector * const trans)
|
---|
559 | {
|
---|
560 | for (int i=NDIM;i--;)
|
---|
561 | x[i] += trans->x[i];
|
---|
562 | };
|
---|
563 |
|
---|
564 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
565 | * \param *M matrix of box
|
---|
566 | * \param *Minv inverse matrix
|
---|
567 | */
|
---|
568 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
|
---|
569 | {
|
---|
570 | MatrixMultiplication(Minv);
|
---|
571 | // truncate to [0,1] for each axis
|
---|
572 | for (int i=0;i<NDIM;i++) {
|
---|
573 | x[i] += 0.5; // set to center of box
|
---|
574 | while (x[i] >= 1.)
|
---|
575 | x[i] -= 1.;
|
---|
576 | while (x[i] < 0.)
|
---|
577 | x[i] += 1.;
|
---|
578 | }
|
---|
579 | MatrixMultiplication(M);
|
---|
580 | };
|
---|
581 |
|
---|
582 | /** Do a matrix multiplication.
|
---|
583 | * \param *matrix NDIM_NDIM array
|
---|
584 | */
|
---|
585 | void Vector::MatrixMultiplication(const double * const M)
|
---|
586 | {
|
---|
587 | Vector C;
|
---|
588 | // do the matrix multiplication
|
---|
589 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
590 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
591 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
592 | // transfer the result into this
|
---|
593 | for (int i=NDIM;i--;)
|
---|
594 | x[i] = C.x[i];
|
---|
595 | };
|
---|
596 |
|
---|
597 | /** Do a matrix multiplication with the \a *A' inverse.
|
---|
598 | * \param *matrix NDIM_NDIM array
|
---|
599 | */
|
---|
600 | bool Vector::InverseMatrixMultiplication(const double * const A)
|
---|
601 | {
|
---|
602 | Vector C;
|
---|
603 | double B[NDIM*NDIM];
|
---|
604 | double detA = RDET3(A);
|
---|
605 | double detAReci;
|
---|
606 |
|
---|
607 | // calculate the inverse B
|
---|
608 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
609 | detAReci = 1./detA;
|
---|
610 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
611 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
612 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
613 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
614 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
615 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
616 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
617 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
618 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
619 |
|
---|
620 | // do the matrix multiplication
|
---|
621 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
622 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
623 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
624 | // transfer the result into this
|
---|
625 | for (int i=NDIM;i--;)
|
---|
626 | x[i] = C.x[i];
|
---|
627 | return true;
|
---|
628 | } else {
|
---|
629 | return false;
|
---|
630 | }
|
---|
631 | };
|
---|
632 |
|
---|
633 |
|
---|
634 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
635 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
636 | * \param *x1 first vector
|
---|
637 | * \param *x2 second vector
|
---|
638 | * \param *x3 third vector
|
---|
639 | * \param *factors three-component vector with the factor for each given vector
|
---|
640 | */
|
---|
641 | void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
|
---|
642 | {
|
---|
643 | for(int i=NDIM;i--;)
|
---|
644 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
|
---|
645 | };
|
---|
646 |
|
---|
647 | /** Mirrors atom against a given plane.
|
---|
648 | * \param n[] normal vector of mirror plane.
|
---|
649 | */
|
---|
650 | void Vector::Mirror(const Vector * const n)
|
---|
651 | {
|
---|
652 | double projection;
|
---|
653 | projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
|
---|
654 | // withdraw projected vector twice from original one
|
---|
655 | for (int i=NDIM;i--;)
|
---|
656 | x[i] -= 2.*projection*n->x[i];
|
---|
657 | };
|
---|
658 |
|
---|
659 |
|
---|
660 | /** Calculates orthonormal vector to one given vector.
|
---|
661 | * Just subtracts the projection onto the given vector from this vector.
|
---|
662 | * The removed part of the vector is Vector::Projection()
|
---|
663 | * \param *x1 vector
|
---|
664 | * \return true - success, false - vector is zero
|
---|
665 | */
|
---|
666 | bool Vector::MakeNormalTo(const Vector &y1)
|
---|
667 | {
|
---|
668 | bool result = false;
|
---|
669 | double factor = y1.ScalarProduct(this)/y1.NormSquared();
|
---|
670 | Vector x1;
|
---|
671 | x1.CopyVector(&y1);
|
---|
672 | x1.Scale(factor);
|
---|
673 | SubtractVector(&x1);
|
---|
674 | for (int i=NDIM;i--;)
|
---|
675 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
676 |
|
---|
677 | return result;
|
---|
678 | };
|
---|
679 |
|
---|
680 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
681 | * Just scan how many components of given *vector are unequal to zero and
|
---|
682 | * try to get the skp of both to be zero accordingly.
|
---|
683 | * \param *vector given vector
|
---|
684 | * \return true - success, false - failure (null vector given)
|
---|
685 | */
|
---|
686 | bool Vector::GetOneNormalVector(const Vector * const GivenVector)
|
---|
687 | {
|
---|
688 | int Components[NDIM]; // contains indices of non-zero components
|
---|
689 | int Last = 0; // count the number of non-zero entries in vector
|
---|
690 | int j; // loop variables
|
---|
691 | double norm;
|
---|
692 |
|
---|
693 | for (j=NDIM;j--;)
|
---|
694 | Components[j] = -1;
|
---|
695 | // find two components != 0
|
---|
696 | for (j=0;j<NDIM;j++)
|
---|
697 | if (fabs(GivenVector->x[j]) > MYEPSILON)
|
---|
698 | Components[Last++] = j;
|
---|
699 |
|
---|
700 | switch(Last) {
|
---|
701 | case 3: // threecomponent system
|
---|
702 | case 2: // two component system
|
---|
703 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
|
---|
704 | x[Components[2]] = 0.;
|
---|
705 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
706 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
|
---|
707 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
|
---|
708 | return true;
|
---|
709 | break;
|
---|
710 | case 1: // one component system
|
---|
711 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
712 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
713 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
714 | x[Components[0]] = 0.;
|
---|
715 | return true;
|
---|
716 | break;
|
---|
717 | default:
|
---|
718 | return false;
|
---|
719 | }
|
---|
720 | };
|
---|
721 |
|
---|
722 | /** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
|
---|
723 | * \param *A first plane vector
|
---|
724 | * \param *B second plane vector
|
---|
725 | * \param *C third plane vector
|
---|
726 | * \return scaling parameter for this vector
|
---|
727 | */
|
---|
728 | double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
|
---|
729 | {
|
---|
730 | // Log() << Verbose(3) << "For comparison: ";
|
---|
731 | // Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
|
---|
732 | // Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
|
---|
733 | // Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
|
---|
734 | // Log() << Verbose(0) << endl;
|
---|
735 | return A->ScalarProduct(this);
|
---|
736 | };
|
---|
737 |
|
---|
738 |
|
---|
739 | /** Adds vector \a *y componentwise.
|
---|
740 | * \param *y vector
|
---|
741 | */
|
---|
742 | void Vector::AddVector(const Vector * const y)
|
---|
743 | {
|
---|
744 | for (int i=NDIM;i--;)
|
---|
745 | this->x[i] += y->x[i];
|
---|
746 | }
|
---|
747 |
|
---|
748 | /** Adds vector \a *y componentwise.
|
---|
749 | * \param *y vector
|
---|
750 | */
|
---|
751 | void Vector::SubtractVector(const Vector * const y)
|
---|
752 | {
|
---|
753 | for (int i=NDIM;i--;)
|
---|
754 | this->x[i] -= y->x[i];
|
---|
755 | }
|
---|
756 |
|
---|
757 | /** Copy vector \a *y componentwise.
|
---|
758 | * \param *y vector
|
---|
759 | */
|
---|
760 | void Vector::CopyVector(const Vector * const y)
|
---|
761 | {
|
---|
762 | // check for self assignment
|
---|
763 | if(y!=this){
|
---|
764 | for (int i=NDIM;i--;)
|
---|
765 | this->x[i] = y->x[i];
|
---|
766 | }
|
---|
767 | }
|
---|
768 |
|
---|
769 | /** Copy vector \a y componentwise.
|
---|
770 | * \param y vector
|
---|
771 | */
|
---|
772 | void Vector::CopyVector(const Vector &y)
|
---|
773 | {
|
---|
774 | // check for self assignment
|
---|
775 | if(&y!=this) {
|
---|
776 | for (int i=NDIM;i--;)
|
---|
777 | this->x[i] = y.x[i];
|
---|
778 | }
|
---|
779 | }
|
---|
780 |
|
---|
781 | // this function is completely unused so it is deactivated until new uses arrive and a new
|
---|
782 | // place can be found
|
---|
783 | #if 0
|
---|
784 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
---|
785 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
---|
786 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
---|
787 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
---|
788 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
---|
789 | * another case.
|
---|
790 | * \param *x1 first vector
|
---|
791 | * \param *x2 second vector
|
---|
792 | * \param *y third vector
|
---|
793 | * \param alpha first angle
|
---|
794 | * \param beta second angle
|
---|
795 | * \param c norm of final vector
|
---|
796 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
---|
797 | * \bug this is not yet working properly
|
---|
798 | */
|
---|
799 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
|
---|
800 | {
|
---|
801 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
---|
802 | double ang; // angle on testing
|
---|
803 | double sign[3];
|
---|
804 | int i,j,k;
|
---|
805 | A = cos(alpha) * x1->Norm() * c;
|
---|
806 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
---|
807 | B2 = cos(beta) * x2->Norm() * c;
|
---|
808 | C = c * c;
|
---|
809 | Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
---|
810 | int flag = 0;
|
---|
811 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
---|
812 | if (fabs(x1->x[1]) > MYEPSILON) {
|
---|
813 | flag = 1;
|
---|
814 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
---|
815 | flag = 2;
|
---|
816 | } else {
|
---|
817 | return false;
|
---|
818 | }
|
---|
819 | }
|
---|
820 | switch (flag) {
|
---|
821 | default:
|
---|
822 | case 0:
|
---|
823 | break;
|
---|
824 | case 2:
|
---|
825 | flip(x1->x[0],x1->x[1]);
|
---|
826 | flip(x2->x[0],x2->x[1]);
|
---|
827 | flip(y->x[0],y->x[1]);
|
---|
828 | //flip(x[0],x[1]);
|
---|
829 | flip(x1->x[1],x1->x[2]);
|
---|
830 | flip(x2->x[1],x2->x[2]);
|
---|
831 | flip(y->x[1],y->x[2]);
|
---|
832 | //flip(x[1],x[2]);
|
---|
833 | case 1:
|
---|
834 | flip(x1->x[0],x1->x[1]);
|
---|
835 | flip(x2->x[0],x2->x[1]);
|
---|
836 | flip(y->x[0],y->x[1]);
|
---|
837 | //flip(x[0],x[1]);
|
---|
838 | flip(x1->x[1],x1->x[2]);
|
---|
839 | flip(x2->x[1],x2->x[2]);
|
---|
840 | flip(y->x[1],y->x[2]);
|
---|
841 | //flip(x[1],x[2]);
|
---|
842 | break;
|
---|
843 | }
|
---|
844 | // now comes the case system
|
---|
845 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
---|
846 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
---|
847 | D3 = y->x[0]/x1->x[0]*A-B1;
|
---|
848 | Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
---|
849 | if (fabs(D1) < MYEPSILON) {
|
---|
850 | Log() << Verbose(2) << "D1 == 0!\n";
|
---|
851 | if (fabs(D2) > MYEPSILON) {
|
---|
852 | Log() << Verbose(3) << "D2 != 0!\n";
|
---|
853 | x[2] = -D3/D2;
|
---|
854 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
---|
855 | E2 = -x1->x[1]/x1->x[0];
|
---|
856 | Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
857 | F1 = E1*E1 + 1.;
|
---|
858 | F2 = -E1*E2;
|
---|
859 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
---|
860 | Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
861 | if (fabs(F1) < MYEPSILON) {
|
---|
862 | Log() << Verbose(4) << "F1 == 0!\n";
|
---|
863 | Log() << Verbose(4) << "Gleichungssystem linear\n";
|
---|
864 | x[1] = F3/(2.*F2);
|
---|
865 | } else {
|
---|
866 | p = F2/F1;
|
---|
867 | q = p*p - F3/F1;
|
---|
868 | Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
|
---|
869 | if (q < 0) {
|
---|
870 | Log() << Verbose(4) << "q < 0" << endl;
|
---|
871 | return false;
|
---|
872 | }
|
---|
873 | x[1] = p + sqrt(q);
|
---|
874 | }
|
---|
875 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
876 | } else {
|
---|
877 | Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
---|
878 | return false;
|
---|
879 | }
|
---|
880 | } else {
|
---|
881 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
---|
882 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
---|
883 | Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
884 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
---|
885 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
---|
886 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
---|
887 | Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
888 | if (fabs(F1) < MYEPSILON) {
|
---|
889 | Log() << Verbose(3) << "F1 == 0!\n";
|
---|
890 | Log() << Verbose(3) << "Gleichungssystem linear\n";
|
---|
891 | x[2] = F3/(2.*F2);
|
---|
892 | } else {
|
---|
893 | p = F2/F1;
|
---|
894 | q = p*p - F3/F1;
|
---|
895 | Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
|
---|
896 | if (q < 0) {
|
---|
897 | Log() << Verbose(3) << "q < 0" << endl;
|
---|
898 | return false;
|
---|
899 | }
|
---|
900 | x[2] = p + sqrt(q);
|
---|
901 | }
|
---|
902 | x[1] = (-D2 * x[2] - D3)/D1;
|
---|
903 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
904 | }
|
---|
905 | switch (flag) { // back-flipping
|
---|
906 | default:
|
---|
907 | case 0:
|
---|
908 | break;
|
---|
909 | case 2:
|
---|
910 | flip(x1->x[0],x1->x[1]);
|
---|
911 | flip(x2->x[0],x2->x[1]);
|
---|
912 | flip(y->x[0],y->x[1]);
|
---|
913 | flip(x[0],x[1]);
|
---|
914 | flip(x1->x[1],x1->x[2]);
|
---|
915 | flip(x2->x[1],x2->x[2]);
|
---|
916 | flip(y->x[1],y->x[2]);
|
---|
917 | flip(x[1],x[2]);
|
---|
918 | case 1:
|
---|
919 | flip(x1->x[0],x1->x[1]);
|
---|
920 | flip(x2->x[0],x2->x[1]);
|
---|
921 | flip(y->x[0],y->x[1]);
|
---|
922 | //flip(x[0],x[1]);
|
---|
923 | flip(x1->x[1],x1->x[2]);
|
---|
924 | flip(x2->x[1],x2->x[2]);
|
---|
925 | flip(y->x[1],y->x[2]);
|
---|
926 | flip(x[1],x[2]);
|
---|
927 | break;
|
---|
928 | }
|
---|
929 | // one z component is only determined by its radius (without sign)
|
---|
930 | // thus check eight possible sign flips and determine by checking angle with second vector
|
---|
931 | for (i=0;i<8;i++) {
|
---|
932 | // set sign vector accordingly
|
---|
933 | for (j=2;j>=0;j--) {
|
---|
934 | k = (i & pot(2,j)) << j;
|
---|
935 | Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
---|
936 | sign[j] = (k == 0) ? 1. : -1.;
|
---|
937 | }
|
---|
938 | Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
---|
939 | // apply sign matrix
|
---|
940 | for (j=NDIM;j--;)
|
---|
941 | x[j] *= sign[j];
|
---|
942 | // calculate angle and check
|
---|
943 | ang = x2->Angle (this);
|
---|
944 | Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
---|
945 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
---|
946 | break;
|
---|
947 | }
|
---|
948 | // unapply sign matrix (is its own inverse)
|
---|
949 | for (j=NDIM;j--;)
|
---|
950 | x[j] *= sign[j];
|
---|
951 | }
|
---|
952 | return true;
|
---|
953 | };
|
---|
954 |
|
---|
955 | #endif
|
---|
956 |
|
---|
957 | /**
|
---|
958 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
959 | * their offset.
|
---|
960 | *
|
---|
961 | * @param offest for the origin of the parallelepiped
|
---|
962 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
963 | */
|
---|
964 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
---|
965 | {
|
---|
966 | Vector a;
|
---|
967 | a.CopyVector(this);
|
---|
968 | a.SubtractVector(&offset);
|
---|
969 | a.InverseMatrixMultiplication(parallelepiped);
|
---|
970 | bool isInside = true;
|
---|
971 |
|
---|
972 | for (int i=NDIM;i--;)
|
---|
973 | isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
|
---|
974 |
|
---|
975 | return isInside;
|
---|
976 | }
|
---|