| [14de469] | 1 | /** \file vector.cpp
 | 
|---|
 | 2 |  * 
 | 
|---|
 | 3 |  * Function implementations for the class vector.
 | 
|---|
 | 4 |  * 
 | 
|---|
 | 5 |  */
 | 
|---|
 | 6 |  
 | 
|---|
 | 7 | #include "molecules.hpp"
 | 
|---|
 | 8 |  
 | 
|---|
 | 9 | 
 | 
|---|
 | 10 | /************************************ Functions for class vector ************************************/
 | 
|---|
 | 11 | 
 | 
|---|
 | 12 | /** Constructor of class vector.
 | 
|---|
 | 13 |  */
 | 
|---|
 | 14 | vector::vector() { x[0] = x[1] = x[2] = 0.; };
 | 
|---|
 | 15 | 
 | 
|---|
| [498a9f] | 16 | /** Constructor of class vector.
 | 
|---|
 | 17 |  */
 | 
|---|
 | 18 | vector::vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
 | 
|---|
 | 19 | 
 | 
|---|
| [14de469] | 20 | /** Desctructor of class vector.
 | 
|---|
 | 21 |  */
 | 
|---|
 | 22 | vector::~vector() {};
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | /** Calculates distance between this and another vector.
 | 
|---|
 | 25 |  * \param *y array to second vector
 | 
|---|
 | 26 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 27 |  */
 | 
|---|
 | 28 | double vector::Distance(const vector *y) const
 | 
|---|
 | 29 | {
 | 
|---|
 | 30 |   double res = 0.;
 | 
|---|
| [7f3b9d] | 31 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 32 |     res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 33 |   return (res);  
 | 
|---|
 | 34 | };
 | 
|---|
 | 35 | 
 | 
|---|
 | 36 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 37 |  * \param *y array to second vector
 | 
|---|
 | 38 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 39 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 40 |  */
 | 
|---|
 | 41 | double vector::PeriodicDistance(const vector *y, const double *cell_size) const
 | 
|---|
 | 42 | {
 | 
|---|
 | 43 |   double res = Distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 44 |   vector Shiftedy, TranslationVector;
 | 
|---|
 | 45 |   int N[NDIM];
 | 
|---|
 | 46 |   matrix[0] = cell_size[0];
 | 
|---|
 | 47 |   matrix[1] = cell_size[1];
 | 
|---|
 | 48 |   matrix[2] = cell_size[3];
 | 
|---|
 | 49 |   matrix[3] = cell_size[1];
 | 
|---|
 | 50 |   matrix[4] = cell_size[2];
 | 
|---|
 | 51 |   matrix[5] = cell_size[4];
 | 
|---|
 | 52 |   matrix[6] = cell_size[3];
 | 
|---|
 | 53 |   matrix[7] = cell_size[4];
 | 
|---|
 | 54 |   matrix[8] = cell_size[5];
 | 
|---|
 | 55 |   // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 56 |   for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 57 |     for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 58 |       for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 59 |         // create the translation vector
 | 
|---|
 | 60 |         TranslationVector.Zero();
 | 
|---|
| [7f3b9d] | 61 |         for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 62 |           TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 63 |         TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 64 |         // add onto the original vector to compare with
 | 
|---|
 | 65 |         Shiftedy.CopyVector(y);
 | 
|---|
 | 66 |         Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 67 |         // get distance and compare with minimum so far
 | 
|---|
 | 68 |         tmp = Distance(&Shiftedy);
 | 
|---|
 | 69 |         if (tmp < res) res = tmp;
 | 
|---|
 | 70 |       }
 | 
|---|
 | 71 |   return (res);  
 | 
|---|
 | 72 | };
 | 
|---|
 | 73 | 
 | 
|---|
 | 74 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
 | 75 |  * \param *out ofstream for debugging messages
 | 
|---|
 | 76 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
 | 77 |  */
 | 
|---|
 | 78 | void vector::KeepPeriodic(ofstream *out, double *matrix)
 | 
|---|
 | 79 | {
 | 
|---|
 | 80 | //  int N[NDIM];
 | 
|---|
 | 81 | //  bool flag = false;
 | 
|---|
 | 82 |   //vector Shifted, TranslationVector;
 | 
|---|
 | 83 |   vector TestVector;
 | 
|---|
| [db942e] | 84 | //  *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
 | 85 | //  *out << Verbose(2) << "Vector is: ";
 | 
|---|
 | 86 | //  Output(out);
 | 
|---|
 | 87 | //  *out << endl;
 | 
|---|
| [14de469] | 88 |   TestVector.CopyVector(this);
 | 
|---|
 | 89 |   TestVector.InverseMatrixMultiplication(matrix);
 | 
|---|
| [7f3b9d] | 90 |   for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
| [14de469] | 91 |     if (TestVector.x[i] < 0) {  // get every coefficient into the interval [0,1)
 | 
|---|
 | 92 |       TestVector.x[i] += ceil(TestVector.x[i]);
 | 
|---|
 | 93 |     } else {
 | 
|---|
 | 94 |       TestVector.x[i] -= floor(TestVector.x[i]);
 | 
|---|
 | 95 |     }
 | 
|---|
 | 96 |   }
 | 
|---|
 | 97 |   TestVector.MatrixMultiplication(matrix);
 | 
|---|
 | 98 |   CopyVector(&TestVector);
 | 
|---|
| [db942e] | 99 | //  *out << Verbose(2) << "New corrected vector is: ";
 | 
|---|
 | 100 | //  Output(out);
 | 
|---|
 | 101 | //  *out << endl;
 | 
|---|
 | 102 | //  *out << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
| [14de469] | 103 | };
 | 
|---|
 | 104 | 
 | 
|---|
 | 105 | /** Calculates scalar product between this and another vector.
 | 
|---|
 | 106 |  * \param *y array to second vector
 | 
|---|
 | 107 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 108 |  */
 | 
|---|
 | 109 | double vector::ScalarProduct(const vector *y) const
 | 
|---|
 | 110 | {
 | 
|---|
 | 111 |   double res = 0.;
 | 
|---|
| [7f3b9d] | 112 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 113 |     res += x[i]*y->x[i];
 | 
|---|
 | 114 |   return (res);  
 | 
|---|
 | 115 | };
 | 
|---|
 | 116 | 
 | 
|---|
| [498a9f] | 117 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
 | 118 |  * \param *y array to normal vector of plane
 | 
|---|
 | 119 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 120 |  */
 | 
|---|
 | 121 | void vector::ProjectOntoPlane(const vector *y)
 | 
|---|
 | 122 | {
 | 
|---|
 | 123 |   vector tmp;
 | 
|---|
 | 124 |   tmp.CopyVector(y);
 | 
|---|
 | 125 |   tmp.Scale(Projection(y));
 | 
|---|
 | 126 |   this->SubtractVector(&tmp);
 | 
|---|
 | 127 | };
 | 
|---|
 | 128 | 
 | 
|---|
| [14de469] | 129 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 130 |  * \param *y array to second vector
 | 
|---|
 | 131 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 132 |  */
 | 
|---|
 | 133 | double vector::Projection(const vector *y) const
 | 
|---|
 | 134 | {
 | 
|---|
| [498a9f] | 135 |   return (ScalarProduct(y));
 | 
|---|
| [14de469] | 136 | };
 | 
|---|
 | 137 | 
 | 
|---|
 | 138 | /** Calculates norm of this vector.
 | 
|---|
 | 139 |  * \return \f$|x|\f$
 | 
|---|
 | 140 |  */
 | 
|---|
 | 141 | double vector::Norm() const
 | 
|---|
 | 142 | {
 | 
|---|
 | 143 |   double res = 0.;
 | 
|---|
| [7f3b9d] | 144 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 145 |     res += this->x[i]*this->x[i];
 | 
|---|
 | 146 |   return (sqrt(res));  
 | 
|---|
 | 147 | };
 | 
|---|
 | 148 | 
 | 
|---|
 | 149 | /** Normalizes this vector.
 | 
|---|
 | 150 |  */
 | 
|---|
 | 151 | void vector::Normalize()
 | 
|---|
 | 152 | {
 | 
|---|
 | 153 |   double res = 0.;
 | 
|---|
| [7f3b9d] | 154 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 155 |     res += this->x[i]*this->x[i];
 | 
|---|
 | 156 |   res = 1./sqrt(res);
 | 
|---|
 | 157 |   Scale(&res);
 | 
|---|
 | 158 | };
 | 
|---|
 | 159 | 
 | 
|---|
 | 160 | /** Zeros all components of this vector.
 | 
|---|
 | 161 |  */
 | 
|---|
 | 162 | void vector::Zero()
 | 
|---|
 | 163 | {
 | 
|---|
| [7f3b9d] | 164 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 165 |     this->x[i] = 0.;
 | 
|---|
 | 166 | };
 | 
|---|
 | 167 | 
 | 
|---|
| [498a9f] | 168 | /** Zeros all components of this vector.
 | 
|---|
 | 169 |  */
 | 
|---|
 | 170 | void vector::One(double one)
 | 
|---|
 | 171 | {
 | 
|---|
 | 172 |   for (int i=NDIM;i--;)
 | 
|---|
 | 173 |     this->x[i] = one;
 | 
|---|
 | 174 | };
 | 
|---|
 | 175 | 
 | 
|---|
 | 176 | /** Initialises all components of this vector.
 | 
|---|
 | 177 |  */
 | 
|---|
 | 178 | void vector::Init(double x1, double x2, double x3)
 | 
|---|
 | 179 | { 
 | 
|---|
 | 180 |   x[0] = x1;
 | 
|---|
 | 181 |   x[1] = x2;
 | 
|---|
 | 182 |   x[2] = x3;
 | 
|---|
 | 183 | };
 | 
|---|
 | 184 | 
 | 
|---|
| [14de469] | 185 | /** Calculates the angle between this and another vector.
 | 
|---|
 | 186 |  * \param *y array to second vector
 | 
|---|
| [498a9f] | 187 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
| [14de469] | 188 |  */
 | 
|---|
 | 189 | double vector::Angle(vector *y) const
 | 
|---|
 | 190 | {
 | 
|---|
| [498a9f] | 191 |   return acos(this->ScalarProduct(y)/Norm()/y->Norm()); 
 | 
|---|
| [14de469] | 192 | };
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
 | 
|---|
 | 195 |  * \param *axis rotation axis
 | 
|---|
 | 196 |  * \param alpha rotation angle in radian
 | 
|---|
 | 197 |  */
 | 
|---|
 | 198 | void vector::RotateVector(const vector *axis, const double alpha)
 | 
|---|
 | 199 | {
 | 
|---|
 | 200 |   vector a,y;
 | 
|---|
 | 201 |   // normalise this vector with respect to axis
 | 
|---|
 | 202 |   a.CopyVector(this);
 | 
|---|
 | 203 |   a.Scale(Projection(axis));
 | 
|---|
 | 204 |   SubtractVector(&a);
 | 
|---|
 | 205 |   // construct normal vector
 | 
|---|
 | 206 |   y.MakeNormalVector(axis,this);
 | 
|---|
 | 207 |   y.Scale(Norm());
 | 
|---|
 | 208 |   // scale normal vector by sine and this vector by cosine
 | 
|---|
 | 209 |   y.Scale(sin(alpha));
 | 
|---|
 | 210 |   Scale(cos(alpha));
 | 
|---|
 | 211 |   // add scaled normal vector onto this vector
 | 
|---|
 | 212 |   AddVector(&y);
 | 
|---|
 | 213 |   // add part in axis direction
 | 
|---|
 | 214 |   AddVector(&a);
 | 
|---|
 | 215 | };
 | 
|---|
 | 216 | 
 | 
|---|
| [342f33f] | 217 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
 | 218 |  * \param a base vector
 | 
|---|
 | 219 |  * \param b vector components to add
 | 
|---|
 | 220 |  * \return lhs + a
 | 
|---|
 | 221 |  */
 | 
|---|
 | 222 | vector& operator+=(vector& a, const vector& b)
 | 
|---|
 | 223 | {
 | 
|---|
 | 224 |   a.AddVector(&b);
 | 
|---|
 | 225 |   return a;
 | 
|---|
 | 226 | };
 | 
|---|
 | 227 | /** factor each component of \a a times a double \a m.
 | 
|---|
 | 228 |  * \param a base vector
 | 
|---|
 | 229 |  * \param m factor
 | 
|---|
 | 230 |  * \return lhs.x[i] * m
 | 
|---|
 | 231 |  */
 | 
|---|
 | 232 | vector& operator*=(vector& a, const double m)
 | 
|---|
 | 233 | {
 | 
|---|
 | 234 |   a.Scale(m);
 | 
|---|
 | 235 |   return a;
 | 
|---|
 | 236 | };
 | 
|---|
 | 237 | 
 | 
|---|
 | 238 | /** Sums two vectors \a  and \b component-wise.
 | 
|---|
 | 239 |  * \param a first vector 
 | 
|---|
 | 240 |  * \param b second vector
 | 
|---|
 | 241 |  * \return a + b
 | 
|---|
 | 242 |  */
 | 
|---|
 | 243 | vector& operator+(const vector& a, const vector& b)
 | 
|---|
 | 244 | {
 | 
|---|
 | 245 |   vector *x = new vector;
 | 
|---|
 | 246 |   x->CopyVector(&a);
 | 
|---|
 | 247 |   x->AddVector(&b);
 | 
|---|
 | 248 |   return *x;
 | 
|---|
 | 249 | };
 | 
|---|
 | 250 | 
 | 
|---|
 | 251 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 252 |  * \param a vector 
 | 
|---|
 | 253 |  * \param m factor
 | 
|---|
 | 254 |  * \return a + b
 | 
|---|
 | 255 |  */
 | 
|---|
 | 256 | vector& operator*(const vector& a, const double m)
 | 
|---|
 | 257 | {
 | 
|---|
 | 258 |   vector *x = new vector;
 | 
|---|
 | 259 |   x->CopyVector(&a);
 | 
|---|
 | 260 |   x->Scale(m);
 | 
|---|
 | 261 |   return *x;
 | 
|---|
 | 262 | };
 | 
|---|
 | 263 | 
 | 
|---|
| [14de469] | 264 | /** Prints a 3dim vector.
 | 
|---|
 | 265 |  * prints no end of line.
 | 
|---|
 | 266 |  * \param *out output stream
 | 
|---|
 | 267 |  */
 | 
|---|
 | 268 | bool vector::Output(ofstream *out) const
 | 
|---|
 | 269 | {
 | 
|---|
 | 270 |   if (out != NULL) {
 | 
|---|
 | 271 |     *out << "(";
 | 
|---|
 | 272 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 273 |       *out << x[i];
 | 
|---|
 | 274 |       if (i != 2)
 | 
|---|
 | 275 |         *out << ",";
 | 
|---|
 | 276 |     }
 | 
|---|
 | 277 |     *out << ")";
 | 
|---|
 | 278 |     return true;
 | 
|---|
 | 279 |   } else
 | 
|---|
 | 280 |     return false;
 | 
|---|
 | 281 | };
 | 
|---|
 | 282 | 
 | 
|---|
 | 283 | ofstream& operator<<(ofstream& ost,vector& m)
 | 
|---|
 | 284 | {
 | 
|---|
 | 285 |         m.Output(&ost);
 | 
|---|
 | 286 |         return ost;
 | 
|---|
 | 287 | };
 | 
|---|
 | 288 | 
 | 
|---|
 | 289 | /** Scales each atom coordinate by an individual \a factor.
 | 
|---|
 | 290 |  * \param *factor pointer to scaling factor
 | 
|---|
 | 291 |  */
 | 
|---|
 | 292 | void vector::Scale(double **factor)
 | 
|---|
 | 293 | {
 | 
|---|
| [7f3b9d] | 294 |   for (int i=NDIM;i--;)
 | 
|---|
| [342f33f] | 295 |     x[i] *= (*factor)[i];
 | 
|---|
| [14de469] | 296 | };
 | 
|---|
 | 297 | 
 | 
|---|
 | 298 | void vector::Scale(double *factor)
 | 
|---|
 | 299 | {
 | 
|---|
| [7f3b9d] | 300 |   for (int i=NDIM;i--;)
 | 
|---|
| [342f33f] | 301 |     x[i] *= *factor;
 | 
|---|
| [14de469] | 302 | };
 | 
|---|
 | 303 | 
 | 
|---|
 | 304 | void vector::Scale(double factor)
 | 
|---|
 | 305 | {
 | 
|---|
| [7f3b9d] | 306 |   for (int i=NDIM;i--;)
 | 
|---|
| [342f33f] | 307 |     x[i] *= factor;
 | 
|---|
| [14de469] | 308 | };
 | 
|---|
 | 309 | 
 | 
|---|
 | 310 | /** Translate atom by given vector. 
 | 
|---|
 | 311 |  * \param trans[] translation vector.
 | 
|---|
 | 312 |  */
 | 
|---|
 | 313 | void vector::Translate(const vector *trans)
 | 
|---|
 | 314 | {
 | 
|---|
| [7f3b9d] | 315 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 316 |     x[i] += trans->x[i];
 | 
|---|
 | 317 | }; 
 | 
|---|
 | 318 | 
 | 
|---|
 | 319 | /** Do a matrix multiplication.
 | 
|---|
 | 320 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 321 |  */
 | 
|---|
 | 322 | void vector::MatrixMultiplication(double *M)
 | 
|---|
 | 323 | {
 | 
|---|
 | 324 |   vector C;
 | 
|---|
 | 325 |   // do the matrix multiplication
 | 
|---|
 | 326 |   C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
 | 327 |   C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
 | 328 |   C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
 | 329 |   // transfer the result into this
 | 
|---|
| [7f3b9d] | 330 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 331 |     x[i] = C.x[i];
 | 
|---|
 | 332 | };
 | 
|---|
 | 333 | 
 | 
|---|
 | 334 | /** Do a matrix multiplication with \a *matrix' inverse.
 | 
|---|
 | 335 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 336 |  */
 | 
|---|
 | 337 | void vector::InverseMatrixMultiplication(double *A)
 | 
|---|
 | 338 | {
 | 
|---|
 | 339 |   vector C;
 | 
|---|
 | 340 |   double B[NDIM*NDIM];
 | 
|---|
 | 341 |   double detA = RDET3(A);
 | 
|---|
 | 342 |   double detAReci;
 | 
|---|
 | 343 | 
 | 
|---|
 | 344 |   // calculate the inverse B
 | 
|---|
 | 345 |   if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 346 |     detAReci = 1./detA;
 | 
|---|
 | 347 |     B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11
 | 
|---|
 | 348 |     B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12
 | 
|---|
 | 349 |     B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13
 | 
|---|
 | 350 |     B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21
 | 
|---|
 | 351 |     B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22
 | 
|---|
 | 352 |     B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23
 | 
|---|
 | 353 |     B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31
 | 
|---|
 | 354 |     B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32
 | 
|---|
 | 355 |     B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33
 | 
|---|
 | 356 |   
 | 
|---|
 | 357 |     // do the matrix multiplication
 | 
|---|
 | 358 |     C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
 | 359 |     C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
 | 360 |     C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
 | 361 |     // transfer the result into this
 | 
|---|
| [7f3b9d] | 362 |     for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 363 |       x[i] = C.x[i];
 | 
|---|
 | 364 |   } else {
 | 
|---|
 | 365 |     cerr << "ERROR: inverse of matrix does not exists!" << endl;
 | 
|---|
 | 366 |   }
 | 
|---|
 | 367 | };
 | 
|---|
 | 368 | 
 | 
|---|
 | 369 | 
 | 
|---|
 | 370 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
 | 371 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
 | 372 |  * \param *x1 first vector
 | 
|---|
 | 373 |  * \param *x2 second vector
 | 
|---|
 | 374 |  * \param *x3 third vector
 | 
|---|
 | 375 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
 | 376 |  */
 | 
|---|
 | 377 | void vector::LinearCombinationOfVectors(const vector *x1, const vector *x2, const vector *x3, double *factors)
 | 
|---|
 | 378 | {
 | 
|---|
| [7f3b9d] | 379 |   for(int i=NDIM;i--;)
 | 
|---|
| [14de469] | 380 |     x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i]; 
 | 
|---|
 | 381 | };
 | 
|---|
 | 382 | 
 | 
|---|
 | 383 | /** Mirrors atom against a given plane. 
 | 
|---|
 | 384 |  * \param n[] normal vector of mirror plane.
 | 
|---|
 | 385 |  */
 | 
|---|
 | 386 | void vector::Mirror(const vector *n)
 | 
|---|
 | 387 | {
 | 
|---|
 | 388 |   double projection;
 | 
|---|
| [65684f] | 389 |   projection = ScalarProduct(n)/n->ScalarProduct(n);    // remove constancy from n (keep as logical one)
 | 
|---|
| [14de469] | 390 |   // withdraw projected vector twice from original one
 | 
|---|
 | 391 |   cout << Verbose(1) << "Vector: ";
 | 
|---|
 | 392 |   Output((ofstream *)&cout);
 | 
|---|
 | 393 |   cout << "\t";
 | 
|---|
| [7f3b9d] | 394 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 395 |     x[i] -= 2.*projection*n->x[i];
 | 
|---|
 | 396 |   cout << "Projected vector: ";
 | 
|---|
 | 397 |   Output((ofstream *)&cout);
 | 
|---|
 | 398 |   cout << endl;
 | 
|---|
 | 399 | }; 
 | 
|---|
 | 400 | 
 | 
|---|
 | 401 | /** Calculates normal vector for three given vectors (being three points in space).
 | 
|---|
 | 402 |  * Makes this vector orthonormal to the three given points, making up a place in 3d space.
 | 
|---|
 | 403 |  * \param *y1 first vector
 | 
|---|
 | 404 |  * \param *y2 second vector
 | 
|---|
 | 405 |  * \param *y3 third vector
 | 
|---|
 | 406 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 407 |  */
 | 
|---|
 | 408 | bool vector::MakeNormalVector(const vector *y1, const vector *y2, const vector *y3)
 | 
|---|
 | 409 | {
 | 
|---|
 | 410 |   vector x1, x2;
 | 
|---|
 | 411 | 
 | 
|---|
 | 412 |   x1.CopyVector(y1);
 | 
|---|
 | 413 |   x1.SubtractVector(y2);
 | 
|---|
 | 414 |   x2.CopyVector(y3);
 | 
|---|
 | 415 |   x2.SubtractVector(y2);
 | 
|---|
 | 416 |   if ((x1.Norm()==0) || (x2.Norm()==0)) {
 | 
|---|
 | 417 |     cout << Verbose(4) << "Given vectors are linear dependent." << endl;
 | 
|---|
 | 418 |     return false;
 | 
|---|
 | 419 |   }
 | 
|---|
| [110ceb] | 420 | //  cout << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 421 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 422 | //  cout << endl;
 | 
|---|
 | 423 | //  cout << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 424 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 425 | //  cout << endl;
 | 
|---|
| [14de469] | 426 | 
 | 
|---|
 | 427 |   this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 428 |   this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 429 |   this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 430 |   Normalize();
 | 
|---|
 | 431 |   
 | 
|---|
 | 432 |   return true;
 | 
|---|
 | 433 | };
 | 
|---|
 | 434 | 
 | 
|---|
 | 435 | 
 | 
|---|
 | 436 | /** Calculates orthonormal vector to two given vectors.
 | 
|---|
 | 437 |  * Makes this vector orthonormal to two given vectors. This is very similar to the other
 | 
|---|
 | 438 |  * vector::MakeNormalVector(), only there three points whereas here two difference
 | 
|---|
 | 439 |  * vectors are given.
 | 
|---|
 | 440 |  * \param *x1 first vector
 | 
|---|
 | 441 |  * \param *x2 second vector
 | 
|---|
 | 442 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 443 |  */
 | 
|---|
 | 444 | bool vector::MakeNormalVector(const vector *y1, const vector *y2)
 | 
|---|
 | 445 | {
 | 
|---|
 | 446 |   vector x1,x2;
 | 
|---|
 | 447 |   x1.CopyVector(y1);
 | 
|---|
 | 448 |   x2.CopyVector(y2);
 | 
|---|
 | 449 |   Zero();
 | 
|---|
 | 450 |   if ((x1.Norm()==0) || (x2.Norm()==0)) {
 | 
|---|
 | 451 |     cout << Verbose(4) << "Given vectors are linear dependent." << endl;
 | 
|---|
 | 452 |     return false;
 | 
|---|
 | 453 |   }
 | 
|---|
| [110ceb] | 454 | //  cout << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 455 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 456 | //  cout << endl;
 | 
|---|
 | 457 | //  cout << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 458 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 459 | //  cout << endl;
 | 
|---|
| [14de469] | 460 | 
 | 
|---|
 | 461 |   this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 462 |   this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 463 |   this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 464 |   Normalize();
 | 
|---|
 | 465 | 
 | 
|---|
 | 466 |   return true;
 | 
|---|
 | 467 | };
 | 
|---|
 | 468 | 
 | 
|---|
 | 469 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
 | 470 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
 | 471 |  * \param *x1 vector
 | 
|---|
 | 472 |  * \return true - success, false - vector is zero
 | 
|---|
 | 473 |  */
 | 
|---|
 | 474 | bool vector::MakeNormalVector(const vector *y1)
 | 
|---|
 | 475 | {
 | 
|---|
 | 476 |         bool result = false;
 | 
|---|
 | 477 |   vector x1;
 | 
|---|
 | 478 |   x1.CopyVector(y1);
 | 
|---|
 | 479 |   x1.Scale(x1.Projection(this));
 | 
|---|
 | 480 |   SubtractVector(&x1);
 | 
|---|
| [7f3b9d] | 481 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 482 |           result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
 | 483 | 
 | 
|---|
 | 484 |   return result;
 | 
|---|
 | 485 | };
 | 
|---|
 | 486 | 
 | 
|---|
 | 487 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
 | 488 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
 | 489 |  * try to get the skp of both to be zero accordingly.  
 | 
|---|
 | 490 |  * \param *vector given vector
 | 
|---|
 | 491 |  * \return true - success, false - failure (null vector given)
 | 
|---|
 | 492 |  */
 | 
|---|
| [65684f] | 493 | bool vector::GetOneNormalVector(const vector *GivenVector)
 | 
|---|
| [14de469] | 494 | {
 | 
|---|
 | 495 |   int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
 | 496 |   int Last = 0;   // count the number of non-zero entries in vector
 | 
|---|
 | 497 |   int j;  // loop variables
 | 
|---|
 | 498 |   double norm;
 | 
|---|
 | 499 | 
 | 
|---|
 | 500 |   cout << Verbose(4);
 | 
|---|
| [65684f] | 501 |   GivenVector->Output((ofstream *)&cout);
 | 
|---|
| [14de469] | 502 |   cout << endl;
 | 
|---|
| [7f3b9d] | 503 |   for (j=NDIM;j--;)
 | 
|---|
| [14de469] | 504 |     Components[j] = -1;
 | 
|---|
 | 505 |   // find two components != 0
 | 
|---|
 | 506 |   for (j=0;j<NDIM;j++)
 | 
|---|
| [65684f] | 507 |     if (fabs(GivenVector->x[j]) > MYEPSILON)
 | 
|---|
| [14de469] | 508 |       Components[Last++] = j;
 | 
|---|
 | 509 |   cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
 | 
|---|
 | 510 |         
 | 
|---|
 | 511 |   switch(Last) {
 | 
|---|
 | 512 |     case 3:  // threecomponent system
 | 
|---|
 | 513 |     case 2:  // two component system
 | 
|---|
| [65684f] | 514 |       norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
 | 
|---|
| [14de469] | 515 |       x[Components[2]] = 0.;
 | 
|---|
 | 516 |       // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
| [65684f] | 517 |       x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
 | 
|---|
 | 518 |       x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
 | 
|---|
| [14de469] | 519 |       return true;
 | 
|---|
 | 520 |       break;
 | 
|---|
 | 521 |     case 1: // one component system
 | 
|---|
 | 522 |       // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
 | 523 |       x[(Components[0]+2)%NDIM] = 0.;   
 | 
|---|
 | 524 |       x[(Components[0]+1)%NDIM] = 1.;   
 | 
|---|
 | 525 |       x[Components[0]] = 0.;   
 | 
|---|
 | 526 |       return true;
 | 
|---|
 | 527 |       break;
 | 
|---|
 | 528 |     default:
 | 
|---|
 | 529 |       return false;
 | 
|---|
 | 530 |   }
 | 
|---|
 | 531 | };
 | 
|---|
 | 532 | 
 | 
|---|
| [110ceb] | 533 | /** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
 | 
|---|
 | 534 |  * \param *A first plane vector
 | 
|---|
 | 535 |  * \param *B second plane vector
 | 
|---|
 | 536 |  * \param *C third plane vector
 | 
|---|
 | 537 |  * \return scaling parameter for this vector
 | 
|---|
 | 538 |  */
 | 
|---|
 | 539 | double vector::CutsPlaneAt(vector *A, vector *B, vector *C)
 | 
|---|
 | 540 | {
 | 
|---|
 | 541 | //  cout << Verbose(3) << "For comparison: ";
 | 
|---|
 | 542 | //  cout << "A " << A->Projection(this) << "\t"; 
 | 
|---|
 | 543 | //  cout << "B " << B->Projection(this) << "\t"; 
 | 
|---|
 | 544 | //  cout << "C " << C->Projection(this) << "\t"; 
 | 
|---|
 | 545 | //  cout << endl;
 | 
|---|
 | 546 |   return A->Projection(this);
 | 
|---|
 | 547 | };
 | 
|---|
 | 548 | 
 | 
|---|
| [14de469] | 549 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
 | 
|---|
 | 550 |  * \param *vectors set of vectors
 | 
|---|
 | 551 |  * \param num number of vectors
 | 
|---|
 | 552 |  * \return true if success, false if failed due to linear dependency
 | 
|---|
 | 553 |  */
 | 
|---|
 | 554 | bool vector::LSQdistance(vector **vectors, int num) 
 | 
|---|
 | 555 | {
 | 
|---|
 | 556 |         int j;
 | 
|---|
 | 557 |                                 
 | 
|---|
 | 558 |         for (j=0;j<num;j++) {
 | 
|---|
 | 559 |                 cout << Verbose(1) << j << "th atom's vector: ";
 | 
|---|
 | 560 |                 (vectors[j])->Output((ofstream *)&cout);
 | 
|---|
 | 561 |                 cout << endl;
 | 
|---|
 | 562 |         }
 | 
|---|
 | 563 | 
 | 
|---|
 | 564 |   int np = 3;
 | 
|---|
 | 565 |         struct LSQ_params par;
 | 
|---|
 | 566 |     
 | 
|---|
 | 567 |    const gsl_multimin_fminimizer_type *T =
 | 
|---|
 | 568 |      gsl_multimin_fminimizer_nmsimplex;
 | 
|---|
 | 569 |    gsl_multimin_fminimizer *s = NULL;
 | 
|---|
| [65684f] | 570 |    gsl_vector *ss, *y;
 | 
|---|
| [14de469] | 571 |    gsl_multimin_function minex_func;
 | 
|---|
 | 572 |  
 | 
|---|
 | 573 |    size_t iter = 0, i;
 | 
|---|
 | 574 |    int status;
 | 
|---|
 | 575 |    double size;
 | 
|---|
 | 576 |  
 | 
|---|
 | 577 |    /* Initial vertex size vector */
 | 
|---|
 | 578 |    ss = gsl_vector_alloc (np);
 | 
|---|
| [65684f] | 579 |    y = gsl_vector_alloc (np);
 | 
|---|
| [14de469] | 580 |  
 | 
|---|
 | 581 |    /* Set all step sizes to 1 */
 | 
|---|
 | 582 |    gsl_vector_set_all (ss, 1.0);
 | 
|---|
 | 583 |  
 | 
|---|
 | 584 |    /* Starting point */
 | 
|---|
 | 585 |    par.vectors = vectors;
 | 
|---|
 | 586 |          par.num = num;
 | 
|---|
 | 587 |         
 | 
|---|
| [7f3b9d] | 588 |          for (i=NDIM;i--;)
 | 
|---|
| [65684f] | 589 |                 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.); 
 | 
|---|
| [14de469] | 590 |          
 | 
|---|
 | 591 |    /* Initialize method and iterate */
 | 
|---|
 | 592 |    minex_func.f = &LSQ;
 | 
|---|
 | 593 |    minex_func.n = np;
 | 
|---|
 | 594 |    minex_func.params = (void *)∥
 | 
|---|
 | 595 |  
 | 
|---|
 | 596 |    s = gsl_multimin_fminimizer_alloc (T, np);
 | 
|---|
| [65684f] | 597 |    gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
 | 
|---|
| [14de469] | 598 |  
 | 
|---|
 | 599 |    do
 | 
|---|
 | 600 |      {
 | 
|---|
 | 601 |        iter++;
 | 
|---|
 | 602 |        status = gsl_multimin_fminimizer_iterate(s);
 | 
|---|
 | 603 |  
 | 
|---|
 | 604 |        if (status)
 | 
|---|
 | 605 |          break;
 | 
|---|
 | 606 |  
 | 
|---|
 | 607 |        size = gsl_multimin_fminimizer_size (s);
 | 
|---|
 | 608 |        status = gsl_multimin_test_size (size, 1e-2);
 | 
|---|
 | 609 |  
 | 
|---|
 | 610 |        if (status == GSL_SUCCESS)
 | 
|---|
 | 611 |          {
 | 
|---|
 | 612 |            printf ("converged to minimum at\n");
 | 
|---|
 | 613 |          }
 | 
|---|
 | 614 |  
 | 
|---|
 | 615 |        printf ("%5d ", (int)iter);
 | 
|---|
 | 616 |        for (i = 0; i < (size_t)np; i++)
 | 
|---|
 | 617 |          {
 | 
|---|
 | 618 |            printf ("%10.3e ", gsl_vector_get (s->x, i));
 | 
|---|
 | 619 |          }
 | 
|---|
 | 620 |        printf ("f() = %7.3f size = %.3f\n", s->fval, size);
 | 
|---|
 | 621 |      }
 | 
|---|
 | 622 |    while (status == GSL_CONTINUE && iter < 100);
 | 
|---|
 | 623 |  
 | 
|---|
| [7f3b9d] | 624 |   for (i=(size_t)np;i--;)
 | 
|---|
| [14de469] | 625 |     this->x[i] = gsl_vector_get(s->x, i);
 | 
|---|
| [65684f] | 626 |    gsl_vector_free(y);
 | 
|---|
| [14de469] | 627 |    gsl_vector_free(ss);
 | 
|---|
 | 628 |    gsl_multimin_fminimizer_free (s);
 | 
|---|
 | 629 | 
 | 
|---|
 | 630 |         return true;
 | 
|---|
 | 631 | };
 | 
|---|
 | 632 | 
 | 
|---|
 | 633 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 634 |  * \param *y vector
 | 
|---|
 | 635 |  */
 | 
|---|
 | 636 | void vector::AddVector(const vector *y)
 | 
|---|
 | 637 | {
 | 
|---|
| [7f3b9d] | 638 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 639 |     this->x[i] += y->x[i];
 | 
|---|
 | 640 | }
 | 
|---|
 | 641 | 
 | 
|---|
 | 642 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 643 |  * \param *y vector
 | 
|---|
 | 644 |  */
 | 
|---|
 | 645 | void vector::SubtractVector(const vector *y)
 | 
|---|
 | 646 | {
 | 
|---|
| [7f3b9d] | 647 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 648 |     this->x[i] -= y->x[i];
 | 
|---|
 | 649 | }
 | 
|---|
 | 650 | 
 | 
|---|
 | 651 | /** Copy vector \a *y componentwise.
 | 
|---|
 | 652 |  * \param *y vector
 | 
|---|
 | 653 |  */
 | 
|---|
 | 654 | void vector::CopyVector(const vector *y)
 | 
|---|
 | 655 | {
 | 
|---|
| [7f3b9d] | 656 |   for (int i=NDIM;i--;)
 | 
|---|
| [14de469] | 657 |     this->x[i] = y->x[i];
 | 
|---|
 | 658 | }
 | 
|---|
 | 659 | 
 | 
|---|
 | 660 | 
 | 
|---|
 | 661 | /** Asks for position, checks for boundary.
 | 
|---|
 | 662 |  * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
 | 
|---|
 | 663 |  * \param check whether bounds shall be checked (true) or not (false)
 | 
|---|
 | 664 |  */
 | 
|---|
 | 665 | void vector::AskPosition(double *cell_size, bool check)
 | 
|---|
 | 666 | {
 | 
|---|
 | 667 |   char coords[3] = {'x','y','z'};
 | 
|---|
 | 668 |   int j = -1;
 | 
|---|
 | 669 |   for (int i=0;i<3;i++) {
 | 
|---|
 | 670 |     j += i+1;
 | 
|---|
 | 671 |     do {
 | 
|---|
 | 672 |       cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
 | 
|---|
 | 673 |       cin >> x[i];
 | 
|---|
 | 674 |     } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
 | 
|---|
 | 675 |   }
 | 
|---|
 | 676 | };
 | 
|---|
 | 677 | 
 | 
|---|
 | 678 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
 | 
|---|
 | 679 |  * This is linear system of equations to be solved, however of the three given (skp of this vector\
 | 
|---|
 | 680 |  * with either of the three hast to be zero) only two are linear independent. The third equation
 | 
|---|
 | 681 |  * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
 | 
|---|
 | 682 |  * where very often it has to be checked whether a certain value is zero or not and thus forked into
 | 
|---|
 | 683 |  * another case.
 | 
|---|
 | 684 |  * \param *x1 first vector
 | 
|---|
 | 685 |  * \param *x2 second vector
 | 
|---|
 | 686 |  * \param *y third vector
 | 
|---|
 | 687 |  * \param alpha first angle
 | 
|---|
 | 688 |  * \param beta second angle
 | 
|---|
 | 689 |  * \param c norm of final vector 
 | 
|---|
 | 690 |  * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
 | 
|---|
 | 691 |  * \bug this is not yet working properly 
 | 
|---|
 | 692 |  */
 | 
|---|
 | 693 | bool vector::SolveSystem(vector *x1, vector *x2, vector *y, double alpha, double beta, double c)
 | 
|---|
 | 694 | {
 | 
|---|
 | 695 |   double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
 | 
|---|
 | 696 |   double ang; // angle on testing
 | 
|---|
 | 697 |   double sign[3];
 | 
|---|
 | 698 |   int i,j,k;
 | 
|---|
 | 699 |   A = cos(alpha) * x1->Norm() * c;
 | 
|---|
 | 700 |   B1 = cos(beta + M_PI/2.) * y->Norm() * c;
 | 
|---|
 | 701 |   B2 = cos(beta) * x2->Norm() * c;
 | 
|---|
 | 702 |   C = c * c;
 | 
|---|
 | 703 |   cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
 | 
|---|
 | 704 |   int flag = 0;
 | 
|---|
 | 705 |   if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
 | 
|---|
 | 706 |     if (fabs(x1->x[1]) > MYEPSILON) {
 | 
|---|
 | 707 |       flag = 1;    
 | 
|---|
 | 708 |     } else if (fabs(x1->x[2]) > MYEPSILON) {
 | 
|---|
 | 709 |        flag = 2;
 | 
|---|
 | 710 |     } else {
 | 
|---|
 | 711 |       return false;
 | 
|---|
 | 712 |     }
 | 
|---|
 | 713 |   }
 | 
|---|
 | 714 |   switch (flag) {
 | 
|---|
 | 715 |     default:
 | 
|---|
 | 716 |     case 0:
 | 
|---|
 | 717 |       break;
 | 
|---|
 | 718 |     case 2:
 | 
|---|
 | 719 |       flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 720 |       flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 721 |       flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 722 |       //flip(&x[0],&x[1]);
 | 
|---|
 | 723 |       flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 724 |       flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 725 |       flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 726 |       //flip(&x[1],&x[2]);
 | 
|---|
 | 727 |     case 1:
 | 
|---|
 | 728 |       flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 729 |       flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 730 |       flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 731 |       //flip(&x[0],&x[1]);
 | 
|---|
 | 732 |       flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 733 |       flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 734 |       flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 735 |       //flip(&x[1],&x[2]);
 | 
|---|
 | 736 |       break;
 | 
|---|
 | 737 |   }
 | 
|---|
 | 738 |   // now comes the case system
 | 
|---|
 | 739 |   D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
 | 
|---|
 | 740 |   D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2]; 
 | 
|---|
 | 741 |   D3 = y->x[0]/x1->x[0]*A-B1;
 | 
|---|
 | 742 |   cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
 | 
|---|
 | 743 |   if (fabs(D1) < MYEPSILON) {
 | 
|---|
 | 744 |     cout << Verbose(2) << "D1 == 0!\n"; 
 | 
|---|
 | 745 |     if (fabs(D2) > MYEPSILON) {
 | 
|---|
 | 746 |       cout << Verbose(3) << "D2 != 0!\n"; 
 | 
|---|
 | 747 |       x[2] = -D3/D2;
 | 
|---|
 | 748 |       E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
 | 
|---|
 | 749 |       E2 = -x1->x[1]/x1->x[0];
 | 
|---|
 | 750 |       cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
 | 751 |       F1 = E1*E1 + 1.;
 | 
|---|
 | 752 |       F2 = -E1*E2;
 | 
|---|
 | 753 |       F3 = E1*E1 + D3*D3/(D2*D2) - C;
 | 
|---|
 | 754 |       cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
 | 755 |       if (fabs(F1) < MYEPSILON) {
 | 
|---|
 | 756 |         cout << Verbose(4) << "F1 == 0!\n"; 
 | 
|---|
 | 757 |         cout << Verbose(4) << "Gleichungssystem linear\n";
 | 
|---|
 | 758 |         x[1] = F3/(2.*F2); 
 | 
|---|
 | 759 |       } else {
 | 
|---|
 | 760 |         p = F2/F1;
 | 
|---|
 | 761 |         q = p*p - F3/F1;
 | 
|---|
 | 762 |         cout << Verbose(4) << "p " << p << "\tq " << q << endl;  
 | 
|---|
 | 763 |         if (q < 0) {
 | 
|---|
 | 764 |           cout << Verbose(4) << "q < 0" << endl;
 | 
|---|
 | 765 |           return false;
 | 
|---|
 | 766 |         }
 | 
|---|
 | 767 |         x[1] = p + sqrt(q);
 | 
|---|
 | 768 |       }
 | 
|---|
 | 769 |       x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 770 |     } else {
 | 
|---|
 | 771 |       cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
 | 
|---|
 | 772 |       return false;
 | 
|---|
 | 773 |     }
 | 
|---|
 | 774 |   } else {
 | 
|---|
 | 775 |     E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
 | 
|---|
 | 776 |     E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
 | 
|---|
 | 777 |     cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
 | 778 |     F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
 | 
|---|
 | 779 |     F2 = -(E1*E2 + D2*D3/(D1*D1));
 | 
|---|
 | 780 |     F3 = E1*E1 + D3*D3/(D1*D1) - C;
 | 
|---|
 | 781 |     cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
 | 782 |     if (fabs(F1) < MYEPSILON) {
 | 
|---|
 | 783 |       cout << Verbose(3) << "F1 == 0!\n"; 
 | 
|---|
 | 784 |       cout << Verbose(3) << "Gleichungssystem linear\n";
 | 
|---|
 | 785 |       x[2] = F3/(2.*F2);     
 | 
|---|
 | 786 |     } else {
 | 
|---|
 | 787 |       p = F2/F1;
 | 
|---|
 | 788 |       q = p*p - F3/F1;
 | 
|---|
 | 789 |       cout << Verbose(3) << "p " << p << "\tq " << q << endl;  
 | 
|---|
 | 790 |       if (q < 0) {
 | 
|---|
 | 791 |         cout << Verbose(3) << "q < 0" << endl;
 | 
|---|
 | 792 |         return false;
 | 
|---|
 | 793 |       }
 | 
|---|
 | 794 |       x[2] = p + sqrt(q);
 | 
|---|
 | 795 |     }
 | 
|---|
 | 796 |     x[1] = (-D2 * x[2] - D3)/D1;
 | 
|---|
 | 797 |     x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 798 |   }
 | 
|---|
 | 799 |   switch (flag) { // back-flipping
 | 
|---|
 | 800 |     default:
 | 
|---|
 | 801 |     case 0:
 | 
|---|
 | 802 |       break;
 | 
|---|
 | 803 |     case 2:
 | 
|---|
 | 804 |       flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 805 |       flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 806 |       flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 807 |       flip(&x[0],&x[1]);
 | 
|---|
 | 808 |       flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 809 |       flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 810 |       flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 811 |       flip(&x[1],&x[2]);
 | 
|---|
 | 812 |     case 1:
 | 
|---|
 | 813 |       flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 814 |       flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 815 |       flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 816 |       //flip(&x[0],&x[1]);
 | 
|---|
 | 817 |       flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 818 |       flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 819 |       flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 820 |       flip(&x[1],&x[2]);
 | 
|---|
 | 821 |       break;
 | 
|---|
 | 822 |   }
 | 
|---|
 | 823 |   // one z component is only determined by its radius (without sign)
 | 
|---|
 | 824 |   // thus check eight possible sign flips and determine by checking angle with second vector
 | 
|---|
 | 825 |   for (i=0;i<8;i++) {
 | 
|---|
 | 826 |     // set sign vector accordingly
 | 
|---|
 | 827 |     for (j=2;j>=0;j--) {
 | 
|---|
 | 828 |       k = (i & pot(2,j)) << j;
 | 
|---|
 | 829 |       cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
 | 
|---|
 | 830 |       sign[j] = (k == 0) ? 1. : -1.;
 | 
|---|
 | 831 |     }
 | 
|---|
 | 832 |     cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
 | 
|---|
 | 833 |     // apply sign matrix 
 | 
|---|
| [7f3b9d] | 834 |     for (j=NDIM;j--;)
 | 
|---|
| [14de469] | 835 |       x[j] *= sign[j];
 | 
|---|
 | 836 |     // calculate angle and check
 | 
|---|
 | 837 |     ang = x2->Angle (this);
 | 
|---|
 | 838 |     cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
 | 
|---|
 | 839 |     if (fabs(ang - cos(beta)) < MYEPSILON) {  
 | 
|---|
 | 840 |       break;
 | 
|---|
 | 841 |     }
 | 
|---|
 | 842 |     // unapply sign matrix (is its own inverse)
 | 
|---|
| [7f3b9d] | 843 |     for (j=NDIM;j--;)
 | 
|---|
| [14de469] | 844 |       x[j] *= sign[j];
 | 
|---|
 | 845 |   }
 | 
|---|
 | 846 |   return true;
 | 
|---|
 | 847 | };
 | 
|---|