[6ac7ee] | 1 | /** \file vector.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class vector.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
[112b09] | 7 | #include "Helpers/MemDebug.hpp"
|
---|
[edb93c] | 8 |
|
---|
[54a746] | 9 | #include "vector.hpp"
|
---|
[325390] | 10 | #include "Matrix.hpp"
|
---|
[54a746] | 11 | #include "verbose.hpp"
|
---|
[b34306] | 12 | #include "World.hpp"
|
---|
[0a4f7f] | 13 | #include "Helpers/Assert.hpp"
|
---|
[753f02] | 14 | #include "Helpers/fast_functions.hpp"
|
---|
[325390] | 15 | #include "Exceptions/MathException.hpp"
|
---|
[6ac7ee] | 16 |
|
---|
[1bd79e] | 17 | #include <iostream>
|
---|
[923b6c] | 18 | #include <gsl/gsl_blas.h>
|
---|
| 19 |
|
---|
[1bd79e] | 20 |
|
---|
| 21 | using namespace std;
|
---|
[6ac7ee] | 22 |
|
---|
[97498a] | 23 |
|
---|
[6ac7ee] | 24 | /************************************ Functions for class vector ************************************/
|
---|
| 25 |
|
---|
| 26 | /** Constructor of class vector.
|
---|
| 27 | */
|
---|
[753f02] | 28 | Vector::Vector()
|
---|
| 29 | {
|
---|
[d690fa] | 30 | content = gsl_vector_calloc (NDIM);
|
---|
[753f02] | 31 | };
|
---|
[6ac7ee] | 32 |
|
---|
[753f02] | 33 | /**
|
---|
| 34 | * Copy constructor
|
---|
[821907] | 35 | */
|
---|
[1bd79e] | 36 |
|
---|
[753f02] | 37 | Vector::Vector(const Vector& src)
|
---|
[821907] | 38 | {
|
---|
[d690fa] | 39 | content = gsl_vector_alloc(NDIM);
|
---|
[93987b] | 40 | gsl_vector_memcpy(content, src.content);
|
---|
[1bd79e] | 41 | }
|
---|
[821907] | 42 |
|
---|
| 43 | /** Constructor of class vector.
|
---|
| 44 | */
|
---|
[753f02] | 45 | Vector::Vector(const double x1, const double x2, const double x3)
|
---|
[821907] | 46 | {
|
---|
[d690fa] | 47 | content = gsl_vector_alloc(NDIM);
|
---|
| 48 | gsl_vector_set(content,0,x1);
|
---|
| 49 | gsl_vector_set(content,1,x2);
|
---|
| 50 | gsl_vector_set(content,2,x3);
|
---|
[821907] | 51 | };
|
---|
| 52 |
|
---|
[325390] | 53 | Vector::Vector(gsl_vector *_content) :
|
---|
| 54 | content(_content)
|
---|
| 55 | {}
|
---|
| 56 |
|
---|
[0a4f7f] | 57 | /**
|
---|
| 58 | * Assignment operator
|
---|
[6ac7ee] | 59 | */
|
---|
[0a4f7f] | 60 | Vector& Vector::operator=(const Vector& src){
|
---|
| 61 | // check for self assignment
|
---|
| 62 | if(&src!=this){
|
---|
[93987b] | 63 | gsl_vector_memcpy(content, src.content);
|
---|
[0a4f7f] | 64 | }
|
---|
| 65 | return *this;
|
---|
| 66 | }
|
---|
[6ac7ee] | 67 |
|
---|
| 68 | /** Desctructor of class vector.
|
---|
| 69 | */
|
---|
[d466f0] | 70 | Vector::~Vector() {
|
---|
[d690fa] | 71 | gsl_vector_free(content);
|
---|
[d466f0] | 72 | };
|
---|
[6ac7ee] | 73 |
|
---|
| 74 | /** Calculates square of distance between this and another vector.
|
---|
| 75 | * \param *y array to second vector
|
---|
| 76 | * \return \f$| x - y |^2\f$
|
---|
| 77 | */
|
---|
[273382] | 78 | double Vector::DistanceSquared(const Vector &y) const
|
---|
[6ac7ee] | 79 | {
|
---|
[042f82] | 80 | double res = 0.;
|
---|
| 81 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 82 | res += (at(i)-y[i])*(at(i)-y[i]);
|
---|
[042f82] | 83 | return (res);
|
---|
[6ac7ee] | 84 | };
|
---|
| 85 |
|
---|
| 86 | /** Calculates distance between this and another vector.
|
---|
| 87 | * \param *y array to second vector
|
---|
| 88 | * \return \f$| x - y |\f$
|
---|
| 89 | */
|
---|
[1513a74] | 90 | double Vector::distance(const Vector &y) const
|
---|
[6ac7ee] | 91 | {
|
---|
[273382] | 92 | return (sqrt(DistanceSquared(y)));
|
---|
[6ac7ee] | 93 | };
|
---|
| 94 |
|
---|
[1513a74] | 95 | Vector Vector::getClosestPoint(const Vector &point) const{
|
---|
| 96 | // the closest point to a single point space is always the single point itself
|
---|
| 97 | return *this;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[6ac7ee] | 100 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
| 101 | * \param *y array to second vector
|
---|
| 102 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
| 103 | * \return \f$| x - y |\f$
|
---|
| 104 | */
|
---|
[273382] | 105 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
|
---|
[6ac7ee] | 106 | {
|
---|
[c94eeb] | 107 | double res = distance(y), tmp;
|
---|
| 108 | Matrix matrix;
|
---|
[753f02] | 109 | Vector Shiftedy, TranslationVector;
|
---|
| 110 | int N[NDIM];
|
---|
[c94eeb] | 111 | matrix.at(0,0) = cell_size[0];
|
---|
| 112 | matrix.at(1,0) = cell_size[1];
|
---|
| 113 | matrix.at(2,0) = cell_size[3];
|
---|
| 114 | matrix.at(0,1) = cell_size[1];
|
---|
| 115 | matrix.at(1,1) = cell_size[2];
|
---|
| 116 | matrix.at(2,1) = cell_size[4];
|
---|
| 117 | matrix.at(0,2) = cell_size[3];
|
---|
| 118 | matrix.at(1,2) = cell_size[4];
|
---|
| 119 | matrix.at(2,2) = cell_size[5];
|
---|
[753f02] | 120 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
| 121 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
| 122 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
| 123 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
| 124 | // create the translation vector
|
---|
| 125 | TranslationVector.Zero();
|
---|
| 126 | for (int i=NDIM;i--;)
|
---|
| 127 | TranslationVector[i] = (double)N[i];
|
---|
| 128 | TranslationVector.MatrixMultiplication(matrix);
|
---|
| 129 | // add onto the original vector to compare with
|
---|
| 130 | Shiftedy = y + TranslationVector;
|
---|
| 131 | // get distance and compare with minimum so far
|
---|
[1513a74] | 132 | tmp = distance(Shiftedy);
|
---|
[753f02] | 133 | if (tmp < res) res = tmp;
|
---|
| 134 | }
|
---|
| 135 | return (res);
|
---|
[6ac7ee] | 136 | };
|
---|
| 137 |
|
---|
| 138 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
| 139 | * \param *y array to second vector
|
---|
| 140 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
| 141 | * \return \f$| x - y |^2\f$
|
---|
| 142 | */
|
---|
[273382] | 143 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
|
---|
[6ac7ee] | 144 | {
|
---|
[c94eeb] | 145 | double res = DistanceSquared(y), tmp;
|
---|
| 146 | Matrix matrix;
|
---|
[753f02] | 147 | Vector Shiftedy, TranslationVector;
|
---|
| 148 | int N[NDIM];
|
---|
[c94eeb] | 149 | matrix.at(0,0) = cell_size[0];
|
---|
| 150 | matrix.at(1,0) = cell_size[1];
|
---|
| 151 | matrix.at(2,0) = cell_size[3];
|
---|
| 152 | matrix.at(0,1) = cell_size[1];
|
---|
| 153 | matrix.at(1,1) = cell_size[2];
|
---|
| 154 | matrix.at(2,1) = cell_size[4];
|
---|
| 155 | matrix.at(0,2) = cell_size[3];
|
---|
| 156 | matrix.at(1,2) = cell_size[4];
|
---|
| 157 | matrix.at(2,2) = cell_size[5];
|
---|
[753f02] | 158 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
| 159 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
| 160 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
| 161 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
| 162 | // create the translation vector
|
---|
| 163 | TranslationVector.Zero();
|
---|
| 164 | for (int i=NDIM;i--;)
|
---|
| 165 | TranslationVector[i] = (double)N[i];
|
---|
| 166 | TranslationVector.MatrixMultiplication(matrix);
|
---|
| 167 | // add onto the original vector to compare with
|
---|
| 168 | Shiftedy = y + TranslationVector;
|
---|
| 169 | // get distance and compare with minimum so far
|
---|
| 170 | tmp = DistanceSquared(Shiftedy);
|
---|
| 171 | if (tmp < res) res = tmp;
|
---|
| 172 | }
|
---|
| 173 | return (res);
|
---|
[6ac7ee] | 174 | };
|
---|
| 175 |
|
---|
| 176 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
| 177 | * \param *out ofstream for debugging messages
|
---|
| 178 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
| 179 | */
|
---|
[c94eeb] | 180 | void Vector::KeepPeriodic(const double * const _matrix)
|
---|
[6ac7ee] | 181 | {
|
---|
[c94eeb] | 182 | Matrix matrix = Matrix(_matrix);
|
---|
[753f02] | 183 | // int N[NDIM];
|
---|
| 184 | // bool flag = false;
|
---|
| 185 | //vector Shifted, TranslationVector;
|
---|
| 186 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
| 187 | // Log() << Verbose(2) << "Vector is: ";
|
---|
| 188 | // Output(out);
|
---|
| 189 | // Log() << Verbose(0) << endl;
|
---|
[c94eeb] | 190 | MatrixMultiplication(matrix.invert());
|
---|
[753f02] | 191 | for(int i=NDIM;i--;) { // correct periodically
|
---|
| 192 | if (at(i) < 0) { // get every coefficient into the interval [0,1)
|
---|
| 193 | at(i) += ceil(at(i));
|
---|
| 194 | } else {
|
---|
| 195 | at(i) -= floor(at(i));
|
---|
| 196 | }
|
---|
[042f82] | 197 | }
|
---|
[753f02] | 198 | MatrixMultiplication(matrix);
|
---|
| 199 | // Log() << Verbose(2) << "New corrected vector is: ";
|
---|
| 200 | // Output(out);
|
---|
| 201 | // Log() << Verbose(0) << endl;
|
---|
| 202 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
[6ac7ee] | 203 | };
|
---|
| 204 |
|
---|
| 205 | /** Calculates scalar product between this and another vector.
|
---|
| 206 | * \param *y array to second vector
|
---|
| 207 | * \return \f$\langle x, y \rangle\f$
|
---|
| 208 | */
|
---|
[273382] | 209 | double Vector::ScalarProduct(const Vector &y) const
|
---|
[6ac7ee] | 210 | {
|
---|
[042f82] | 211 | double res = 0.;
|
---|
[923b6c] | 212 | gsl_blas_ddot(content, y.content, &res);
|
---|
[042f82] | 213 | return (res);
|
---|
[6ac7ee] | 214 | };
|
---|
| 215 |
|
---|
| 216 |
|
---|
| 217 | /** Calculates VectorProduct between this and another vector.
|
---|
[042f82] | 218 | * -# returns the Product in place of vector from which it was initiated
|
---|
| 219 | * -# ATTENTION: Only three dim.
|
---|
| 220 | * \param *y array to vector with which to calculate crossproduct
|
---|
| 221 | * \return \f$ x \times y \f&
|
---|
[6ac7ee] | 222 | */
|
---|
[273382] | 223 | void Vector::VectorProduct(const Vector &y)
|
---|
[6ac7ee] | 224 | {
|
---|
[042f82] | 225 | Vector tmp;
|
---|
[d466f0] | 226 | for(int i=NDIM;i--;)
|
---|
| 227 | tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
|
---|
[753f02] | 228 | (*this) = tmp;
|
---|
[6ac7ee] | 229 | };
|
---|
| 230 |
|
---|
| 231 |
|
---|
| 232 | /** projects this vector onto plane defined by \a *y.
|
---|
| 233 | * \param *y normal vector of plane
|
---|
| 234 | * \return \f$\langle x, y \rangle\f$
|
---|
| 235 | */
|
---|
[273382] | 236 | void Vector::ProjectOntoPlane(const Vector &y)
|
---|
[6ac7ee] | 237 | {
|
---|
[042f82] | 238 | Vector tmp;
|
---|
[753f02] | 239 | tmp = y;
|
---|
[042f82] | 240 | tmp.Normalize();
|
---|
[753f02] | 241 | tmp.Scale(ScalarProduct(tmp));
|
---|
| 242 | *this -= tmp;
|
---|
[2319ed] | 243 | };
|
---|
| 244 |
|
---|
[821907] | 245 | /** Calculates the minimum distance of this vector to the plane.
|
---|
| 246 | * \sa Vector::GetDistanceVectorToPlane()
|
---|
| 247 | * \param *out output stream for debugging
|
---|
| 248 | * \param *PlaneNormal normal of plane
|
---|
| 249 | * \param *PlaneOffset offset of plane
|
---|
| 250 | * \return distance to plane
|
---|
| 251 | */
|
---|
[d4c9ae] | 252 | double Vector::DistanceToSpace(const Space &space) const
|
---|
[821907] | 253 | {
|
---|
[d4c9ae] | 254 | return space.distance(*this);
|
---|
[c4d4df] | 255 | };
|
---|
| 256 |
|
---|
[6ac7ee] | 257 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 258 | * \param *y array to second vector
|
---|
| 259 | */
|
---|
[273382] | 260 | void Vector::ProjectIt(const Vector &y)
|
---|
[6ac7ee] | 261 | {
|
---|
[753f02] | 262 | (*this) += (-ScalarProduct(y))*y;
|
---|
[ef9df36] | 263 | };
|
---|
| 264 |
|
---|
| 265 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 266 | * \param *y array to second vector
|
---|
| 267 | * \return Vector
|
---|
| 268 | */
|
---|
[273382] | 269 | Vector Vector::Projection(const Vector &y) const
|
---|
[ef9df36] | 270 | {
|
---|
[753f02] | 271 | Vector helper = y;
|
---|
| 272 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
---|
[ef9df36] | 273 |
|
---|
| 274 | return helper;
|
---|
[6ac7ee] | 275 | };
|
---|
| 276 |
|
---|
| 277 | /** Calculates norm of this vector.
|
---|
| 278 | * \return \f$|x|\f$
|
---|
| 279 | */
|
---|
| 280 | double Vector::Norm() const
|
---|
| 281 | {
|
---|
[273382] | 282 | return (sqrt(NormSquared()));
|
---|
[6ac7ee] | 283 | };
|
---|
| 284 |
|
---|
[d4d0dd] | 285 | /** Calculates squared norm of this vector.
|
---|
| 286 | * \return \f$|x|^2\f$
|
---|
| 287 | */
|
---|
| 288 | double Vector::NormSquared() const
|
---|
| 289 | {
|
---|
[273382] | 290 | return (ScalarProduct(*this));
|
---|
[d4d0dd] | 291 | };
|
---|
| 292 |
|
---|
[6ac7ee] | 293 | /** Normalizes this vector.
|
---|
| 294 | */
|
---|
| 295 | void Vector::Normalize()
|
---|
| 296 | {
|
---|
[1bd79e] | 297 | double factor = Norm();
|
---|
| 298 | (*this) *= 1/factor;
|
---|
[6ac7ee] | 299 | };
|
---|
| 300 |
|
---|
| 301 | /** Zeros all components of this vector.
|
---|
| 302 | */
|
---|
| 303 | void Vector::Zero()
|
---|
| 304 | {
|
---|
[753f02] | 305 | at(0)=at(1)=at(2)=0;
|
---|
[6ac7ee] | 306 | };
|
---|
| 307 |
|
---|
| 308 | /** Zeros all components of this vector.
|
---|
| 309 | */
|
---|
[776b64] | 310 | void Vector::One(const double one)
|
---|
[6ac7ee] | 311 | {
|
---|
[753f02] | 312 | at(0)=at(1)=at(2)=one;
|
---|
[6ac7ee] | 313 | };
|
---|
| 314 |
|
---|
[9c20aa] | 315 | /** Checks whether vector has all components zero.
|
---|
| 316 | * @return true - vector is zero, false - vector is not
|
---|
| 317 | */
|
---|
[54a746] | 318 | bool Vector::IsZero() const
|
---|
[9c20aa] | 319 | {
|
---|
[d466f0] | 320 | return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
|
---|
[54a746] | 321 | };
|
---|
| 322 |
|
---|
| 323 | /** Checks whether vector has length of 1.
|
---|
| 324 | * @return true - vector is normalized, false - vector is not
|
---|
| 325 | */
|
---|
| 326 | bool Vector::IsOne() const
|
---|
| 327 | {
|
---|
| 328 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
[9c20aa] | 329 | };
|
---|
| 330 |
|
---|
[ef9df36] | 331 | /** Checks whether vector is normal to \a *normal.
|
---|
| 332 | * @return true - vector is normalized, false - vector is not
|
---|
| 333 | */
|
---|
[273382] | 334 | bool Vector::IsNormalTo(const Vector &normal) const
|
---|
[ef9df36] | 335 | {
|
---|
| 336 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
| 337 | return true;
|
---|
| 338 | else
|
---|
| 339 | return false;
|
---|
| 340 | };
|
---|
| 341 |
|
---|
[b998c3] | 342 | /** Checks whether vector is normal to \a *normal.
|
---|
| 343 | * @return true - vector is normalized, false - vector is not
|
---|
| 344 | */
|
---|
[273382] | 345 | bool Vector::IsEqualTo(const Vector &a) const
|
---|
[b998c3] | 346 | {
|
---|
| 347 | bool status = true;
|
---|
| 348 | for (int i=0;i<NDIM;i++) {
|
---|
[d466f0] | 349 | if (fabs(at(i) - a[i]) > MYEPSILON)
|
---|
[b998c3] | 350 | status = false;
|
---|
| 351 | }
|
---|
| 352 | return status;
|
---|
| 353 | };
|
---|
| 354 |
|
---|
[6ac7ee] | 355 | /** Calculates the angle between this and another vector.
|
---|
| 356 | * \param *y array to second vector
|
---|
| 357 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
| 358 | */
|
---|
[273382] | 359 | double Vector::Angle(const Vector &y) const
|
---|
[6ac7ee] | 360 | {
|
---|
[753f02] | 361 | double norm1 = Norm(), norm2 = y.Norm();
|
---|
[ef9df36] | 362 | double angle = -1;
|
---|
[d4d0dd] | 363 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
| 364 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
[02da9e] | 365 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
[e138de] | 366 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
[02da9e] | 367 | if (angle < -1)
|
---|
| 368 | angle = -1;
|
---|
| 369 | if (angle > 1)
|
---|
| 370 | angle = 1;
|
---|
[042f82] | 371 | return acos(angle);
|
---|
[6ac7ee] | 372 | };
|
---|
| 373 |
|
---|
[0a4f7f] | 374 |
|
---|
| 375 | double& Vector::operator[](size_t i){
|
---|
[753f02] | 376 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
[d690fa] | 377 | return *gsl_vector_ptr (content, i);
|
---|
[0a4f7f] | 378 | }
|
---|
| 379 |
|
---|
| 380 | const double& Vector::operator[](size_t i) const{
|
---|
[753f02] | 381 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
[d690fa] | 382 | return *gsl_vector_ptr (content, i);
|
---|
[0a4f7f] | 383 | }
|
---|
| 384 |
|
---|
| 385 | double& Vector::at(size_t i){
|
---|
| 386 | return (*this)[i];
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | const double& Vector::at(size_t i) const{
|
---|
| 390 | return (*this)[i];
|
---|
| 391 | }
|
---|
| 392 |
|
---|
[0c7ed8] | 393 | gsl_vector* Vector::get(){
|
---|
| 394 | return content;
|
---|
[0a4f7f] | 395 | }
|
---|
[6ac7ee] | 396 |
|
---|
[ef9df36] | 397 | /** Compares vector \a to vector \a b component-wise.
|
---|
| 398 | * \param a base vector
|
---|
| 399 | * \param b vector components to add
|
---|
| 400 | * \return a == b
|
---|
| 401 | */
|
---|
[72e7fa] | 402 | bool Vector::operator==(const Vector& b) const
|
---|
[ef9df36] | 403 | {
|
---|
[1bd79e] | 404 | return IsEqualTo(b);
|
---|
[ef9df36] | 405 | };
|
---|
| 406 |
|
---|
[fa5a6a] | 407 | bool Vector::operator!=(const Vector& b) const
|
---|
| 408 | {
|
---|
| 409 | return !IsEqualTo(b);
|
---|
| 410 | }
|
---|
| 411 |
|
---|
[6ac7ee] | 412 | /** Sums vector \a to this lhs component-wise.
|
---|
| 413 | * \param a base vector
|
---|
| 414 | * \param b vector components to add
|
---|
| 415 | * \return lhs + a
|
---|
| 416 | */
|
---|
[72e7fa] | 417 | const Vector& Vector::operator+=(const Vector& b)
|
---|
[6ac7ee] | 418 | {
|
---|
[273382] | 419 | this->AddVector(b);
|
---|
[72e7fa] | 420 | return *this;
|
---|
[6ac7ee] | 421 | };
|
---|
[54a746] | 422 |
|
---|
| 423 | /** Subtracts vector \a from this lhs component-wise.
|
---|
| 424 | * \param a base vector
|
---|
| 425 | * \param b vector components to add
|
---|
| 426 | * \return lhs - a
|
---|
| 427 | */
|
---|
[72e7fa] | 428 | const Vector& Vector::operator-=(const Vector& b)
|
---|
[54a746] | 429 | {
|
---|
[273382] | 430 | this->SubtractVector(b);
|
---|
[72e7fa] | 431 | return *this;
|
---|
[54a746] | 432 | };
|
---|
| 433 |
|
---|
[6ac7ee] | 434 | /** factor each component of \a a times a double \a m.
|
---|
| 435 | * \param a base vector
|
---|
| 436 | * \param m factor
|
---|
| 437 | * \return lhs.x[i] * m
|
---|
| 438 | */
|
---|
[b84d5d] | 439 | const Vector& operator*=(Vector& a, const double m)
|
---|
[6ac7ee] | 440 | {
|
---|
[042f82] | 441 | a.Scale(m);
|
---|
| 442 | return a;
|
---|
[6ac7ee] | 443 | };
|
---|
| 444 |
|
---|
[042f82] | 445 | /** Sums two vectors \a and \b component-wise.
|
---|
[6ac7ee] | 446 | * \param a first vector
|
---|
| 447 | * \param b second vector
|
---|
| 448 | * \return a + b
|
---|
| 449 | */
|
---|
[72e7fa] | 450 | Vector const Vector::operator+(const Vector& b) const
|
---|
[6ac7ee] | 451 | {
|
---|
[72e7fa] | 452 | Vector x = *this;
|
---|
[273382] | 453 | x.AddVector(b);
|
---|
[b84d5d] | 454 | return x;
|
---|
[6ac7ee] | 455 | };
|
---|
| 456 |
|
---|
[54a746] | 457 | /** Subtracts vector \a from \b component-wise.
|
---|
| 458 | * \param a first vector
|
---|
| 459 | * \param b second vector
|
---|
| 460 | * \return a - b
|
---|
| 461 | */
|
---|
[72e7fa] | 462 | Vector const Vector::operator-(const Vector& b) const
|
---|
[54a746] | 463 | {
|
---|
[72e7fa] | 464 | Vector x = *this;
|
---|
[273382] | 465 | x.SubtractVector(b);
|
---|
[b84d5d] | 466 | return x;
|
---|
[54a746] | 467 | };
|
---|
| 468 |
|
---|
[325390] | 469 | Vector &Vector::operator*=(const Matrix &mat){
|
---|
| 470 | (*this) = mat*(*this);
|
---|
| 471 | return *this;
|
---|
| 472 | }
|
---|
| 473 |
|
---|
| 474 | Vector operator*(const Matrix &mat,const Vector &vec){
|
---|
| 475 | gsl_vector *res = gsl_vector_calloc(NDIM);
|
---|
| 476 | gsl_blas_dgemv( CblasNoTrans, 1.0, mat.content, vec.content, 0.0, res);
|
---|
| 477 | return Vector(res);
|
---|
| 478 | }
|
---|
| 479 |
|
---|
| 480 |
|
---|
[6ac7ee] | 481 | /** Factors given vector \a a times \a m.
|
---|
| 482 | * \param a vector
|
---|
| 483 | * \param m factor
|
---|
[54a746] | 484 | * \return m * a
|
---|
[6ac7ee] | 485 | */
|
---|
[b84d5d] | 486 | Vector const operator*(const Vector& a, const double m)
|
---|
[6ac7ee] | 487 | {
|
---|
[b84d5d] | 488 | Vector x(a);
|
---|
| 489 | x.Scale(m);
|
---|
| 490 | return x;
|
---|
[6ac7ee] | 491 | };
|
---|
| 492 |
|
---|
[54a746] | 493 | /** Factors given vector \a a times \a m.
|
---|
| 494 | * \param m factor
|
---|
| 495 | * \param a vector
|
---|
| 496 | * \return m * a
|
---|
| 497 | */
|
---|
[b84d5d] | 498 | Vector const operator*(const double m, const Vector& a )
|
---|
[54a746] | 499 | {
|
---|
[b84d5d] | 500 | Vector x(a);
|
---|
| 501 | x.Scale(m);
|
---|
| 502 | return x;
|
---|
[54a746] | 503 | };
|
---|
| 504 |
|
---|
[9c20aa] | 505 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
[6ac7ee] | 506 | {
|
---|
[042f82] | 507 | ost << "(";
|
---|
| 508 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 509 | ost << m[i];
|
---|
[042f82] | 510 | if (i != 2)
|
---|
| 511 | ost << ",";
|
---|
| 512 | }
|
---|
| 513 | ost << ")";
|
---|
| 514 | return ost;
|
---|
[6ac7ee] | 515 | };
|
---|
| 516 |
|
---|
| 517 |
|
---|
[1bd79e] | 518 | void Vector::ScaleAll(const double *factor)
|
---|
[6ac7ee] | 519 | {
|
---|
[042f82] | 520 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 521 | at(i) *= factor[i];
|
---|
[6ac7ee] | 522 | };
|
---|
| 523 |
|
---|
| 524 |
|
---|
[1bd79e] | 525 |
|
---|
[776b64] | 526 | void Vector::Scale(const double factor)
|
---|
[6ac7ee] | 527 | {
|
---|
[93987b] | 528 | gsl_vector_scale(content,factor);
|
---|
[6ac7ee] | 529 | };
|
---|
| 530 |
|
---|
[d09ff7] | 531 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
| 532 | * \param *M matrix of box
|
---|
| 533 | * \param *Minv inverse matrix
|
---|
| 534 | */
|
---|
[d0f111] | 535 | void Vector::WrapPeriodically(const Matrix &M, const Matrix &Minv)
|
---|
[d09ff7] | 536 | {
|
---|
| 537 | MatrixMultiplication(Minv);
|
---|
| 538 | // truncate to [0,1] for each axis
|
---|
| 539 | for (int i=0;i<NDIM;i++) {
|
---|
[1dc9ec] | 540 | //at(i) += 0.5; // set to center of box
|
---|
[d466f0] | 541 | while (at(i) >= 1.)
|
---|
| 542 | at(i) -= 1.;
|
---|
| 543 | while (at(i) < 0.)
|
---|
| 544 | at(i) += 1.;
|
---|
[d09ff7] | 545 | }
|
---|
| 546 | MatrixMultiplication(M);
|
---|
| 547 | };
|
---|
| 548 |
|
---|
[45ef76] | 549 | std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
|
---|
| 550 | double factor = ScalarProduct(rhs)/rhs.NormSquared();
|
---|
| 551 | Vector res= factor * rhs;
|
---|
| 552 | return make_pair(res,(*this)-res);
|
---|
| 553 | }
|
---|
| 554 |
|
---|
| 555 | std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
|
---|
| 556 | Vector helper = *this;
|
---|
| 557 | pointset res;
|
---|
| 558 | for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
|
---|
| 559 | pair<Vector,Vector> currPart = helper.partition(*iter);
|
---|
| 560 | res.push_back(currPart.first);
|
---|
| 561 | helper = currPart.second;
|
---|
| 562 | }
|
---|
| 563 | return make_pair(res,helper);
|
---|
| 564 | }
|
---|
| 565 |
|
---|
[6ac7ee] | 566 | /** Do a matrix multiplication.
|
---|
| 567 | * \param *matrix NDIM_NDIM array
|
---|
| 568 | */
|
---|
[c94eeb] | 569 | void Vector::MatrixMultiplication(const Matrix &M)
|
---|
[6ac7ee] | 570 | {
|
---|
[c94eeb] | 571 | (*this) *= M;
|
---|
[6ac7ee] | 572 | };
|
---|
| 573 |
|
---|
| 574 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
| 575 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
| 576 | * \param *x1 first vector
|
---|
| 577 | * \param *x2 second vector
|
---|
| 578 | * \param *x3 third vector
|
---|
| 579 | * \param *factors three-component vector with the factor for each given vector
|
---|
| 580 | */
|
---|
[273382] | 581 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
---|
[6ac7ee] | 582 | {
|
---|
[273382] | 583 | (*this) = (factors[0]*x1) +
|
---|
| 584 | (factors[1]*x2) +
|
---|
| 585 | (factors[2]*x3);
|
---|
[6ac7ee] | 586 | };
|
---|
| 587 |
|
---|
| 588 | /** Calculates orthonormal vector to one given vectors.
|
---|
| 589 | * Just subtracts the projection onto the given vector from this vector.
|
---|
[ef9df36] | 590 | * The removed part of the vector is Vector::Projection()
|
---|
[6ac7ee] | 591 | * \param *x1 vector
|
---|
| 592 | * \return true - success, false - vector is zero
|
---|
| 593 | */
|
---|
[0a4f7f] | 594 | bool Vector::MakeNormalTo(const Vector &y1)
|
---|
[6ac7ee] | 595 | {
|
---|
[042f82] | 596 | bool result = false;
|
---|
[753f02] | 597 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
---|
[45ef76] | 598 | Vector x1 = factor * y1;
|
---|
[753f02] | 599 | SubtractVector(x1);
|
---|
[042f82] | 600 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 601 | result = result || (fabs(at(i)) > MYEPSILON);
|
---|
[6ac7ee] | 602 |
|
---|
[042f82] | 603 | return result;
|
---|
[6ac7ee] | 604 | };
|
---|
| 605 |
|
---|
| 606 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
| 607 | * Just scan how many components of given *vector are unequal to zero and
|
---|
| 608 | * try to get the skp of both to be zero accordingly.
|
---|
| 609 | * \param *vector given vector
|
---|
| 610 | * \return true - success, false - failure (null vector given)
|
---|
| 611 | */
|
---|
[273382] | 612 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
|
---|
[6ac7ee] | 613 | {
|
---|
[042f82] | 614 | int Components[NDIM]; // contains indices of non-zero components
|
---|
| 615 | int Last = 0; // count the number of non-zero entries in vector
|
---|
| 616 | int j; // loop variables
|
---|
| 617 | double norm;
|
---|
| 618 |
|
---|
| 619 | for (j=NDIM;j--;)
|
---|
| 620 | Components[j] = -1;
|
---|
[1829c4] | 621 |
|
---|
| 622 | // in two component-systems we need to find the one position that is zero
|
---|
| 623 | int zeroPos = -1;
|
---|
[042f82] | 624 | // find two components != 0
|
---|
[1829c4] | 625 | for (j=0;j<NDIM;j++){
|
---|
[753f02] | 626 | if (fabs(GivenVector[j]) > MYEPSILON)
|
---|
[042f82] | 627 | Components[Last++] = j;
|
---|
[1829c4] | 628 | else
|
---|
| 629 | // this our zero Position
|
---|
| 630 | zeroPos = j;
|
---|
| 631 | }
|
---|
[042f82] | 632 |
|
---|
| 633 | switch(Last) {
|
---|
| 634 | case 3: // threecomponent system
|
---|
[1829c4] | 635 | // the position of the zero is arbitrary in three component systems
|
---|
| 636 | zeroPos = Components[2];
|
---|
[042f82] | 637 | case 2: // two component system
|
---|
[753f02] | 638 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
---|
[1829c4] | 639 | at(zeroPos) = 0.;
|
---|
[042f82] | 640 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
[1829c4] | 641 | at(Components[1]) = -1./GivenVector[Components[1]] / norm;
|
---|
| 642 | at(Components[0]) = 1./GivenVector[Components[0]] / norm;
|
---|
[042f82] | 643 | return true;
|
---|
| 644 | break;
|
---|
| 645 | case 1: // one component system
|
---|
| 646 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
[1829c4] | 647 | at((Components[0]+2)%NDIM) = 0.;
|
---|
| 648 | at((Components[0]+1)%NDIM) = 1.;
|
---|
| 649 | at(Components[0]) = 0.;
|
---|
[042f82] | 650 | return true;
|
---|
| 651 | break;
|
---|
| 652 | default:
|
---|
| 653 | return false;
|
---|
| 654 | }
|
---|
[6ac7ee] | 655 | };
|
---|
| 656 |
|
---|
| 657 | /** Adds vector \a *y componentwise.
|
---|
| 658 | * \param *y vector
|
---|
| 659 | */
|
---|
[273382] | 660 | void Vector::AddVector(const Vector &y)
|
---|
[6ac7ee] | 661 | {
|
---|
[93987b] | 662 | gsl_vector_add(content, y.content);
|
---|
[6ac7ee] | 663 | }
|
---|
| 664 |
|
---|
| 665 | /** Adds vector \a *y componentwise.
|
---|
| 666 | * \param *y vector
|
---|
| 667 | */
|
---|
[273382] | 668 | void Vector::SubtractVector(const Vector &y)
|
---|
[6ac7ee] | 669 | {
|
---|
[93987b] | 670 | gsl_vector_sub(content, y.content);
|
---|
[ef9df36] | 671 | }
|
---|
| 672 |
|
---|
[89c8b2] | 673 | /**
|
---|
| 674 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
| 675 | * their offset.
|
---|
| 676 | *
|
---|
| 677 | * @param offest for the origin of the parallelepiped
|
---|
| 678 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
| 679 | */
|
---|
[2f1a7a] | 680 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const _parallelepiped) const
|
---|
[89c8b2] | 681 | {
|
---|
[753f02] | 682 | Vector a = (*this)-offset;
|
---|
[2f1a7a] | 683 | Matrix parallelepiped = Matrix(_parallelepiped).invert();
|
---|
| 684 | a.MatrixMultiplication(parallelepiped);
|
---|
[89c8b2] | 685 | bool isInside = true;
|
---|
| 686 |
|
---|
| 687 | for (int i=NDIM;i--;)
|
---|
[753f02] | 688 | isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
|
---|
[89c8b2] | 689 |
|
---|
| 690 | return isInside;
|
---|
| 691 | }
|
---|
[005e18] | 692 |
|
---|
| 693 |
|
---|
| 694 | // some comonly used vectors
|
---|
| 695 | const Vector zeroVec(0,0,0);
|
---|
| 696 | const Vector e1(1,0,0);
|
---|
| 697 | const Vector e2(0,1,0);
|
---|
| 698 | const Vector e3(0,0,1);
|
---|