source: src/vector.cpp@ c39cc4

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since c39cc4 was ccf826, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Removed Vector::mirror() in favour of Plane::mirror()

  • Property mode set to 100644
File size: 18.1 KB
RevLine 
[6ac7ee]1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
[edb93c]7
[54a746]8#include "vector.hpp"
9#include "verbose.hpp"
[b34306]10#include "World.hpp"
[0a4f7f]11#include "Helpers/Assert.hpp"
[753f02]12#include "Helpers/fast_functions.hpp"
[6ac7ee]13
[1bd79e]14#include <iostream>
15
16using namespace std;
[6ac7ee]17
[97498a]18
[6ac7ee]19/************************************ Functions for class vector ************************************/
20
21/** Constructor of class vector.
22 */
[753f02]23Vector::Vector()
24{
25 x[0] = x[1] = x[2] = 0.;
26};
[6ac7ee]27
[753f02]28/**
29 * Copy constructor
[821907]30 */
[1bd79e]31
[753f02]32Vector::Vector(const Vector& src)
[821907]33{
[753f02]34 x[0] = src[0];
35 x[1] = src[1];
36 x[2] = src[2];
[1bd79e]37}
[821907]38
39/** Constructor of class vector.
40 */
[753f02]41Vector::Vector(const double x1, const double x2, const double x3)
[821907]42{
[753f02]43 x[0] = x1;
44 x[1] = x2;
45 x[2] = x3;
[821907]46};
47
[0a4f7f]48/**
49 * Assignment operator
[6ac7ee]50 */
[0a4f7f]51Vector& Vector::operator=(const Vector& src){
52 // check for self assignment
53 if(&src!=this){
[753f02]54 x[0] = src[0];
55 x[1] = src[1];
56 x[2] = src[2];
[0a4f7f]57 }
58 return *this;
59}
[6ac7ee]60
61/** Desctructor of class vector.
62 */
63Vector::~Vector() {};
64
65/** Calculates square of distance between this and another vector.
66 * \param *y array to second vector
67 * \return \f$| x - y |^2\f$
68 */
[273382]69double Vector::DistanceSquared(const Vector &y) const
[6ac7ee]70{
[042f82]71 double res = 0.;
72 for (int i=NDIM;i--;)
[753f02]73 res += (x[i]-y[i])*(x[i]-y[i]);
[042f82]74 return (res);
[6ac7ee]75};
76
77/** Calculates distance between this and another vector.
78 * \param *y array to second vector
79 * \return \f$| x - y |\f$
80 */
[1513a74]81double Vector::distance(const Vector &y) const
[6ac7ee]82{
[273382]83 return (sqrt(DistanceSquared(y)));
[6ac7ee]84};
85
[1513a74]86Vector Vector::getClosestPoint(const Vector &point) const{
87 // the closest point to a single point space is always the single point itself
88 return *this;
89}
90
[6ac7ee]91/** Calculates distance between this and another vector in a periodic cell.
92 * \param *y array to second vector
93 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
94 * \return \f$| x - y |\f$
95 */
[273382]96double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
[6ac7ee]97{
[1513a74]98 double res = distance(y), tmp, matrix[NDIM*NDIM];
[753f02]99 Vector Shiftedy, TranslationVector;
100 int N[NDIM];
101 matrix[0] = cell_size[0];
102 matrix[1] = cell_size[1];
103 matrix[2] = cell_size[3];
104 matrix[3] = cell_size[1];
105 matrix[4] = cell_size[2];
106 matrix[5] = cell_size[4];
107 matrix[6] = cell_size[3];
108 matrix[7] = cell_size[4];
109 matrix[8] = cell_size[5];
110 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
111 for (N[0]=-1;N[0]<=1;N[0]++)
112 for (N[1]=-1;N[1]<=1;N[1]++)
113 for (N[2]=-1;N[2]<=1;N[2]++) {
114 // create the translation vector
115 TranslationVector.Zero();
116 for (int i=NDIM;i--;)
117 TranslationVector[i] = (double)N[i];
118 TranslationVector.MatrixMultiplication(matrix);
119 // add onto the original vector to compare with
120 Shiftedy = y + TranslationVector;
121 // get distance and compare with minimum so far
[1513a74]122 tmp = distance(Shiftedy);
[753f02]123 if (tmp < res) res = tmp;
124 }
125 return (res);
[6ac7ee]126};
127
128/** Calculates distance between this and another vector in a periodic cell.
129 * \param *y array to second vector
130 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
131 * \return \f$| x - y |^2\f$
132 */
[273382]133double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
[6ac7ee]134{
[042f82]135 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
[753f02]136 Vector Shiftedy, TranslationVector;
137 int N[NDIM];
138 matrix[0] = cell_size[0];
139 matrix[1] = cell_size[1];
140 matrix[2] = cell_size[3];
141 matrix[3] = cell_size[1];
142 matrix[4] = cell_size[2];
143 matrix[5] = cell_size[4];
144 matrix[6] = cell_size[3];
145 matrix[7] = cell_size[4];
146 matrix[8] = cell_size[5];
147 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
148 for (N[0]=-1;N[0]<=1;N[0]++)
149 for (N[1]=-1;N[1]<=1;N[1]++)
150 for (N[2]=-1;N[2]<=1;N[2]++) {
151 // create the translation vector
152 TranslationVector.Zero();
153 for (int i=NDIM;i--;)
154 TranslationVector[i] = (double)N[i];
155 TranslationVector.MatrixMultiplication(matrix);
156 // add onto the original vector to compare with
157 Shiftedy = y + TranslationVector;
158 // get distance and compare with minimum so far
159 tmp = DistanceSquared(Shiftedy);
160 if (tmp < res) res = tmp;
161 }
162 return (res);
[6ac7ee]163};
164
165/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
166 * \param *out ofstream for debugging messages
167 * Tries to translate a vector into each adjacent neighbouring cell.
168 */
[e138de]169void Vector::KeepPeriodic(const double * const matrix)
[6ac7ee]170{
[753f02]171 // int N[NDIM];
172 // bool flag = false;
173 //vector Shifted, TranslationVector;
174 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
175 // Log() << Verbose(2) << "Vector is: ";
176 // Output(out);
177 // Log() << Verbose(0) << endl;
178 InverseMatrixMultiplication(matrix);
179 for(int i=NDIM;i--;) { // correct periodically
180 if (at(i) < 0) { // get every coefficient into the interval [0,1)
181 at(i) += ceil(at(i));
182 } else {
183 at(i) -= floor(at(i));
184 }
[042f82]185 }
[753f02]186 MatrixMultiplication(matrix);
187 // Log() << Verbose(2) << "New corrected vector is: ";
188 // Output(out);
189 // Log() << Verbose(0) << endl;
190 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
[6ac7ee]191};
192
193/** Calculates scalar product between this and another vector.
194 * \param *y array to second vector
195 * \return \f$\langle x, y \rangle\f$
196 */
[273382]197double Vector::ScalarProduct(const Vector &y) const
[6ac7ee]198{
[042f82]199 double res = 0.;
200 for (int i=NDIM;i--;)
[753f02]201 res += x[i]*y[i];
[042f82]202 return (res);
[6ac7ee]203};
204
205
206/** Calculates VectorProduct between this and another vector.
[042f82]207 * -# returns the Product in place of vector from which it was initiated
208 * -# ATTENTION: Only three dim.
209 * \param *y array to vector with which to calculate crossproduct
210 * \return \f$ x \times y \f&
[6ac7ee]211 */
[273382]212void Vector::VectorProduct(const Vector &y)
[6ac7ee]213{
[042f82]214 Vector tmp;
[42a101]215 tmp[0] = x[1]* y[2] - x[2]* y[1];
216 tmp[1] = x[2]* y[0] - x[0]* y[2];
217 tmp[2] = x[0]* y[1] - x[1]* y[0];
[753f02]218 (*this) = tmp;
[6ac7ee]219};
220
221
222/** projects this vector onto plane defined by \a *y.
223 * \param *y normal vector of plane
224 * \return \f$\langle x, y \rangle\f$
225 */
[273382]226void Vector::ProjectOntoPlane(const Vector &y)
[6ac7ee]227{
[042f82]228 Vector tmp;
[753f02]229 tmp = y;
[042f82]230 tmp.Normalize();
[753f02]231 tmp.Scale(ScalarProduct(tmp));
232 *this -= tmp;
[2319ed]233};
234
[821907]235/** Calculates the minimum distance of this vector to the plane.
236 * \sa Vector::GetDistanceVectorToPlane()
237 * \param *out output stream for debugging
238 * \param *PlaneNormal normal of plane
239 * \param *PlaneOffset offset of plane
240 * \return distance to plane
241 */
[d4c9ae]242double Vector::DistanceToSpace(const Space &space) const
[821907]243{
[d4c9ae]244 return space.distance(*this);
[c4d4df]245};
246
[6ac7ee]247/** Calculates the projection of a vector onto another \a *y.
248 * \param *y array to second vector
249 */
[273382]250void Vector::ProjectIt(const Vector &y)
[6ac7ee]251{
[753f02]252 (*this) += (-ScalarProduct(y))*y;
[ef9df36]253};
254
255/** Calculates the projection of a vector onto another \a *y.
256 * \param *y array to second vector
257 * \return Vector
258 */
[273382]259Vector Vector::Projection(const Vector &y) const
[ef9df36]260{
[753f02]261 Vector helper = y;
262 helper.Scale((ScalarProduct(y)/y.NormSquared()));
[ef9df36]263
264 return helper;
[6ac7ee]265};
266
267/** Calculates norm of this vector.
268 * \return \f$|x|\f$
269 */
270double Vector::Norm() const
271{
[273382]272 return (sqrt(NormSquared()));
[6ac7ee]273};
274
[d4d0dd]275/** Calculates squared norm of this vector.
276 * \return \f$|x|^2\f$
277 */
278double Vector::NormSquared() const
279{
[273382]280 return (ScalarProduct(*this));
[d4d0dd]281};
282
[6ac7ee]283/** Normalizes this vector.
284 */
285void Vector::Normalize()
286{
[1bd79e]287 double factor = Norm();
288 (*this) *= 1/factor;
[6ac7ee]289};
290
291/** Zeros all components of this vector.
292 */
293void Vector::Zero()
294{
[753f02]295 at(0)=at(1)=at(2)=0;
[6ac7ee]296};
297
298/** Zeros all components of this vector.
299 */
[776b64]300void Vector::One(const double one)
[6ac7ee]301{
[753f02]302 at(0)=at(1)=at(2)=one;
[6ac7ee]303};
304
[9c20aa]305/** Checks whether vector has all components zero.
306 * @return true - vector is zero, false - vector is not
307 */
[54a746]308bool Vector::IsZero() const
[9c20aa]309{
[54a746]310 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
311};
312
313/** Checks whether vector has length of 1.
314 * @return true - vector is normalized, false - vector is not
315 */
316bool Vector::IsOne() const
317{
318 return (fabs(Norm() - 1.) < MYEPSILON);
[9c20aa]319};
320
[ef9df36]321/** Checks whether vector is normal to \a *normal.
322 * @return true - vector is normalized, false - vector is not
323 */
[273382]324bool Vector::IsNormalTo(const Vector &normal) const
[ef9df36]325{
326 if (ScalarProduct(normal) < MYEPSILON)
327 return true;
328 else
329 return false;
330};
331
[b998c3]332/** Checks whether vector is normal to \a *normal.
333 * @return true - vector is normalized, false - vector is not
334 */
[273382]335bool Vector::IsEqualTo(const Vector &a) const
[b998c3]336{
337 bool status = true;
338 for (int i=0;i<NDIM;i++) {
[753f02]339 if (fabs(x[i] - a[i]) > MYEPSILON)
[b998c3]340 status = false;
341 }
342 return status;
343};
344
[6ac7ee]345/** Calculates the angle between this and another vector.
346 * \param *y array to second vector
347 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
348 */
[273382]349double Vector::Angle(const Vector &y) const
[6ac7ee]350{
[753f02]351 double norm1 = Norm(), norm2 = y.Norm();
[ef9df36]352 double angle = -1;
[d4d0dd]353 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
354 angle = this->ScalarProduct(y)/norm1/norm2;
[02da9e]355 // -1-MYEPSILON occured due to numerical imprecision, catch ...
[e138de]356 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
[02da9e]357 if (angle < -1)
358 angle = -1;
359 if (angle > 1)
360 angle = 1;
[042f82]361 return acos(angle);
[6ac7ee]362};
363
[0a4f7f]364
365double& Vector::operator[](size_t i){
[753f02]366 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
367 return x[i];
[0a4f7f]368}
369
370const double& Vector::operator[](size_t i) const{
[753f02]371 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
372 return x[i];
[0a4f7f]373}
374
375double& Vector::at(size_t i){
376 return (*this)[i];
377}
378
379const double& Vector::at(size_t i) const{
380 return (*this)[i];
381}
382
383double* Vector::get(){
[753f02]384 return x;
[0a4f7f]385}
[6ac7ee]386
[ef9df36]387/** Compares vector \a to vector \a b component-wise.
388 * \param a base vector
389 * \param b vector components to add
390 * \return a == b
391 */
[72e7fa]392bool Vector::operator==(const Vector& b) const
[ef9df36]393{
[1bd79e]394 return IsEqualTo(b);
[ef9df36]395};
396
[fa5a6a]397bool Vector::operator!=(const Vector& b) const
398{
399 return !IsEqualTo(b);
400}
401
[6ac7ee]402/** Sums vector \a to this lhs component-wise.
403 * \param a base vector
404 * \param b vector components to add
405 * \return lhs + a
406 */
[72e7fa]407const Vector& Vector::operator+=(const Vector& b)
[6ac7ee]408{
[273382]409 this->AddVector(b);
[72e7fa]410 return *this;
[6ac7ee]411};
[54a746]412
413/** Subtracts vector \a from this lhs component-wise.
414 * \param a base vector
415 * \param b vector components to add
416 * \return lhs - a
417 */
[72e7fa]418const Vector& Vector::operator-=(const Vector& b)
[54a746]419{
[273382]420 this->SubtractVector(b);
[72e7fa]421 return *this;
[54a746]422};
423
[6ac7ee]424/** factor each component of \a a times a double \a m.
425 * \param a base vector
426 * \param m factor
427 * \return lhs.x[i] * m
428 */
[b84d5d]429const Vector& operator*=(Vector& a, const double m)
[6ac7ee]430{
[042f82]431 a.Scale(m);
432 return a;
[6ac7ee]433};
434
[042f82]435/** Sums two vectors \a and \b component-wise.
[6ac7ee]436 * \param a first vector
437 * \param b second vector
438 * \return a + b
439 */
[72e7fa]440Vector const Vector::operator+(const Vector& b) const
[6ac7ee]441{
[72e7fa]442 Vector x = *this;
[273382]443 x.AddVector(b);
[b84d5d]444 return x;
[6ac7ee]445};
446
[54a746]447/** Subtracts vector \a from \b component-wise.
448 * \param a first vector
449 * \param b second vector
450 * \return a - b
451 */
[72e7fa]452Vector const Vector::operator-(const Vector& b) const
[54a746]453{
[72e7fa]454 Vector x = *this;
[273382]455 x.SubtractVector(b);
[b84d5d]456 return x;
[54a746]457};
458
[6ac7ee]459/** Factors given vector \a a times \a m.
460 * \param a vector
461 * \param m factor
[54a746]462 * \return m * a
[6ac7ee]463 */
[b84d5d]464Vector const operator*(const Vector& a, const double m)
[6ac7ee]465{
[b84d5d]466 Vector x(a);
467 x.Scale(m);
468 return x;
[6ac7ee]469};
470
[54a746]471/** Factors given vector \a a times \a m.
472 * \param m factor
473 * \param a vector
474 * \return m * a
475 */
[b84d5d]476Vector const operator*(const double m, const Vector& a )
[54a746]477{
[b84d5d]478 Vector x(a);
479 x.Scale(m);
480 return x;
[54a746]481};
482
[9c20aa]483ostream& operator<<(ostream& ost, const Vector& m)
[6ac7ee]484{
[042f82]485 ost << "(";
486 for (int i=0;i<NDIM;i++) {
[0a4f7f]487 ost << m[i];
[042f82]488 if (i != 2)
489 ost << ",";
490 }
491 ost << ")";
492 return ost;
[6ac7ee]493};
494
495
[1bd79e]496void Vector::ScaleAll(const double *factor)
[6ac7ee]497{
[042f82]498 for (int i=NDIM;i--;)
[753f02]499 x[i] *= factor[i];
[6ac7ee]500};
501
502
[1bd79e]503
[776b64]504void Vector::Scale(const double factor)
[6ac7ee]505{
[042f82]506 for (int i=NDIM;i--;)
507 x[i] *= factor;
[6ac7ee]508};
509
[d09ff7]510/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
511 * \param *M matrix of box
512 * \param *Minv inverse matrix
513 */
[776b64]514void Vector::WrapPeriodically(const double * const M, const double * const Minv)
[d09ff7]515{
516 MatrixMultiplication(Minv);
517 // truncate to [0,1] for each axis
518 for (int i=0;i<NDIM;i++) {
519 x[i] += 0.5; // set to center of box
520 while (x[i] >= 1.)
521 x[i] -= 1.;
522 while (x[i] < 0.)
523 x[i] += 1.;
524 }
525 MatrixMultiplication(M);
526};
527
[45ef76]528std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
529 double factor = ScalarProduct(rhs)/rhs.NormSquared();
530 Vector res= factor * rhs;
531 return make_pair(res,(*this)-res);
532}
533
534std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
535 Vector helper = *this;
536 pointset res;
537 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
538 pair<Vector,Vector> currPart = helper.partition(*iter);
539 res.push_back(currPart.first);
540 helper = currPart.second;
541 }
542 return make_pair(res,helper);
543}
544
[6ac7ee]545/** Do a matrix multiplication.
546 * \param *matrix NDIM_NDIM array
547 */
[776b64]548void Vector::MatrixMultiplication(const double * const M)
[6ac7ee]549{
[042f82]550 // do the matrix multiplication
[753f02]551 at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
552 at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
553 at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
[6ac7ee]554};
555
[2319ed]556/** Do a matrix multiplication with the \a *A' inverse.
[6ac7ee]557 * \param *matrix NDIM_NDIM array
558 */
[0a4f7f]559bool Vector::InverseMatrixMultiplication(const double * const A)
[6ac7ee]560{
[042f82]561 double B[NDIM*NDIM];
562 double detA = RDET3(A);
563 double detAReci;
564
565 // calculate the inverse B
566 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
567 detAReci = 1./detA;
568 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
569 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
570 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
571 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
572 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
573 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
574 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
575 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
576 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
577
578 // do the matrix multiplication
[753f02]579 at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
580 at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
581 at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
582
583 return true;
[042f82]584 } else {
[753f02]585 return false;
[042f82]586 }
[6ac7ee]587};
588
589
590/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
591 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
592 * \param *x1 first vector
593 * \param *x2 second vector
594 * \param *x3 third vector
595 * \param *factors three-component vector with the factor for each given vector
596 */
[273382]597void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
[6ac7ee]598{
[273382]599 (*this) = (factors[0]*x1) +
600 (factors[1]*x2) +
601 (factors[2]*x3);
[6ac7ee]602};
603
604/** Calculates orthonormal vector to one given vectors.
605 * Just subtracts the projection onto the given vector from this vector.
[ef9df36]606 * The removed part of the vector is Vector::Projection()
[6ac7ee]607 * \param *x1 vector
608 * \return true - success, false - vector is zero
609 */
[0a4f7f]610bool Vector::MakeNormalTo(const Vector &y1)
[6ac7ee]611{
[042f82]612 bool result = false;
[753f02]613 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
[45ef76]614 Vector x1 = factor * y1;
[753f02]615 SubtractVector(x1);
[042f82]616 for (int i=NDIM;i--;)
617 result = result || (fabs(x[i]) > MYEPSILON);
[6ac7ee]618
[042f82]619 return result;
[6ac7ee]620};
621
622/** Creates this vector as one of the possible orthonormal ones to the given one.
623 * Just scan how many components of given *vector are unequal to zero and
624 * try to get the skp of both to be zero accordingly.
625 * \param *vector given vector
626 * \return true - success, false - failure (null vector given)
627 */
[273382]628bool Vector::GetOneNormalVector(const Vector &GivenVector)
[6ac7ee]629{
[042f82]630 int Components[NDIM]; // contains indices of non-zero components
631 int Last = 0; // count the number of non-zero entries in vector
632 int j; // loop variables
633 double norm;
634
635 for (j=NDIM;j--;)
636 Components[j] = -1;
[1829c4]637
638 // in two component-systems we need to find the one position that is zero
639 int zeroPos = -1;
[042f82]640 // find two components != 0
[1829c4]641 for (j=0;j<NDIM;j++){
[753f02]642 if (fabs(GivenVector[j]) > MYEPSILON)
[042f82]643 Components[Last++] = j;
[1829c4]644 else
645 // this our zero Position
646 zeroPos = j;
647 }
[042f82]648
649 switch(Last) {
650 case 3: // threecomponent system
[1829c4]651 // the position of the zero is arbitrary in three component systems
652 zeroPos = Components[2];
[042f82]653 case 2: // two component system
[753f02]654 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
[1829c4]655 at(zeroPos) = 0.;
[042f82]656 // in skp both remaining parts shall become zero but with opposite sign and third is zero
[1829c4]657 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
658 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
[042f82]659 return true;
660 break;
661 case 1: // one component system
662 // set sole non-zero component to 0, and one of the other zero component pendants to 1
[1829c4]663 at((Components[0]+2)%NDIM) = 0.;
664 at((Components[0]+1)%NDIM) = 1.;
665 at(Components[0]) = 0.;
[042f82]666 return true;
667 break;
668 default:
669 return false;
670 }
[6ac7ee]671};
672
673/** Adds vector \a *y componentwise.
674 * \param *y vector
675 */
[273382]676void Vector::AddVector(const Vector &y)
[6ac7ee]677{
[753f02]678 for(int i=NDIM;i--;)
679 x[i] += y[i];
[6ac7ee]680}
681
682/** Adds vector \a *y componentwise.
683 * \param *y vector
684 */
[273382]685void Vector::SubtractVector(const Vector &y)
[6ac7ee]686{
[753f02]687 for(int i=NDIM;i--;)
688 x[i] -= y[i];
[ef9df36]689}
690
[89c8b2]691/**
692 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
693 * their offset.
694 *
695 * @param offest for the origin of the parallelepiped
696 * @param three vectors forming the matrix that defines the shape of the parallelpiped
697 */
[776b64]698bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
[89c8b2]699{
[753f02]700 Vector a = (*this)-offset;
[89c8b2]701 a.InverseMatrixMultiplication(parallelepiped);
702 bool isInside = true;
703
704 for (int i=NDIM;i--;)
[753f02]705 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
[89c8b2]706
707 return isInside;
708}
[005e18]709
710
711// some comonly used vectors
712const Vector zeroVec(0,0,0);
713const Vector e1(1,0,0);
714const Vector e2(0,1,0);
715const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.