| [6ac7ee] | 1 | /** \file vector.cpp
 | 
|---|
 | 2 |  *
 | 
|---|
 | 3 |  * Function implementations for the class vector.
 | 
|---|
 | 4 |  *
 | 
|---|
 | 5 |  */
 | 
|---|
 | 6 | 
 | 
|---|
| [edb93c] | 7 | 
 | 
|---|
| [54a746] | 8 | #include "defs.hpp"
 | 
|---|
 | 9 | #include "helpers.hpp"
 | 
|---|
| [97498a] | 10 | #include "info.hpp"
 | 
|---|
| [9d6308] | 11 | #include "gslmatrix.hpp"
 | 
|---|
| [54a746] | 12 | #include "leastsquaremin.hpp"
 | 
|---|
| [e138de] | 13 | #include "log.hpp"
 | 
|---|
| [97498a] | 14 | #include "memoryallocator.hpp"
 | 
|---|
| [54a746] | 15 | #include "vector.hpp"
 | 
|---|
 | 16 | #include "verbose.hpp"
 | 
|---|
| [6ac7ee] | 17 | 
 | 
|---|
| [97498a] | 18 | #include <gsl/gsl_linalg.h>
 | 
|---|
 | 19 | #include <gsl/gsl_matrix.h>
 | 
|---|
 | 20 | #include <gsl/gsl_permutation.h>
 | 
|---|
 | 21 | #include <gsl/gsl_vector.h>
 | 
|---|
 | 22 | 
 | 
|---|
| [6ac7ee] | 23 | /************************************ Functions for class vector ************************************/
 | 
|---|
 | 24 | 
 | 
|---|
 | 25 | /** Constructor of class vector.
 | 
|---|
 | 26 |  */
 | 
|---|
 | 27 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
 | 
|---|
 | 28 | 
 | 
|---|
 | 29 | /** Constructor of class vector.
 | 
|---|
 | 30 |  */
 | 
|---|
| [776b64] | 31 | Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
 | 
|---|
| [6ac7ee] | 32 | 
 | 
|---|
 | 33 | /** Desctructor of class vector.
 | 
|---|
 | 34 |  */
 | 
|---|
 | 35 | Vector::~Vector() {};
 | 
|---|
 | 36 | 
 | 
|---|
 | 37 | /** Calculates square of distance between this and another vector.
 | 
|---|
 | 38 |  * \param *y array to second vector
 | 
|---|
 | 39 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 40 |  */
 | 
|---|
| [776b64] | 41 | double Vector::DistanceSquared(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 42 | {
 | 
|---|
| [042f82] | 43 |   double res = 0.;
 | 
|---|
 | 44 |   for (int i=NDIM;i--;)
 | 
|---|
 | 45 |     res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 46 |   return (res);
 | 
|---|
| [6ac7ee] | 47 | };
 | 
|---|
 | 48 | 
 | 
|---|
 | 49 | /** Calculates distance between this and another vector.
 | 
|---|
 | 50 |  * \param *y array to second vector
 | 
|---|
 | 51 |  * \return \f$| x - y |\f$
 | 
|---|
 | 52 |  */
 | 
|---|
| [776b64] | 53 | double Vector::Distance(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 54 | {
 | 
|---|
| [042f82] | 55 |   double res = 0.;
 | 
|---|
 | 56 |   for (int i=NDIM;i--;)
 | 
|---|
 | 57 |     res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 58 |   return (sqrt(res));
 | 
|---|
| [6ac7ee] | 59 | };
 | 
|---|
 | 60 | 
 | 
|---|
 | 61 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 62 |  * \param *y array to second vector
 | 
|---|
 | 63 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 64 |  * \return \f$| x - y |\f$
 | 
|---|
 | 65 |  */
 | 
|---|
| [776b64] | 66 | double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 67 | {
 | 
|---|
| [042f82] | 68 |   double res = Distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 69 |   Vector Shiftedy, TranslationVector;
 | 
|---|
 | 70 |   int N[NDIM];
 | 
|---|
 | 71 |   matrix[0] = cell_size[0];
 | 
|---|
 | 72 |   matrix[1] = cell_size[1];
 | 
|---|
 | 73 |   matrix[2] = cell_size[3];
 | 
|---|
 | 74 |   matrix[3] = cell_size[1];
 | 
|---|
 | 75 |   matrix[4] = cell_size[2];
 | 
|---|
 | 76 |   matrix[5] = cell_size[4];
 | 
|---|
 | 77 |   matrix[6] = cell_size[3];
 | 
|---|
 | 78 |   matrix[7] = cell_size[4];
 | 
|---|
 | 79 |   matrix[8] = cell_size[5];
 | 
|---|
 | 80 |   // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 81 |   for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 82 |     for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 83 |       for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 84 |         // create the translation vector
 | 
|---|
 | 85 |         TranslationVector.Zero();
 | 
|---|
 | 86 |         for (int i=NDIM;i--;)
 | 
|---|
 | 87 |           TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 88 |         TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 89 |         // add onto the original vector to compare with
 | 
|---|
 | 90 |         Shiftedy.CopyVector(y);
 | 
|---|
 | 91 |         Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 92 |         // get distance and compare with minimum so far
 | 
|---|
 | 93 |         tmp = Distance(&Shiftedy);
 | 
|---|
 | 94 |         if (tmp < res) res = tmp;
 | 
|---|
 | 95 |       }
 | 
|---|
 | 96 |   return (res);
 | 
|---|
| [6ac7ee] | 97 | };
 | 
|---|
 | 98 | 
 | 
|---|
 | 99 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 100 |  * \param *y array to second vector
 | 
|---|
 | 101 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 102 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 103 |  */
 | 
|---|
| [776b64] | 104 | double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 105 | {
 | 
|---|
| [042f82] | 106 |   double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 107 |   Vector Shiftedy, TranslationVector;
 | 
|---|
 | 108 |   int N[NDIM];
 | 
|---|
 | 109 |   matrix[0] = cell_size[0];
 | 
|---|
 | 110 |   matrix[1] = cell_size[1];
 | 
|---|
 | 111 |   matrix[2] = cell_size[3];
 | 
|---|
 | 112 |   matrix[3] = cell_size[1];
 | 
|---|
 | 113 |   matrix[4] = cell_size[2];
 | 
|---|
 | 114 |   matrix[5] = cell_size[4];
 | 
|---|
 | 115 |   matrix[6] = cell_size[3];
 | 
|---|
 | 116 |   matrix[7] = cell_size[4];
 | 
|---|
 | 117 |   matrix[8] = cell_size[5];
 | 
|---|
 | 118 |   // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 119 |   for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 120 |     for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 121 |       for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 122 |         // create the translation vector
 | 
|---|
 | 123 |         TranslationVector.Zero();
 | 
|---|
 | 124 |         for (int i=NDIM;i--;)
 | 
|---|
 | 125 |           TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 126 |         TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 127 |         // add onto the original vector to compare with
 | 
|---|
 | 128 |         Shiftedy.CopyVector(y);
 | 
|---|
 | 129 |         Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 130 |         // get distance and compare with minimum so far
 | 
|---|
 | 131 |         tmp = DistanceSquared(&Shiftedy);
 | 
|---|
 | 132 |         if (tmp < res) res = tmp;
 | 
|---|
 | 133 |       }
 | 
|---|
 | 134 |   return (res);
 | 
|---|
| [6ac7ee] | 135 | };
 | 
|---|
 | 136 | 
 | 
|---|
 | 137 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
 | 138 |  * \param *out ofstream for debugging messages
 | 
|---|
 | 139 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
 | 140 |  */
 | 
|---|
| [e138de] | 141 | void Vector::KeepPeriodic(const double * const matrix)
 | 
|---|
| [6ac7ee] | 142 | {
 | 
|---|
| [042f82] | 143 | //  int N[NDIM];
 | 
|---|
 | 144 | //  bool flag = false;
 | 
|---|
 | 145 |   //vector Shifted, TranslationVector;
 | 
|---|
 | 146 |   Vector TestVector;
 | 
|---|
| [e138de] | 147 | //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
 | 148 | //  Log() << Verbose(2) << "Vector is: ";
 | 
|---|
| [042f82] | 149 | //  Output(out);
 | 
|---|
| [e138de] | 150 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 151 |   TestVector.CopyVector(this);
 | 
|---|
 | 152 |   TestVector.InverseMatrixMultiplication(matrix);
 | 
|---|
 | 153 |   for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
 | 154 |     if (TestVector.x[i] < 0) {  // get every coefficient into the interval [0,1)
 | 
|---|
 | 155 |       TestVector.x[i] += ceil(TestVector.x[i]);
 | 
|---|
 | 156 |     } else {
 | 
|---|
 | 157 |       TestVector.x[i] -= floor(TestVector.x[i]);
 | 
|---|
 | 158 |     }
 | 
|---|
 | 159 |   }
 | 
|---|
 | 160 |   TestVector.MatrixMultiplication(matrix);
 | 
|---|
 | 161 |   CopyVector(&TestVector);
 | 
|---|
| [e138de] | 162 | //  Log() << Verbose(2) << "New corrected vector is: ";
 | 
|---|
| [042f82] | 163 | //  Output(out);
 | 
|---|
| [e138de] | 164 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 165 | //  Log() << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
| [6ac7ee] | 166 | };
 | 
|---|
 | 167 | 
 | 
|---|
 | 168 | /** Calculates scalar product between this and another vector.
 | 
|---|
 | 169 |  * \param *y array to second vector
 | 
|---|
 | 170 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 171 |  */
 | 
|---|
| [776b64] | 172 | double Vector::ScalarProduct(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 173 | {
 | 
|---|
| [042f82] | 174 |   double res = 0.;
 | 
|---|
 | 175 |   for (int i=NDIM;i--;)
 | 
|---|
 | 176 |     res += x[i]*y->x[i];
 | 
|---|
 | 177 |   return (res);
 | 
|---|
| [6ac7ee] | 178 | };
 | 
|---|
 | 179 | 
 | 
|---|
 | 180 | 
 | 
|---|
 | 181 | /** Calculates VectorProduct between this and another vector.
 | 
|---|
| [042f82] | 182 |  *  -# returns the Product in place of vector from which it was initiated
 | 
|---|
 | 183 |  *  -# ATTENTION: Only three dim.
 | 
|---|
 | 184 |  *  \param *y array to vector with which to calculate crossproduct
 | 
|---|
 | 185 |  *  \return \f$ x \times y \f&
 | 
|---|
| [6ac7ee] | 186 |  */
 | 
|---|
| [776b64] | 187 | void Vector::VectorProduct(const Vector * const y)
 | 
|---|
| [6ac7ee] | 188 | {
 | 
|---|
| [042f82] | 189 |   Vector tmp;
 | 
|---|
 | 190 |   tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
 | 
|---|
 | 191 |   tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
 | 
|---|
 | 192 |   tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
 | 
|---|
 | 193 |   this->CopyVector(&tmp);
 | 
|---|
| [6ac7ee] | 194 | };
 | 
|---|
 | 195 | 
 | 
|---|
 | 196 | 
 | 
|---|
 | 197 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
 | 198 |  * \param *y normal vector of plane
 | 
|---|
 | 199 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 200 |  */
 | 
|---|
| [776b64] | 201 | void Vector::ProjectOntoPlane(const Vector * const y)
 | 
|---|
| [6ac7ee] | 202 | {
 | 
|---|
| [042f82] | 203 |   Vector tmp;
 | 
|---|
 | 204 |   tmp.CopyVector(y);
 | 
|---|
 | 205 |   tmp.Normalize();
 | 
|---|
 | 206 |   tmp.Scale(ScalarProduct(&tmp));
 | 
|---|
 | 207 |   this->SubtractVector(&tmp);
 | 
|---|
| [6ac7ee] | 208 | };
 | 
|---|
 | 209 | 
 | 
|---|
| [2319ed] | 210 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
 | 
|---|
 | 211 |  * According to [Bronstein] the vectorial plane equation is:
 | 
|---|
 | 212 |  *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
 | 
|---|
 | 213 |  * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
 | 
|---|
 | 214 |  * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
 | 
|---|
 | 215 |  * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
 | 
|---|
 | 216 |  * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
 | 
|---|
 | 217 |  * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
 | 
|---|
 | 218 |  * of the line yields the intersection point on the plane.
 | 
|---|
 | 219 |  * \param *out output stream for debugging
 | 
|---|
 | 220 |  * \param *PlaneNormal Plane's normal vector
 | 
|---|
 | 221 |  * \param *PlaneOffset Plane's offset vector
 | 
|---|
| [ef9df36] | 222 |  * \param *Origin first vector of line
 | 
|---|
 | 223 |  * \param *LineVector second vector of line
 | 
|---|
| [7b36fe] | 224 |  * \return true -  \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
 | 
|---|
| [2319ed] | 225 |  */
 | 
|---|
| [e138de] | 226 | bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
 | 
|---|
| [2319ed] | 227 | {
 | 
|---|
| [97498a] | 228 |   Info FunctionInfo(__func__);
 | 
|---|
| [2319ed] | 229 |   double factor;
 | 
|---|
| [46670d] | 230 |   Vector Direction, helper;
 | 
|---|
| [2319ed] | 231 | 
 | 
|---|
 | 232 |   // find intersection of a line defined by Offset and Direction with a  plane defined by triangle
 | 
|---|
| [46670d] | 233 |   Direction.CopyVector(LineVector);
 | 
|---|
 | 234 |   Direction.SubtractVector(Origin);
 | 
|---|
| [e4a379] | 235 |   Direction.Normalize();
 | 
|---|
| [97498a] | 236 |   Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
 | 
|---|
| [7b36fe] | 237 |   //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
 | 
|---|
| [46670d] | 238 |   factor = Direction.ScalarProduct(PlaneNormal);
 | 
|---|
| [7b36fe] | 239 |   if (fabs(factor) < MYEPSILON) { // Uniqueness: line parallel to plane?
 | 
|---|
 | 240 |     Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
 | 
|---|
| [2319ed] | 241 |     return false;
 | 
|---|
| [46670d] | 242 |   }
 | 
|---|
 | 243 |   helper.CopyVector(PlaneOffset);
 | 
|---|
| [ef9df36] | 244 |   helper.SubtractVector(Origin);
 | 
|---|
| [46670d] | 245 |   factor = helper.ScalarProduct(PlaneNormal)/factor;
 | 
|---|
| [7b36fe] | 246 |   if (fabs(factor) < MYEPSILON) { // Origin is in-plane
 | 
|---|
 | 247 |     Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
 | 
|---|
| [e4a379] | 248 |     CopyVector(Origin);
 | 
|---|
 | 249 |     return true;
 | 
|---|
 | 250 |   }
 | 
|---|
| [46670d] | 251 |   //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
 | 
|---|
| [2319ed] | 252 |   Direction.Scale(factor);
 | 
|---|
| [ef9df36] | 253 |   CopyVector(Origin);
 | 
|---|
| [97498a] | 254 |   Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
 | 
|---|
| [46670d] | 255 |   AddVector(&Direction);
 | 
|---|
| [2319ed] | 256 | 
 | 
|---|
 | 257 |   // test whether resulting vector really is on plane
 | 
|---|
| [46670d] | 258 |   helper.CopyVector(this);
 | 
|---|
 | 259 |   helper.SubtractVector(PlaneOffset);
 | 
|---|
 | 260 |   if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
 | 
|---|
| [7b36fe] | 261 |     Log() << Verbose(1) << "GOOD: Intersection is " << *this << "." << endl;
 | 
|---|
| [2319ed] | 262 |     return true;
 | 
|---|
| [46670d] | 263 |   } else {
 | 
|---|
| [717e0c] | 264 |     eLog() << Verbose(2) << "Intersection point " << *this << " is not on plane." << endl;
 | 
|---|
| [2319ed] | 265 |     return false;
 | 
|---|
| [46670d] | 266 |   }
 | 
|---|
| [2319ed] | 267 | };
 | 
|---|
 | 268 | 
 | 
|---|
| [c4d4df] | 269 | /** Calculates the minimum distance of this vector to the plane.
 | 
|---|
 | 270 |  * \param *out output stream for debugging
 | 
|---|
 | 271 |  * \param *PlaneNormal normal of plane
 | 
|---|
 | 272 |  * \param *PlaneOffset offset of plane
 | 
|---|
 | 273 |  * \return distance to plane
 | 
|---|
 | 274 |  */
 | 
|---|
| [e138de] | 275 | double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
 | 
|---|
| [c4d4df] | 276 | {
 | 
|---|
 | 277 |   Vector temp;
 | 
|---|
 | 278 | 
 | 
|---|
 | 279 |   // first create part that is orthonormal to PlaneNormal with withdraw
 | 
|---|
 | 280 |   temp.CopyVector(this);
 | 
|---|
 | 281 |   temp.SubtractVector(PlaneOffset);
 | 
|---|
 | 282 |   temp.MakeNormalVector(PlaneNormal);
 | 
|---|
 | 283 |   temp.Scale(-1.);
 | 
|---|
 | 284 |   // then add connecting vector from plane to point
 | 
|---|
 | 285 |   temp.AddVector(this);
 | 
|---|
 | 286 |   temp.SubtractVector(PlaneOffset);
 | 
|---|
| [99593f] | 287 |   double sign = temp.ScalarProduct(PlaneNormal);
 | 
|---|
| [7ea9e6] | 288 |   if (fabs(sign) > MYEPSILON)
 | 
|---|
 | 289 |     sign /= fabs(sign);
 | 
|---|
 | 290 |   else
 | 
|---|
 | 291 |     sign = 0.;
 | 
|---|
| [c4d4df] | 292 | 
 | 
|---|
| [99593f] | 293 |   return (temp.Norm()*sign);
 | 
|---|
| [c4d4df] | 294 | };
 | 
|---|
 | 295 | 
 | 
|---|
| [2319ed] | 296 | /** Calculates the intersection of the two lines that are both on the same plane.
 | 
|---|
| [9d6308] | 297 |  * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html 
 | 
|---|
| [2319ed] | 298 |  * \param *out output stream for debugging
 | 
|---|
 | 299 |  * \param *Line1a first vector of first line
 | 
|---|
 | 300 |  * \param *Line1b second vector of first line
 | 
|---|
 | 301 |  * \param *Line2a first vector of second line
 | 
|---|
 | 302 |  * \param *Line2b second vector of second line
 | 
|---|
| [46670d] | 303 |  * \param *PlaneNormal normal of plane, is supplemental/arbitrary
 | 
|---|
| [2319ed] | 304 |  * \return true - \a this will contain the intersection on return, false - lines are parallel
 | 
|---|
 | 305 |  */
 | 
|---|
| [e138de] | 306 | bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
 | 
|---|
| [2319ed] | 307 | {
 | 
|---|
| [97498a] | 308 |   Info FunctionInfo(__func__);
 | 
|---|
| [9d6308] | 309 | 
 | 
|---|
 | 310 |   GSLMatrix *M = new GSLMatrix(4,4);
 | 
|---|
 | 311 | 
 | 
|---|
 | 312 |   M->SetAll(1.);
 | 
|---|
 | 313 |   for (int i=0;i<3;i++) {
 | 
|---|
 | 314 |     M->Set(0, i, Line1a->x[i]);
 | 
|---|
 | 315 |     M->Set(1, i, Line1b->x[i]);
 | 
|---|
 | 316 |     M->Set(2, i, Line2a->x[i]);
 | 
|---|
 | 317 |     M->Set(3, i, Line2b->x[i]);
 | 
|---|
 | 318 |   }
 | 
|---|
| [fee69b] | 319 |   
 | 
|---|
 | 320 |   //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
 | 
|---|
 | 321 |   //for (int i=0;i<4;i++) {
 | 
|---|
 | 322 |   //  for (int j=0;j<4;j++)
 | 
|---|
 | 323 |   //    cout << "\t" << M->Get(i,j);
 | 
|---|
 | 324 |   //  cout << endl;
 | 
|---|
 | 325 |   //}
 | 
|---|
| [fcad4b] | 326 |   if (fabs(M->Determinant()) > MYEPSILON) {
 | 
|---|
 | 327 |     Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
 | 
|---|
| [ef9df36] | 328 |     return false;
 | 
|---|
| [fcad4b] | 329 |   }
 | 
|---|
 | 330 |   Log() << Verbose(1) << "INFO: Line1a = " << *Line1a << ", Line1b = " << *Line1b << ", Line2a = " << *Line2a << ", Line2b = " << *Line2b << "." << endl;
 | 
|---|
 | 331 | 
 | 
|---|
| [2319ed] | 332 | 
 | 
|---|
| [9d6308] | 333 |   // constuct a,b,c
 | 
|---|
| [fee69b] | 334 |   Vector a;
 | 
|---|
 | 335 |   Vector b;
 | 
|---|
 | 336 |   Vector c;
 | 
|---|
 | 337 |   Vector d;
 | 
|---|
| [9d6308] | 338 |   a.CopyVector(Line1b);
 | 
|---|
 | 339 |   a.SubtractVector(Line1a);
 | 
|---|
 | 340 |   b.CopyVector(Line2b);
 | 
|---|
 | 341 |   b.SubtractVector(Line2a);
 | 
|---|
 | 342 |   c.CopyVector(Line2a);
 | 
|---|
 | 343 |   c.SubtractVector(Line1a);
 | 
|---|
| [fee69b] | 344 |   d.CopyVector(Line2b);
 | 
|---|
 | 345 |   d.SubtractVector(Line1b);
 | 
|---|
| [fcad4b] | 346 |   Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
 | 
|---|
| [fee69b] | 347 |   if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
 | 
|---|
 | 348 |    Zero();
 | 
|---|
 | 349 |    Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
 | 
|---|
 | 350 |    return false;
 | 
|---|
 | 351 |   }
 | 
|---|
| [fcad4b] | 352 | 
 | 
|---|
 | 353 |   // check for parallelity
 | 
|---|
 | 354 |   Vector parallel;
 | 
|---|
| [fee69b] | 355 |   double factor = 0.;
 | 
|---|
 | 356 |   if (fabs(a.ScalarProduct(&b)*a.ScalarProduct(&b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
 | 
|---|
 | 357 |     parallel.CopyVector(Line1a);
 | 
|---|
 | 358 |     parallel.SubtractVector(Line2a);
 | 
|---|
 | 359 |     factor = parallel.ScalarProduct(&a)/a.Norm();
 | 
|---|
 | 360 |     if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
 | 
|---|
 | 361 |       CopyVector(Line2a);
 | 
|---|
 | 362 |       Log() << Verbose(1) << "Lines conincide." << endl;
 | 
|---|
 | 363 |       return true;
 | 
|---|
 | 364 |     } else {
 | 
|---|
 | 365 |       parallel.CopyVector(Line1a);
 | 
|---|
 | 366 |       parallel.SubtractVector(Line2b);
 | 
|---|
 | 367 |       factor = parallel.ScalarProduct(&a)/a.Norm();
 | 
|---|
 | 368 |       if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
 | 
|---|
 | 369 |         CopyVector(Line2b);
 | 
|---|
 | 370 |         Log() << Verbose(1) << "Lines conincide." << endl;
 | 
|---|
 | 371 |         return true;
 | 
|---|
 | 372 |       }
 | 
|---|
 | 373 |     }
 | 
|---|
| [fcad4b] | 374 |     Log() << Verbose(1) << "Lines are parallel." << endl;
 | 
|---|
| [fee69b] | 375 |     Zero();
 | 
|---|
| [fcad4b] | 376 |     return false;
 | 
|---|
 | 377 |   }
 | 
|---|
| [9d6308] | 378 | 
 | 
|---|
 | 379 |   // obtain s
 | 
|---|
 | 380 |   double s;
 | 
|---|
 | 381 |   Vector temp1, temp2;
 | 
|---|
 | 382 |   temp1.CopyVector(&c);
 | 
|---|
 | 383 |   temp1.VectorProduct(&b);
 | 
|---|
 | 384 |   temp2.CopyVector(&a);
 | 
|---|
 | 385 |   temp2.VectorProduct(&b);
 | 
|---|
| [fcad4b] | 386 |   Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
 | 
|---|
 | 387 |   if (fabs(temp2.NormSquared()) > MYEPSILON)
 | 
|---|
 | 388 |     s = temp1.ScalarProduct(&temp2)/temp2.NormSquared();
 | 
|---|
 | 389 |   else
 | 
|---|
 | 390 |     s = 0.;
 | 
|---|
 | 391 |   Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(&temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
 | 
|---|
| [9d6308] | 392 | 
 | 
|---|
 | 393 |   // construct intersection
 | 
|---|
 | 394 |   CopyVector(&a);
 | 
|---|
 | 395 |   Scale(s);
 | 
|---|
| [97498a] | 396 |   AddVector(Line1a);
 | 
|---|
| [9d6308] | 397 |   Log() << Verbose(1) << "Intersection is at " << *this << "." << endl;
 | 
|---|
| [97498a] | 398 | 
 | 
|---|
| [fee69b] | 399 |   return true;
 | 
|---|
| [2319ed] | 400 | };
 | 
|---|
 | 401 | 
 | 
|---|
| [6ac7ee] | 402 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 403 |  * \param *y array to second vector
 | 
|---|
 | 404 |  */
 | 
|---|
| [776b64] | 405 | void Vector::ProjectIt(const Vector * const y)
 | 
|---|
| [6ac7ee] | 406 | {
 | 
|---|
| [ef9df36] | 407 |   Vector helper(*y);
 | 
|---|
 | 408 |   helper.Scale(-(ScalarProduct(y)));
 | 
|---|
 | 409 |   AddVector(&helper);
 | 
|---|
 | 410 | };
 | 
|---|
 | 411 | 
 | 
|---|
 | 412 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 413 |  * \param *y array to second vector
 | 
|---|
 | 414 |  * \return Vector
 | 
|---|
 | 415 |  */
 | 
|---|
| [776b64] | 416 | Vector Vector::Projection(const Vector * const y) const
 | 
|---|
| [ef9df36] | 417 | {
 | 
|---|
 | 418 |   Vector helper(*y);
 | 
|---|
 | 419 |   helper.Scale((ScalarProduct(y)/y->NormSquared()));
 | 
|---|
 | 420 | 
 | 
|---|
 | 421 |   return helper;
 | 
|---|
| [6ac7ee] | 422 | };
 | 
|---|
 | 423 | 
 | 
|---|
 | 424 | /** Calculates norm of this vector.
 | 
|---|
 | 425 |  * \return \f$|x|\f$
 | 
|---|
 | 426 |  */
 | 
|---|
 | 427 | double Vector::Norm() const
 | 
|---|
 | 428 | {
 | 
|---|
| [042f82] | 429 |   double res = 0.;
 | 
|---|
 | 430 |   for (int i=NDIM;i--;)
 | 
|---|
 | 431 |     res += this->x[i]*this->x[i];
 | 
|---|
 | 432 |   return (sqrt(res));
 | 
|---|
| [6ac7ee] | 433 | };
 | 
|---|
 | 434 | 
 | 
|---|
| [d4d0dd] | 435 | /** Calculates squared norm of this vector.
 | 
|---|
 | 436 |  * \return \f$|x|^2\f$
 | 
|---|
 | 437 |  */
 | 
|---|
 | 438 | double Vector::NormSquared() const
 | 
|---|
 | 439 | {
 | 
|---|
 | 440 |   return (ScalarProduct(this));
 | 
|---|
 | 441 | };
 | 
|---|
 | 442 | 
 | 
|---|
| [6ac7ee] | 443 | /** Normalizes this vector.
 | 
|---|
 | 444 |  */
 | 
|---|
 | 445 | void Vector::Normalize()
 | 
|---|
 | 446 | {
 | 
|---|
| [042f82] | 447 |   double res = 0.;
 | 
|---|
 | 448 |   for (int i=NDIM;i--;)
 | 
|---|
 | 449 |     res += this->x[i]*this->x[i];
 | 
|---|
 | 450 |   if (fabs(res) > MYEPSILON)
 | 
|---|
 | 451 |     res = 1./sqrt(res);
 | 
|---|
 | 452 |   Scale(&res);
 | 
|---|
| [6ac7ee] | 453 | };
 | 
|---|
 | 454 | 
 | 
|---|
 | 455 | /** Zeros all components of this vector.
 | 
|---|
 | 456 |  */
 | 
|---|
 | 457 | void Vector::Zero()
 | 
|---|
 | 458 | {
 | 
|---|
| [042f82] | 459 |   for (int i=NDIM;i--;)
 | 
|---|
 | 460 |     this->x[i] = 0.;
 | 
|---|
| [6ac7ee] | 461 | };
 | 
|---|
 | 462 | 
 | 
|---|
 | 463 | /** Zeros all components of this vector.
 | 
|---|
 | 464 |  */
 | 
|---|
| [776b64] | 465 | void Vector::One(const double one)
 | 
|---|
| [6ac7ee] | 466 | {
 | 
|---|
| [042f82] | 467 |   for (int i=NDIM;i--;)
 | 
|---|
 | 468 |     this->x[i] = one;
 | 
|---|
| [6ac7ee] | 469 | };
 | 
|---|
 | 470 | 
 | 
|---|
 | 471 | /** Initialises all components of this vector.
 | 
|---|
 | 472 |  */
 | 
|---|
| [776b64] | 473 | void Vector::Init(const double x1, const double x2, const double x3)
 | 
|---|
| [6ac7ee] | 474 | {
 | 
|---|
| [042f82] | 475 |   x[0] = x1;
 | 
|---|
 | 476 |   x[1] = x2;
 | 
|---|
 | 477 |   x[2] = x3;
 | 
|---|
| [6ac7ee] | 478 | };
 | 
|---|
 | 479 | 
 | 
|---|
| [9c20aa] | 480 | /** Checks whether vector has all components zero.
 | 
|---|
 | 481 |  * @return true - vector is zero, false - vector is not
 | 
|---|
 | 482 |  */
 | 
|---|
| [54a746] | 483 | bool Vector::IsZero() const
 | 
|---|
| [9c20aa] | 484 | {
 | 
|---|
| [54a746] | 485 |   return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
 | 
|---|
 | 486 | };
 | 
|---|
 | 487 | 
 | 
|---|
 | 488 | /** Checks whether vector has length of 1.
 | 
|---|
 | 489 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 490 |  */
 | 
|---|
 | 491 | bool Vector::IsOne() const
 | 
|---|
 | 492 | {
 | 
|---|
 | 493 |   return (fabs(Norm() - 1.) < MYEPSILON);
 | 
|---|
| [9c20aa] | 494 | };
 | 
|---|
 | 495 | 
 | 
|---|
| [ef9df36] | 496 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 497 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 498 |  */
 | 
|---|
| [776b64] | 499 | bool Vector::IsNormalTo(const Vector * const normal) const
 | 
|---|
| [ef9df36] | 500 | {
 | 
|---|
 | 501 |   if (ScalarProduct(normal) < MYEPSILON)
 | 
|---|
 | 502 |     return true;
 | 
|---|
 | 503 |   else
 | 
|---|
 | 504 |     return false;
 | 
|---|
 | 505 | };
 | 
|---|
 | 506 | 
 | 
|---|
| [b998c3] | 507 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 508 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 509 |  */
 | 
|---|
 | 510 | bool Vector::IsEqualTo(const Vector * const a) const
 | 
|---|
 | 511 | {
 | 
|---|
 | 512 |   bool status = true;
 | 
|---|
 | 513 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 514 |     if (fabs(x[i] - a->x[i]) > MYEPSILON)
 | 
|---|
 | 515 |       status = false;
 | 
|---|
 | 516 |   }
 | 
|---|
 | 517 |   return status;
 | 
|---|
 | 518 | };
 | 
|---|
 | 519 | 
 | 
|---|
| [6ac7ee] | 520 | /** Calculates the angle between this and another vector.
 | 
|---|
 | 521 |  * \param *y array to second vector
 | 
|---|
 | 522 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
 | 523 |  */
 | 
|---|
| [776b64] | 524 | double Vector::Angle(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 525 | {
 | 
|---|
| [d4d0dd] | 526 |   double norm1 = Norm(), norm2 = y->Norm();
 | 
|---|
| [ef9df36] | 527 |   double angle = -1;
 | 
|---|
| [d4d0dd] | 528 |   if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
 | 
|---|
 | 529 |     angle = this->ScalarProduct(y)/norm1/norm2;
 | 
|---|
| [02da9e] | 530 |   // -1-MYEPSILON occured due to numerical imprecision, catch ...
 | 
|---|
| [e138de] | 531 |   //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
 | 
|---|
| [02da9e] | 532 |   if (angle < -1)
 | 
|---|
 | 533 |     angle = -1;
 | 
|---|
 | 534 |   if (angle > 1)
 | 
|---|
 | 535 |     angle = 1;
 | 
|---|
| [042f82] | 536 |   return acos(angle);
 | 
|---|
| [6ac7ee] | 537 | };
 | 
|---|
 | 538 | 
 | 
|---|
| [78b73c] | 539 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
 | 
|---|
| [6ac7ee] | 540 |  * \param *axis rotation axis
 | 
|---|
 | 541 |  * \param alpha rotation angle in radian
 | 
|---|
 | 542 |  */
 | 
|---|
| [776b64] | 543 | void Vector::RotateVector(const Vector * const axis, const double alpha)
 | 
|---|
| [6ac7ee] | 544 | {
 | 
|---|
| [042f82] | 545 |   Vector a,y;
 | 
|---|
 | 546 |   // normalise this vector with respect to axis
 | 
|---|
 | 547 |   a.CopyVector(this);
 | 
|---|
| [ef9df36] | 548 |   a.ProjectOntoPlane(axis);
 | 
|---|
| [042f82] | 549 |   // construct normal vector
 | 
|---|
| [78b73c] | 550 |   bool rotatable = y.MakeNormalVector(axis,&a);
 | 
|---|
 | 551 |   // The normal vector cannot be created if there is linar dependency.
 | 
|---|
 | 552 |   // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
 | 
|---|
 | 553 |   if (!rotatable) {
 | 
|---|
 | 554 |     return;
 | 
|---|
 | 555 |   }
 | 
|---|
| [042f82] | 556 |   y.Scale(Norm());
 | 
|---|
 | 557 |   // scale normal vector by sine and this vector by cosine
 | 
|---|
 | 558 |   y.Scale(sin(alpha));
 | 
|---|
| [78b73c] | 559 |   a.Scale(cos(alpha));
 | 
|---|
 | 560 |   CopyVector(Projection(axis));
 | 
|---|
| [042f82] | 561 |   // add scaled normal vector onto this vector
 | 
|---|
 | 562 |   AddVector(&y);
 | 
|---|
 | 563 |   // add part in axis direction
 | 
|---|
 | 564 |   AddVector(&a);
 | 
|---|
| [6ac7ee] | 565 | };
 | 
|---|
 | 566 | 
 | 
|---|
| [ef9df36] | 567 | /** Compares vector \a to vector \a b component-wise.
 | 
|---|
 | 568 |  * \param a base vector
 | 
|---|
 | 569 |  * \param b vector components to add
 | 
|---|
 | 570 |  * \return a == b
 | 
|---|
 | 571 |  */
 | 
|---|
 | 572 | bool operator==(const Vector& a, const Vector& b)
 | 
|---|
 | 573 | {
 | 
|---|
 | 574 |   bool status = true;
 | 
|---|
 | 575 |   for (int i=0;i<NDIM;i++)
 | 
|---|
 | 576 |     status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
 | 
|---|
 | 577 |   return status;
 | 
|---|
 | 578 | };
 | 
|---|
 | 579 | 
 | 
|---|
| [6ac7ee] | 580 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
 | 581 |  * \param a base vector
 | 
|---|
 | 582 |  * \param b vector components to add
 | 
|---|
 | 583 |  * \return lhs + a
 | 
|---|
 | 584 |  */
 | 
|---|
 | 585 | Vector& operator+=(Vector& a, const Vector& b)
 | 
|---|
 | 586 | {
 | 
|---|
| [042f82] | 587 |   a.AddVector(&b);
 | 
|---|
 | 588 |   return a;
 | 
|---|
| [6ac7ee] | 589 | };
 | 
|---|
| [54a746] | 590 | 
 | 
|---|
 | 591 | /** Subtracts vector \a from this lhs component-wise.
 | 
|---|
 | 592 |  * \param a base vector
 | 
|---|
 | 593 |  * \param b vector components to add
 | 
|---|
 | 594 |  * \return lhs - a
 | 
|---|
 | 595 |  */
 | 
|---|
 | 596 | Vector& operator-=(Vector& a, const Vector& b)
 | 
|---|
 | 597 | {
 | 
|---|
 | 598 |   a.SubtractVector(&b);
 | 
|---|
 | 599 |   return a;
 | 
|---|
 | 600 | };
 | 
|---|
 | 601 | 
 | 
|---|
| [6ac7ee] | 602 | /** factor each component of \a a times a double \a m.
 | 
|---|
 | 603 |  * \param a base vector
 | 
|---|
 | 604 |  * \param m factor
 | 
|---|
 | 605 |  * \return lhs.x[i] * m
 | 
|---|
 | 606 |  */
 | 
|---|
 | 607 | Vector& operator*=(Vector& a, const double m)
 | 
|---|
 | 608 | {
 | 
|---|
| [042f82] | 609 |   a.Scale(m);
 | 
|---|
 | 610 |   return a;
 | 
|---|
| [6ac7ee] | 611 | };
 | 
|---|
 | 612 | 
 | 
|---|
| [042f82] | 613 | /** Sums two vectors \a  and \b component-wise.
 | 
|---|
| [6ac7ee] | 614 |  * \param a first vector
 | 
|---|
 | 615 |  * \param b second vector
 | 
|---|
 | 616 |  * \return a + b
 | 
|---|
 | 617 |  */
 | 
|---|
 | 618 | Vector& operator+(const Vector& a, const Vector& b)
 | 
|---|
 | 619 | {
 | 
|---|
| [042f82] | 620 |   Vector *x = new Vector;
 | 
|---|
 | 621 |   x->CopyVector(&a);
 | 
|---|
 | 622 |   x->AddVector(&b);
 | 
|---|
 | 623 |   return *x;
 | 
|---|
| [6ac7ee] | 624 | };
 | 
|---|
 | 625 | 
 | 
|---|
| [54a746] | 626 | /** Subtracts vector \a from \b component-wise.
 | 
|---|
 | 627 |  * \param a first vector
 | 
|---|
 | 628 |  * \param b second vector
 | 
|---|
 | 629 |  * \return a - b
 | 
|---|
 | 630 |  */
 | 
|---|
 | 631 | Vector& operator-(const Vector& a, const Vector& b)
 | 
|---|
 | 632 | {
 | 
|---|
 | 633 |   Vector *x = new Vector;
 | 
|---|
 | 634 |   x->CopyVector(&a);
 | 
|---|
 | 635 |   x->SubtractVector(&b);
 | 
|---|
 | 636 |   return *x;
 | 
|---|
 | 637 | };
 | 
|---|
 | 638 | 
 | 
|---|
| [6ac7ee] | 639 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 640 |  * \param a vector
 | 
|---|
 | 641 |  * \param m factor
 | 
|---|
| [54a746] | 642 |  * \return m * a
 | 
|---|
| [6ac7ee] | 643 |  */
 | 
|---|
 | 644 | Vector& operator*(const Vector& a, const double m)
 | 
|---|
 | 645 | {
 | 
|---|
| [042f82] | 646 |   Vector *x = new Vector;
 | 
|---|
 | 647 |   x->CopyVector(&a);
 | 
|---|
 | 648 |   x->Scale(m);
 | 
|---|
 | 649 |   return *x;
 | 
|---|
| [6ac7ee] | 650 | };
 | 
|---|
 | 651 | 
 | 
|---|
| [54a746] | 652 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 653 |  * \param m factor
 | 
|---|
 | 654 |  * \param a vector
 | 
|---|
 | 655 |  * \return m * a
 | 
|---|
 | 656 |  */
 | 
|---|
 | 657 | Vector& operator*(const double m, const Vector& a )
 | 
|---|
 | 658 | {
 | 
|---|
 | 659 |   Vector *x = new Vector;
 | 
|---|
 | 660 |   x->CopyVector(&a);
 | 
|---|
 | 661 |   x->Scale(m);
 | 
|---|
 | 662 |   return *x;
 | 
|---|
 | 663 | };
 | 
|---|
 | 664 | 
 | 
|---|
| [2ededc2] | 665 | Vector& Vector::operator=(const Vector& src) {
 | 
|---|
 | 666 |   CopyVector(src);
 | 
|---|
 | 667 |   return *this;
 | 
|---|
 | 668 | }
 | 
|---|
 | 669 | 
 | 
|---|
| [6ac7ee] | 670 | /** Prints a 3dim vector.
 | 
|---|
 | 671 |  * prints no end of line.
 | 
|---|
 | 672 |  */
 | 
|---|
| [e138de] | 673 | void Vector::Output() const
 | 
|---|
| [6ac7ee] | 674 | {
 | 
|---|
| [e138de] | 675 |   Log() << Verbose(0) << "(";
 | 
|---|
 | 676 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 677 |     Log() << Verbose(0) << x[i];
 | 
|---|
 | 678 |     if (i != 2)
 | 
|---|
 | 679 |       Log() << Verbose(0) << ",";
 | 
|---|
 | 680 |   }
 | 
|---|
 | 681 |   Log() << Verbose(0) << ")";
 | 
|---|
| [6ac7ee] | 682 | };
 | 
|---|
 | 683 | 
 | 
|---|
| [9c20aa] | 684 | ostream& operator<<(ostream& ost, const Vector& m)
 | 
|---|
| [6ac7ee] | 685 | {
 | 
|---|
| [042f82] | 686 |   ost << "(";
 | 
|---|
 | 687 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 688 |     ost << m.x[i];
 | 
|---|
 | 689 |     if (i != 2)
 | 
|---|
 | 690 |       ost << ",";
 | 
|---|
 | 691 |   }
 | 
|---|
 | 692 |   ost << ")";
 | 
|---|
 | 693 |   return ost;
 | 
|---|
| [6ac7ee] | 694 | };
 | 
|---|
 | 695 | 
 | 
|---|
 | 696 | /** Scales each atom coordinate by an individual \a factor.
 | 
|---|
 | 697 |  * \param *factor pointer to scaling factor
 | 
|---|
 | 698 |  */
 | 
|---|
| [776b64] | 699 | void Vector::Scale(const double ** const factor)
 | 
|---|
| [6ac7ee] | 700 | {
 | 
|---|
| [042f82] | 701 |   for (int i=NDIM;i--;)
 | 
|---|
 | 702 |     x[i] *= (*factor)[i];
 | 
|---|
| [6ac7ee] | 703 | };
 | 
|---|
 | 704 | 
 | 
|---|
| [776b64] | 705 | void Vector::Scale(const double * const factor)
 | 
|---|
| [6ac7ee] | 706 | {
 | 
|---|
| [042f82] | 707 |   for (int i=NDIM;i--;)
 | 
|---|
 | 708 |     x[i] *= *factor;
 | 
|---|
| [6ac7ee] | 709 | };
 | 
|---|
 | 710 | 
 | 
|---|
| [776b64] | 711 | void Vector::Scale(const double factor)
 | 
|---|
| [6ac7ee] | 712 | {
 | 
|---|
| [042f82] | 713 |   for (int i=NDIM;i--;)
 | 
|---|
 | 714 |     x[i] *= factor;
 | 
|---|
| [6ac7ee] | 715 | };
 | 
|---|
 | 716 | 
 | 
|---|
 | 717 | /** Translate atom by given vector.
 | 
|---|
 | 718 |  * \param trans[] translation vector.
 | 
|---|
 | 719 |  */
 | 
|---|
| [776b64] | 720 | void Vector::Translate(const Vector * const trans)
 | 
|---|
| [6ac7ee] | 721 | {
 | 
|---|
| [042f82] | 722 |   for (int i=NDIM;i--;)
 | 
|---|
 | 723 |     x[i] += trans->x[i];
 | 
|---|
| [6ac7ee] | 724 | };
 | 
|---|
 | 725 | 
 | 
|---|
| [d09ff7] | 726 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
 | 
|---|
 | 727 |  * \param *M matrix of box
 | 
|---|
 | 728 |  * \param *Minv inverse matrix
 | 
|---|
 | 729 |  */
 | 
|---|
| [776b64] | 730 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
 | 
|---|
| [d09ff7] | 731 | {
 | 
|---|
 | 732 |   MatrixMultiplication(Minv);
 | 
|---|
 | 733 |   // truncate to [0,1] for each axis
 | 
|---|
 | 734 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 735 |     x[i] += 0.5;  // set to center of box
 | 
|---|
 | 736 |     while (x[i] >= 1.)
 | 
|---|
 | 737 |       x[i] -= 1.;
 | 
|---|
 | 738 |     while (x[i] < 0.)
 | 
|---|
 | 739 |       x[i] += 1.;
 | 
|---|
 | 740 |   }
 | 
|---|
 | 741 |   MatrixMultiplication(M);
 | 
|---|
 | 742 | };
 | 
|---|
 | 743 | 
 | 
|---|
| [6ac7ee] | 744 | /** Do a matrix multiplication.
 | 
|---|
 | 745 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 746 |  */
 | 
|---|
| [776b64] | 747 | void Vector::MatrixMultiplication(const double * const M)
 | 
|---|
| [6ac7ee] | 748 | {
 | 
|---|
| [042f82] | 749 |   Vector C;
 | 
|---|
 | 750 |   // do the matrix multiplication
 | 
|---|
 | 751 |   C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
 | 752 |   C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
 | 753 |   C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
 | 754 |   // transfer the result into this
 | 
|---|
 | 755 |   for (int i=NDIM;i--;)
 | 
|---|
 | 756 |     x[i] = C.x[i];
 | 
|---|
| [6ac7ee] | 757 | };
 | 
|---|
 | 758 | 
 | 
|---|
| [2319ed] | 759 | /** Do a matrix multiplication with the \a *A' inverse.
 | 
|---|
| [6ac7ee] | 760 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 761 |  */
 | 
|---|
| [776b64] | 762 | void Vector::InverseMatrixMultiplication(const double * const A)
 | 
|---|
| [6ac7ee] | 763 | {
 | 
|---|
| [042f82] | 764 |   Vector C;
 | 
|---|
 | 765 |   double B[NDIM*NDIM];
 | 
|---|
 | 766 |   double detA = RDET3(A);
 | 
|---|
 | 767 |   double detAReci;
 | 
|---|
 | 768 | 
 | 
|---|
 | 769 |   // calculate the inverse B
 | 
|---|
 | 770 |   if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 771 |     detAReci = 1./detA;
 | 
|---|
 | 772 |     B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11
 | 
|---|
 | 773 |     B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12
 | 
|---|
 | 774 |     B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13
 | 
|---|
 | 775 |     B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21
 | 
|---|
 | 776 |     B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22
 | 
|---|
 | 777 |     B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23
 | 
|---|
 | 778 |     B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31
 | 
|---|
 | 779 |     B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32
 | 
|---|
 | 780 |     B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33
 | 
|---|
 | 781 | 
 | 
|---|
 | 782 |     // do the matrix multiplication
 | 
|---|
 | 783 |     C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
 | 784 |     C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
 | 785 |     C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
 | 786 |     // transfer the result into this
 | 
|---|
 | 787 |     for (int i=NDIM;i--;)
 | 
|---|
 | 788 |       x[i] = C.x[i];
 | 
|---|
 | 789 |   } else {
 | 
|---|
| [717e0c] | 790 |     eLog() << Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl;
 | 
|---|
| [042f82] | 791 |   }
 | 
|---|
| [6ac7ee] | 792 | };
 | 
|---|
 | 793 | 
 | 
|---|
 | 794 | 
 | 
|---|
 | 795 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
 | 796 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
 | 797 |  * \param *x1 first vector
 | 
|---|
 | 798 |  * \param *x2 second vector
 | 
|---|
 | 799 |  * \param *x3 third vector
 | 
|---|
 | 800 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
 | 801 |  */
 | 
|---|
| [776b64] | 802 | void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
 | 
|---|
| [6ac7ee] | 803 | {
 | 
|---|
| [042f82] | 804 |   for(int i=NDIM;i--;)
 | 
|---|
 | 805 |     x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
 | 
|---|
| [6ac7ee] | 806 | };
 | 
|---|
 | 807 | 
 | 
|---|
 | 808 | /** Mirrors atom against a given plane.
 | 
|---|
 | 809 |  * \param n[] normal vector of mirror plane.
 | 
|---|
 | 810 |  */
 | 
|---|
| [776b64] | 811 | void Vector::Mirror(const Vector * const n)
 | 
|---|
| [6ac7ee] | 812 | {
 | 
|---|
| [042f82] | 813 |   double projection;
 | 
|---|
 | 814 |   projection = ScalarProduct(n)/n->ScalarProduct(n);    // remove constancy from n (keep as logical one)
 | 
|---|
 | 815 |   // withdraw projected vector twice from original one
 | 
|---|
| [e138de] | 816 |   Log() << Verbose(1) << "Vector: ";
 | 
|---|
 | 817 |   Output();
 | 
|---|
 | 818 |   Log() << Verbose(0) << "\t";
 | 
|---|
| [042f82] | 819 |   for (int i=NDIM;i--;)
 | 
|---|
 | 820 |     x[i] -= 2.*projection*n->x[i];
 | 
|---|
| [e138de] | 821 |   Log() << Verbose(0) << "Projected vector: ";
 | 
|---|
 | 822 |   Output();
 | 
|---|
 | 823 |   Log() << Verbose(0) << endl;
 | 
|---|
| [6ac7ee] | 824 | };
 | 
|---|
 | 825 | 
 | 
|---|
 | 826 | /** Calculates normal vector for three given vectors (being three points in space).
 | 
|---|
 | 827 |  * Makes this vector orthonormal to the three given points, making up a place in 3d space.
 | 
|---|
 | 828 |  * \param *y1 first vector
 | 
|---|
 | 829 |  * \param *y2 second vector
 | 
|---|
 | 830 |  * \param *y3 third vector
 | 
|---|
 | 831 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 832 |  */
 | 
|---|
| [776b64] | 833 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
 | 
|---|
| [6ac7ee] | 834 | {
 | 
|---|
| [042f82] | 835 |   Vector x1, x2;
 | 
|---|
| [6ac7ee] | 836 | 
 | 
|---|
| [042f82] | 837 |   x1.CopyVector(y1);
 | 
|---|
 | 838 |   x1.SubtractVector(y2);
 | 
|---|
 | 839 |   x2.CopyVector(y3);
 | 
|---|
 | 840 |   x2.SubtractVector(y2);
 | 
|---|
 | 841 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
| [717e0c] | 842 |     eLog() << Verbose(2) << "Given vectors are linear dependent." << endl;
 | 
|---|
| [042f82] | 843 |     return false;
 | 
|---|
 | 844 |   }
 | 
|---|
| [e138de] | 845 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| [042f82] | 846 | //  x1.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 847 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 848 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
| [042f82] | 849 | //  x2.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 850 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [6ac7ee] | 851 | 
 | 
|---|
| [042f82] | 852 |   this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 853 |   this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 854 |   this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 855 |   Normalize();
 | 
|---|
| [6ac7ee] | 856 | 
 | 
|---|
| [042f82] | 857 |   return true;
 | 
|---|
| [6ac7ee] | 858 | };
 | 
|---|
 | 859 | 
 | 
|---|
 | 860 | 
 | 
|---|
 | 861 | /** Calculates orthonormal vector to two given vectors.
 | 
|---|
 | 862 |  * Makes this vector orthonormal to two given vectors. This is very similar to the other
 | 
|---|
 | 863 |  * vector::MakeNormalVector(), only there three points whereas here two difference
 | 
|---|
 | 864 |  * vectors are given.
 | 
|---|
 | 865 |  * \param *x1 first vector
 | 
|---|
 | 866 |  * \param *x2 second vector
 | 
|---|
 | 867 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 868 |  */
 | 
|---|
| [776b64] | 869 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
 | 
|---|
| [6ac7ee] | 870 | {
 | 
|---|
| [042f82] | 871 |   Vector x1,x2;
 | 
|---|
 | 872 |   x1.CopyVector(y1);
 | 
|---|
 | 873 |   x2.CopyVector(y2);
 | 
|---|
 | 874 |   Zero();
 | 
|---|
 | 875 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
| [717e0c] | 876 |     eLog() << Verbose(2) << "Given vectors are linear dependent." << endl;
 | 
|---|
| [042f82] | 877 |     return false;
 | 
|---|
 | 878 |   }
 | 
|---|
| [e138de] | 879 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| [042f82] | 880 | //  x1.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 881 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 882 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
| [042f82] | 883 | //  x2.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 884 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 885 | 
 | 
|---|
 | 886 |   this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 887 |   this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 888 |   this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 889 |   Normalize();
 | 
|---|
 | 890 | 
 | 
|---|
 | 891 |   return true;
 | 
|---|
| [6ac7ee] | 892 | };
 | 
|---|
 | 893 | 
 | 
|---|
 | 894 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
 | 895 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
| [ef9df36] | 896 |  * The removed part of the vector is Vector::Projection()
 | 
|---|
| [6ac7ee] | 897 |  * \param *x1 vector
 | 
|---|
 | 898 |  * \return true - success, false - vector is zero
 | 
|---|
 | 899 |  */
 | 
|---|
| [776b64] | 900 | bool Vector::MakeNormalVector(const Vector * const y1)
 | 
|---|
| [6ac7ee] | 901 | {
 | 
|---|
| [042f82] | 902 |   bool result = false;
 | 
|---|
| [ef9df36] | 903 |   double factor = y1->ScalarProduct(this)/y1->NormSquared();
 | 
|---|
| [042f82] | 904 |   Vector x1;
 | 
|---|
 | 905 |   x1.CopyVector(y1);
 | 
|---|
| [46670d] | 906 |   x1.Scale(factor);
 | 
|---|
| [042f82] | 907 |   SubtractVector(&x1);
 | 
|---|
 | 908 |   for (int i=NDIM;i--;)
 | 
|---|
 | 909 |     result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
| [6ac7ee] | 910 | 
 | 
|---|
| [042f82] | 911 |   return result;
 | 
|---|
| [6ac7ee] | 912 | };
 | 
|---|
 | 913 | 
 | 
|---|
 | 914 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
 | 915 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
 | 916 |  * try to get the skp of both to be zero accordingly.
 | 
|---|
 | 917 |  * \param *vector given vector
 | 
|---|
 | 918 |  * \return true - success, false - failure (null vector given)
 | 
|---|
 | 919 |  */
 | 
|---|
| [776b64] | 920 | bool Vector::GetOneNormalVector(const Vector * const GivenVector)
 | 
|---|
| [6ac7ee] | 921 | {
 | 
|---|
| [042f82] | 922 |   int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
 | 923 |   int Last = 0;   // count the number of non-zero entries in vector
 | 
|---|
 | 924 |   int j;  // loop variables
 | 
|---|
 | 925 |   double norm;
 | 
|---|
 | 926 | 
 | 
|---|
| [e138de] | 927 |   Log() << Verbose(4);
 | 
|---|
 | 928 |   GivenVector->Output();
 | 
|---|
 | 929 |   Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 930 |   for (j=NDIM;j--;)
 | 
|---|
 | 931 |     Components[j] = -1;
 | 
|---|
 | 932 |   // find two components != 0
 | 
|---|
 | 933 |   for (j=0;j<NDIM;j++)
 | 
|---|
 | 934 |     if (fabs(GivenVector->x[j]) > MYEPSILON)
 | 
|---|
 | 935 |       Components[Last++] = j;
 | 
|---|
| [e138de] | 936 |   Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
 | 
|---|
| [042f82] | 937 | 
 | 
|---|
 | 938 |   switch(Last) {
 | 
|---|
 | 939 |     case 3:  // threecomponent system
 | 
|---|
 | 940 |     case 2:  // two component system
 | 
|---|
 | 941 |       norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
 | 
|---|
 | 942 |       x[Components[2]] = 0.;
 | 
|---|
 | 943 |       // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
 | 944 |       x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
 | 
|---|
 | 945 |       x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
 | 
|---|
 | 946 |       return true;
 | 
|---|
 | 947 |       break;
 | 
|---|
 | 948 |     case 1: // one component system
 | 
|---|
 | 949 |       // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
 | 950 |       x[(Components[0]+2)%NDIM] = 0.;
 | 
|---|
 | 951 |       x[(Components[0]+1)%NDIM] = 1.;
 | 
|---|
 | 952 |       x[Components[0]] = 0.;
 | 
|---|
 | 953 |       return true;
 | 
|---|
 | 954 |       break;
 | 
|---|
 | 955 |     default:
 | 
|---|
 | 956 |       return false;
 | 
|---|
 | 957 |   }
 | 
|---|
| [6ac7ee] | 958 | };
 | 
|---|
 | 959 | 
 | 
|---|
| [ef9df36] | 960 | /** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
 | 
|---|
| [6ac7ee] | 961 |  * \param *A first plane vector
 | 
|---|
 | 962 |  * \param *B second plane vector
 | 
|---|
 | 963 |  * \param *C third plane vector
 | 
|---|
 | 964 |  * \return scaling parameter for this vector
 | 
|---|
 | 965 |  */
 | 
|---|
| [776b64] | 966 | double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
 | 
|---|
| [6ac7ee] | 967 | {
 | 
|---|
| [e138de] | 968 | //  Log() << Verbose(3) << "For comparison: ";
 | 
|---|
 | 969 | //  Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
 | 
|---|
 | 970 | //  Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
 | 
|---|
 | 971 | //  Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
 | 
|---|
 | 972 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [ef9df36] | 973 |   return A->ScalarProduct(this);
 | 
|---|
| [6ac7ee] | 974 | };
 | 
|---|
 | 975 | 
 | 
|---|
 | 976 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
 | 
|---|
 | 977 |  * \param *vectors set of vectors
 | 
|---|
 | 978 |  * \param num number of vectors
 | 
|---|
 | 979 |  * \return true if success, false if failed due to linear dependency
 | 
|---|
 | 980 |  */
 | 
|---|
| [776b64] | 981 | bool Vector::LSQdistance(const Vector **vectors, int num)
 | 
|---|
| [6ac7ee] | 982 | {
 | 
|---|
| [042f82] | 983 |   int j;
 | 
|---|
| [6ac7ee] | 984 | 
 | 
|---|
| [042f82] | 985 |   for (j=0;j<num;j++) {
 | 
|---|
| [e138de] | 986 |     Log() << Verbose(1) << j << "th atom's vector: ";
 | 
|---|
 | 987 |     (vectors[j])->Output();
 | 
|---|
 | 988 |     Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 989 |   }
 | 
|---|
| [6ac7ee] | 990 | 
 | 
|---|
| [042f82] | 991 |   int np = 3;
 | 
|---|
 | 992 |   struct LSQ_params par;
 | 
|---|
| [6ac7ee] | 993 | 
 | 
|---|
| [042f82] | 994 |    const gsl_multimin_fminimizer_type *T =
 | 
|---|
 | 995 |      gsl_multimin_fminimizer_nmsimplex;
 | 
|---|
 | 996 |    gsl_multimin_fminimizer *s = NULL;
 | 
|---|
 | 997 |    gsl_vector *ss, *y;
 | 
|---|
 | 998 |    gsl_multimin_function minex_func;
 | 
|---|
| [6ac7ee] | 999 | 
 | 
|---|
| [042f82] | 1000 |    size_t iter = 0, i;
 | 
|---|
 | 1001 |    int status;
 | 
|---|
 | 1002 |    double size;
 | 
|---|
| [6ac7ee] | 1003 | 
 | 
|---|
| [042f82] | 1004 |    /* Initial vertex size vector */
 | 
|---|
 | 1005 |    ss = gsl_vector_alloc (np);
 | 
|---|
 | 1006 |    y = gsl_vector_alloc (np);
 | 
|---|
| [6ac7ee] | 1007 | 
 | 
|---|
| [042f82] | 1008 |    /* Set all step sizes to 1 */
 | 
|---|
 | 1009 |    gsl_vector_set_all (ss, 1.0);
 | 
|---|
| [6ac7ee] | 1010 | 
 | 
|---|
| [042f82] | 1011 |    /* Starting point */
 | 
|---|
 | 1012 |    par.vectors = vectors;
 | 
|---|
 | 1013 |    par.num = num;
 | 
|---|
| [6ac7ee] | 1014 | 
 | 
|---|
| [042f82] | 1015 |    for (i=NDIM;i--;)
 | 
|---|
 | 1016 |     gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
 | 
|---|
| [6ac7ee] | 1017 | 
 | 
|---|
| [042f82] | 1018 |    /* Initialize method and iterate */
 | 
|---|
 | 1019 |    minex_func.f = &LSQ;
 | 
|---|
 | 1020 |    minex_func.n = np;
 | 
|---|
 | 1021 |    minex_func.params = (void *)∥
 | 
|---|
| [6ac7ee] | 1022 | 
 | 
|---|
| [042f82] | 1023 |    s = gsl_multimin_fminimizer_alloc (T, np);
 | 
|---|
 | 1024 |    gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
 | 
|---|
| [6ac7ee] | 1025 | 
 | 
|---|
| [042f82] | 1026 |    do
 | 
|---|
 | 1027 |      {
 | 
|---|
 | 1028 |        iter++;
 | 
|---|
 | 1029 |        status = gsl_multimin_fminimizer_iterate(s);
 | 
|---|
| [6ac7ee] | 1030 | 
 | 
|---|
| [042f82] | 1031 |        if (status)
 | 
|---|
 | 1032 |          break;
 | 
|---|
| [6ac7ee] | 1033 | 
 | 
|---|
| [042f82] | 1034 |        size = gsl_multimin_fminimizer_size (s);
 | 
|---|
 | 1035 |        status = gsl_multimin_test_size (size, 1e-2);
 | 
|---|
| [6ac7ee] | 1036 | 
 | 
|---|
| [042f82] | 1037 |        if (status == GSL_SUCCESS)
 | 
|---|
 | 1038 |          {
 | 
|---|
 | 1039 |            printf ("converged to minimum at\n");
 | 
|---|
 | 1040 |          }
 | 
|---|
| [6ac7ee] | 1041 | 
 | 
|---|
| [042f82] | 1042 |        printf ("%5d ", (int)iter);
 | 
|---|
 | 1043 |        for (i = 0; i < (size_t)np; i++)
 | 
|---|
 | 1044 |          {
 | 
|---|
 | 1045 |            printf ("%10.3e ", gsl_vector_get (s->x, i));
 | 
|---|
 | 1046 |          }
 | 
|---|
 | 1047 |        printf ("f() = %7.3f size = %.3f\n", s->fval, size);
 | 
|---|
 | 1048 |      }
 | 
|---|
 | 1049 |    while (status == GSL_CONTINUE && iter < 100);
 | 
|---|
| [6ac7ee] | 1050 | 
 | 
|---|
| [042f82] | 1051 |   for (i=(size_t)np;i--;)
 | 
|---|
 | 1052 |     this->x[i] = gsl_vector_get(s->x, i);
 | 
|---|
 | 1053 |    gsl_vector_free(y);
 | 
|---|
 | 1054 |    gsl_vector_free(ss);
 | 
|---|
 | 1055 |    gsl_multimin_fminimizer_free (s);
 | 
|---|
| [6ac7ee] | 1056 | 
 | 
|---|
| [042f82] | 1057 |   return true;
 | 
|---|
| [6ac7ee] | 1058 | };
 | 
|---|
 | 1059 | 
 | 
|---|
 | 1060 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 1061 |  * \param *y vector
 | 
|---|
 | 1062 |  */
 | 
|---|
| [776b64] | 1063 | void Vector::AddVector(const Vector * const y)
 | 
|---|
| [6ac7ee] | 1064 | {
 | 
|---|
| [042f82] | 1065 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1066 |     this->x[i] += y->x[i];
 | 
|---|
| [6ac7ee] | 1067 | }
 | 
|---|
 | 1068 | 
 | 
|---|
 | 1069 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 1070 |  * \param *y vector
 | 
|---|
 | 1071 |  */
 | 
|---|
| [776b64] | 1072 | void Vector::SubtractVector(const Vector * const y)
 | 
|---|
| [6ac7ee] | 1073 | {
 | 
|---|
| [042f82] | 1074 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1075 |     this->x[i] -= y->x[i];
 | 
|---|
| [6ac7ee] | 1076 | }
 | 
|---|
 | 1077 | 
 | 
|---|
 | 1078 | /** Copy vector \a *y componentwise.
 | 
|---|
 | 1079 |  * \param *y vector
 | 
|---|
 | 1080 |  */
 | 
|---|
| [776b64] | 1081 | void Vector::CopyVector(const Vector * const y)
 | 
|---|
| [6ac7ee] | 1082 | {
 | 
|---|
| [2ededc2] | 1083 |   // check for self assignment
 | 
|---|
 | 1084 |   if(y!=this){
 | 
|---|
 | 1085 |     for (int i=NDIM;i--;)
 | 
|---|
 | 1086 |       this->x[i] = y->x[i];
 | 
|---|
 | 1087 |   }
 | 
|---|
| [6ac7ee] | 1088 | }
 | 
|---|
 | 1089 | 
 | 
|---|
| [ef9df36] | 1090 | /** Copy vector \a y componentwise.
 | 
|---|
 | 1091 |  * \param y vector
 | 
|---|
 | 1092 |  */
 | 
|---|
| [776b64] | 1093 | void Vector::CopyVector(const Vector &y)
 | 
|---|
| [ef9df36] | 1094 | {
 | 
|---|
| [2ededc2] | 1095 |   // check for self assignment
 | 
|---|
 | 1096 |   if(&y!=this) {
 | 
|---|
 | 1097 |     for (int i=NDIM;i--;)
 | 
|---|
 | 1098 |       this->x[i] = y.x[i];
 | 
|---|
 | 1099 |   }
 | 
|---|
| [ef9df36] | 1100 | }
 | 
|---|
 | 1101 | 
 | 
|---|
| [6ac7ee] | 1102 | 
 | 
|---|
 | 1103 | /** Asks for position, checks for boundary.
 | 
|---|
 | 1104 |  * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
 | 
|---|
 | 1105 |  * \param check whether bounds shall be checked (true) or not (false)
 | 
|---|
 | 1106 |  */
 | 
|---|
| [776b64] | 1107 | void Vector::AskPosition(const double * const cell_size, const bool check)
 | 
|---|
| [6ac7ee] | 1108 | {
 | 
|---|
| [042f82] | 1109 |   char coords[3] = {'x','y','z'};
 | 
|---|
 | 1110 |   int j = -1;
 | 
|---|
 | 1111 |   for (int i=0;i<3;i++) {
 | 
|---|
 | 1112 |     j += i+1;
 | 
|---|
 | 1113 |     do {
 | 
|---|
| [e138de] | 1114 |       Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
 | 
|---|
| [042f82] | 1115 |       cin >> x[i];
 | 
|---|
 | 1116 |     } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
 | 
|---|
 | 1117 |   }
 | 
|---|
| [6ac7ee] | 1118 | };
 | 
|---|
 | 1119 | 
 | 
|---|
 | 1120 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
 | 
|---|
 | 1121 |  * This is linear system of equations to be solved, however of the three given (skp of this vector\
 | 
|---|
 | 1122 |  * with either of the three hast to be zero) only two are linear independent. The third equation
 | 
|---|
 | 1123 |  * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
 | 
|---|
 | 1124 |  * where very often it has to be checked whether a certain value is zero or not and thus forked into
 | 
|---|
 | 1125 |  * another case.
 | 
|---|
 | 1126 |  * \param *x1 first vector
 | 
|---|
 | 1127 |  * \param *x2 second vector
 | 
|---|
 | 1128 |  * \param *y third vector
 | 
|---|
 | 1129 |  * \param alpha first angle
 | 
|---|
 | 1130 |  * \param beta second angle
 | 
|---|
 | 1131 |  * \param c norm of final vector
 | 
|---|
 | 1132 |  * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
 | 
|---|
 | 1133 |  * \bug this is not yet working properly
 | 
|---|
 | 1134 |  */
 | 
|---|
| [776b64] | 1135 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
 | 
|---|
| [6ac7ee] | 1136 | {
 | 
|---|
| [042f82] | 1137 |   double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
 | 
|---|
 | 1138 |   double ang; // angle on testing
 | 
|---|
 | 1139 |   double sign[3];
 | 
|---|
 | 1140 |   int i,j,k;
 | 
|---|
 | 1141 |   A = cos(alpha) * x1->Norm() * c;
 | 
|---|
 | 1142 |   B1 = cos(beta + M_PI/2.) * y->Norm() * c;
 | 
|---|
 | 1143 |   B2 = cos(beta) * x2->Norm() * c;
 | 
|---|
 | 1144 |   C = c * c;
 | 
|---|
| [e138de] | 1145 |   Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
 | 
|---|
| [042f82] | 1146 |   int flag = 0;
 | 
|---|
 | 1147 |   if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
 | 
|---|
 | 1148 |     if (fabs(x1->x[1]) > MYEPSILON) {
 | 
|---|
 | 1149 |       flag = 1;
 | 
|---|
 | 1150 |     } else if (fabs(x1->x[2]) > MYEPSILON) {
 | 
|---|
 | 1151 |        flag = 2;
 | 
|---|
 | 1152 |     } else {
 | 
|---|
 | 1153 |       return false;
 | 
|---|
 | 1154 |     }
 | 
|---|
 | 1155 |   }
 | 
|---|
 | 1156 |   switch (flag) {
 | 
|---|
 | 1157 |     default:
 | 
|---|
 | 1158 |     case 0:
 | 
|---|
 | 1159 |       break;
 | 
|---|
 | 1160 |     case 2:
 | 
|---|
| [ad8b0d] | 1161 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1162 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1163 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1164 |       //flip(x[0],x[1]);
 | 
|---|
 | 1165 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1166 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1167 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1168 |       //flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1169 |     case 1:
 | 
|---|
| [ad8b0d] | 1170 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1171 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1172 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1173 |       //flip(x[0],x[1]);
 | 
|---|
 | 1174 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1175 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1176 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1177 |       //flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1178 |       break;
 | 
|---|
 | 1179 |   }
 | 
|---|
 | 1180 |   // now comes the case system
 | 
|---|
 | 1181 |   D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
 | 
|---|
 | 1182 |   D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
 | 
|---|
 | 1183 |   D3 = y->x[0]/x1->x[0]*A-B1;
 | 
|---|
| [e138de] | 1184 |   Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
 | 
|---|
| [042f82] | 1185 |   if (fabs(D1) < MYEPSILON) {
 | 
|---|
| [e138de] | 1186 |     Log() << Verbose(2) << "D1 == 0!\n";
 | 
|---|
| [042f82] | 1187 |     if (fabs(D2) > MYEPSILON) {
 | 
|---|
| [e138de] | 1188 |       Log() << Verbose(3) << "D2 != 0!\n";
 | 
|---|
| [042f82] | 1189 |       x[2] = -D3/D2;
 | 
|---|
 | 1190 |       E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
 | 
|---|
 | 1191 |       E2 = -x1->x[1]/x1->x[0];
 | 
|---|
| [e138de] | 1192 |       Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
| [042f82] | 1193 |       F1 = E1*E1 + 1.;
 | 
|---|
 | 1194 |       F2 = -E1*E2;
 | 
|---|
 | 1195 |       F3 = E1*E1 + D3*D3/(D2*D2) - C;
 | 
|---|
| [e138de] | 1196 |       Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
| [042f82] | 1197 |       if (fabs(F1) < MYEPSILON) {
 | 
|---|
| [e138de] | 1198 |         Log() << Verbose(4) << "F1 == 0!\n";
 | 
|---|
 | 1199 |         Log() << Verbose(4) << "Gleichungssystem linear\n";
 | 
|---|
| [042f82] | 1200 |         x[1] = F3/(2.*F2);
 | 
|---|
 | 1201 |       } else {
 | 
|---|
 | 1202 |         p = F2/F1;
 | 
|---|
 | 1203 |         q = p*p - F3/F1;
 | 
|---|
| [e138de] | 1204 |         Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
 | 
|---|
| [042f82] | 1205 |         if (q < 0) {
 | 
|---|
| [e138de] | 1206 |           Log() << Verbose(4) << "q < 0" << endl;
 | 
|---|
| [042f82] | 1207 |           return false;
 | 
|---|
 | 1208 |         }
 | 
|---|
 | 1209 |         x[1] = p + sqrt(q);
 | 
|---|
 | 1210 |       }
 | 
|---|
 | 1211 |       x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 1212 |     } else {
 | 
|---|
| [e138de] | 1213 |       Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
 | 
|---|
| [042f82] | 1214 |       return false;
 | 
|---|
 | 1215 |     }
 | 
|---|
 | 1216 |   } else {
 | 
|---|
 | 1217 |     E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
 | 
|---|
 | 1218 |     E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
 | 
|---|
| [e138de] | 1219 |     Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
| [042f82] | 1220 |     F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
 | 
|---|
 | 1221 |     F2 = -(E1*E2 + D2*D3/(D1*D1));
 | 
|---|
 | 1222 |     F3 = E1*E1 + D3*D3/(D1*D1) - C;
 | 
|---|
| [e138de] | 1223 |     Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
| [042f82] | 1224 |     if (fabs(F1) < MYEPSILON) {
 | 
|---|
| [e138de] | 1225 |       Log() << Verbose(3) << "F1 == 0!\n";
 | 
|---|
 | 1226 |       Log() << Verbose(3) << "Gleichungssystem linear\n";
 | 
|---|
| [042f82] | 1227 |       x[2] = F3/(2.*F2);
 | 
|---|
 | 1228 |     } else {
 | 
|---|
 | 1229 |       p = F2/F1;
 | 
|---|
 | 1230 |       q = p*p - F3/F1;
 | 
|---|
| [e138de] | 1231 |       Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
 | 
|---|
| [042f82] | 1232 |       if (q < 0) {
 | 
|---|
| [e138de] | 1233 |         Log() << Verbose(3) << "q < 0" << endl;
 | 
|---|
| [042f82] | 1234 |         return false;
 | 
|---|
 | 1235 |       }
 | 
|---|
 | 1236 |       x[2] = p + sqrt(q);
 | 
|---|
 | 1237 |     }
 | 
|---|
 | 1238 |     x[1] = (-D2 * x[2] - D3)/D1;
 | 
|---|
 | 1239 |     x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 1240 |   }
 | 
|---|
 | 1241 |   switch (flag) { // back-flipping
 | 
|---|
 | 1242 |     default:
 | 
|---|
 | 1243 |     case 0:
 | 
|---|
 | 1244 |       break;
 | 
|---|
 | 1245 |     case 2:
 | 
|---|
| [ad8b0d] | 1246 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1247 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1248 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1249 |       flip(x[0],x[1]);
 | 
|---|
 | 1250 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1251 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1252 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1253 |       flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1254 |     case 1:
 | 
|---|
| [ad8b0d] | 1255 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1256 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1257 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1258 |       //flip(x[0],x[1]);
 | 
|---|
 | 1259 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1260 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1261 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1262 |       flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1263 |       break;
 | 
|---|
 | 1264 |   }
 | 
|---|
 | 1265 |   // one z component is only determined by its radius (without sign)
 | 
|---|
 | 1266 |   // thus check eight possible sign flips and determine by checking angle with second vector
 | 
|---|
 | 1267 |   for (i=0;i<8;i++) {
 | 
|---|
 | 1268 |     // set sign vector accordingly
 | 
|---|
 | 1269 |     for (j=2;j>=0;j--) {
 | 
|---|
 | 1270 |       k = (i & pot(2,j)) << j;
 | 
|---|
| [e138de] | 1271 |       Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
 | 
|---|
| [042f82] | 1272 |       sign[j] = (k == 0) ? 1. : -1.;
 | 
|---|
 | 1273 |     }
 | 
|---|
| [e138de] | 1274 |     Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
 | 
|---|
| [042f82] | 1275 |     // apply sign matrix
 | 
|---|
 | 1276 |     for (j=NDIM;j--;)
 | 
|---|
 | 1277 |       x[j] *= sign[j];
 | 
|---|
 | 1278 |     // calculate angle and check
 | 
|---|
 | 1279 |     ang = x2->Angle (this);
 | 
|---|
| [e138de] | 1280 |     Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
 | 
|---|
| [042f82] | 1281 |     if (fabs(ang - cos(beta)) < MYEPSILON) {
 | 
|---|
 | 1282 |       break;
 | 
|---|
 | 1283 |     }
 | 
|---|
 | 1284 |     // unapply sign matrix (is its own inverse)
 | 
|---|
 | 1285 |     for (j=NDIM;j--;)
 | 
|---|
 | 1286 |       x[j] *= sign[j];
 | 
|---|
 | 1287 |   }
 | 
|---|
 | 1288 |   return true;
 | 
|---|
| [6ac7ee] | 1289 | };
 | 
|---|
| [89c8b2] | 1290 | 
 | 
|---|
 | 1291 | /**
 | 
|---|
 | 1292 |  * Checks whether this vector is within the parallelepiped defined by the given three vectors and
 | 
|---|
 | 1293 |  * their offset.
 | 
|---|
 | 1294 |  *
 | 
|---|
 | 1295 |  * @param offest for the origin of the parallelepiped
 | 
|---|
 | 1296 |  * @param three vectors forming the matrix that defines the shape of the parallelpiped
 | 
|---|
 | 1297 |  */
 | 
|---|
| [776b64] | 1298 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
 | 
|---|
| [89c8b2] | 1299 | {
 | 
|---|
 | 1300 |   Vector a;
 | 
|---|
 | 1301 |   a.CopyVector(this);
 | 
|---|
 | 1302 |   a.SubtractVector(&offset);
 | 
|---|
 | 1303 |   a.InverseMatrixMultiplication(parallelepiped);
 | 
|---|
 | 1304 |   bool isInside = true;
 | 
|---|
 | 1305 | 
 | 
|---|
 | 1306 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1307 |     isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
 | 
|---|
 | 1308 | 
 | 
|---|
 | 1309 |   return isInside;
 | 
|---|
 | 1310 | }
 | 
|---|