| [6ac7ee] | 1 | /** \file vector.cpp | 
|---|
|  | 2 | * | 
|---|
|  | 3 | * Function implementations for the class vector. | 
|---|
|  | 4 | * | 
|---|
|  | 5 | */ | 
|---|
|  | 6 |  | 
|---|
|  | 7 | #include "molecules.hpp" | 
|---|
|  | 8 |  | 
|---|
|  | 9 |  | 
|---|
|  | 10 | /************************************ Functions for class vector ************************************/ | 
|---|
|  | 11 |  | 
|---|
|  | 12 | /** Constructor of class vector. | 
|---|
|  | 13 | */ | 
|---|
|  | 14 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; }; | 
|---|
|  | 15 |  | 
|---|
|  | 16 | /** Constructor of class vector. | 
|---|
|  | 17 | */ | 
|---|
|  | 18 | Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; }; | 
|---|
|  | 19 |  | 
|---|
|  | 20 | /** Desctructor of class vector. | 
|---|
|  | 21 | */ | 
|---|
|  | 22 | Vector::~Vector() {}; | 
|---|
|  | 23 |  | 
|---|
|  | 24 | /** Calculates square of distance between this and another vector. | 
|---|
|  | 25 | * \param *y array to second vector | 
|---|
|  | 26 | * \return \f$| x - y |^2\f$ | 
|---|
|  | 27 | */ | 
|---|
|  | 28 | double Vector::DistanceSquared(const Vector *y) const | 
|---|
|  | 29 | { | 
|---|
|  | 30 | double res = 0.; | 
|---|
|  | 31 | for (int i=NDIM;i--;) | 
|---|
|  | 32 | res += (x[i]-y->x[i])*(x[i]-y->x[i]); | 
|---|
|  | 33 | return (res); | 
|---|
|  | 34 | }; | 
|---|
|  | 35 |  | 
|---|
|  | 36 | /** Calculates distance between this and another vector. | 
|---|
|  | 37 | * \param *y array to second vector | 
|---|
|  | 38 | * \return \f$| x - y |\f$ | 
|---|
|  | 39 | */ | 
|---|
|  | 40 | double Vector::Distance(const Vector *y) const | 
|---|
|  | 41 | { | 
|---|
|  | 42 | double res = 0.; | 
|---|
|  | 43 | for (int i=NDIM;i--;) | 
|---|
|  | 44 | res += (x[i]-y->x[i])*(x[i]-y->x[i]); | 
|---|
|  | 45 | return (sqrt(res)); | 
|---|
|  | 46 | }; | 
|---|
|  | 47 |  | 
|---|
|  | 48 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
|  | 49 | * \param *y array to second vector | 
|---|
|  | 50 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
|  | 51 | * \return \f$| x - y |\f$ | 
|---|
|  | 52 | */ | 
|---|
|  | 53 | double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const | 
|---|
|  | 54 | { | 
|---|
|  | 55 | double res = Distance(y), tmp, matrix[NDIM*NDIM]; | 
|---|
|  | 56 | Vector Shiftedy, TranslationVector; | 
|---|
|  | 57 | int N[NDIM]; | 
|---|
|  | 58 | matrix[0] = cell_size[0]; | 
|---|
|  | 59 | matrix[1] = cell_size[1]; | 
|---|
|  | 60 | matrix[2] = cell_size[3]; | 
|---|
|  | 61 | matrix[3] = cell_size[1]; | 
|---|
|  | 62 | matrix[4] = cell_size[2]; | 
|---|
|  | 63 | matrix[5] = cell_size[4]; | 
|---|
|  | 64 | matrix[6] = cell_size[3]; | 
|---|
|  | 65 | matrix[7] = cell_size[4]; | 
|---|
|  | 66 | matrix[8] = cell_size[5]; | 
|---|
|  | 67 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
|  | 68 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
|  | 69 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
|  | 70 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
|  | 71 | // create the translation vector | 
|---|
|  | 72 | TranslationVector.Zero(); | 
|---|
|  | 73 | for (int i=NDIM;i--;) | 
|---|
|  | 74 | TranslationVector.x[i] = (double)N[i]; | 
|---|
|  | 75 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
|  | 76 | // add onto the original vector to compare with | 
|---|
|  | 77 | Shiftedy.CopyVector(y); | 
|---|
|  | 78 | Shiftedy.AddVector(&TranslationVector); | 
|---|
|  | 79 | // get distance and compare with minimum so far | 
|---|
|  | 80 | tmp = Distance(&Shiftedy); | 
|---|
|  | 81 | if (tmp < res) res = tmp; | 
|---|
|  | 82 | } | 
|---|
|  | 83 | return (res); | 
|---|
|  | 84 | }; | 
|---|
|  | 85 |  | 
|---|
|  | 86 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
|  | 87 | * \param *y array to second vector | 
|---|
|  | 88 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
|  | 89 | * \return \f$| x - y |^2\f$ | 
|---|
|  | 90 | */ | 
|---|
|  | 91 | double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const | 
|---|
|  | 92 | { | 
|---|
|  | 93 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM]; | 
|---|
|  | 94 | Vector Shiftedy, TranslationVector; | 
|---|
|  | 95 | int N[NDIM]; | 
|---|
|  | 96 | matrix[0] = cell_size[0]; | 
|---|
|  | 97 | matrix[1] = cell_size[1]; | 
|---|
|  | 98 | matrix[2] = cell_size[3]; | 
|---|
|  | 99 | matrix[3] = cell_size[1]; | 
|---|
|  | 100 | matrix[4] = cell_size[2]; | 
|---|
|  | 101 | matrix[5] = cell_size[4]; | 
|---|
|  | 102 | matrix[6] = cell_size[3]; | 
|---|
|  | 103 | matrix[7] = cell_size[4]; | 
|---|
|  | 104 | matrix[8] = cell_size[5]; | 
|---|
|  | 105 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
|  | 106 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
|  | 107 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
|  | 108 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
|  | 109 | // create the translation vector | 
|---|
|  | 110 | TranslationVector.Zero(); | 
|---|
|  | 111 | for (int i=NDIM;i--;) | 
|---|
|  | 112 | TranslationVector.x[i] = (double)N[i]; | 
|---|
|  | 113 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
|  | 114 | // add onto the original vector to compare with | 
|---|
|  | 115 | Shiftedy.CopyVector(y); | 
|---|
|  | 116 | Shiftedy.AddVector(&TranslationVector); | 
|---|
|  | 117 | // get distance and compare with minimum so far | 
|---|
|  | 118 | tmp = DistanceSquared(&Shiftedy); | 
|---|
|  | 119 | if (tmp < res) res = tmp; | 
|---|
|  | 120 | } | 
|---|
|  | 121 | return (res); | 
|---|
|  | 122 | }; | 
|---|
|  | 123 |  | 
|---|
|  | 124 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix. | 
|---|
|  | 125 | * \param *out ofstream for debugging messages | 
|---|
|  | 126 | * Tries to translate a vector into each adjacent neighbouring cell. | 
|---|
|  | 127 | */ | 
|---|
|  | 128 | void Vector::KeepPeriodic(ofstream *out, double *matrix) | 
|---|
|  | 129 | { | 
|---|
|  | 130 | //      int N[NDIM]; | 
|---|
|  | 131 | //      bool flag = false; | 
|---|
|  | 132 | //vector Shifted, TranslationVector; | 
|---|
|  | 133 | Vector TestVector; | 
|---|
|  | 134 | //      *out << Verbose(1) << "Begin of KeepPeriodic." << endl; | 
|---|
|  | 135 | //      *out << Verbose(2) << "Vector is: "; | 
|---|
|  | 136 | //      Output(out); | 
|---|
|  | 137 | //      *out << endl; | 
|---|
|  | 138 | TestVector.CopyVector(this); | 
|---|
|  | 139 | TestVector.InverseMatrixMultiplication(matrix); | 
|---|
|  | 140 | for(int i=NDIM;i--;) { // correct periodically | 
|---|
|  | 141 | if (TestVector.x[i] < 0) {      // get every coefficient into the interval [0,1) | 
|---|
|  | 142 | TestVector.x[i] += ceil(TestVector.x[i]); | 
|---|
|  | 143 | } else { | 
|---|
|  | 144 | TestVector.x[i] -= floor(TestVector.x[i]); | 
|---|
|  | 145 | } | 
|---|
|  | 146 | } | 
|---|
|  | 147 | TestVector.MatrixMultiplication(matrix); | 
|---|
|  | 148 | CopyVector(&TestVector); | 
|---|
|  | 149 | //      *out << Verbose(2) << "New corrected vector is: "; | 
|---|
|  | 150 | //      Output(out); | 
|---|
|  | 151 | //      *out << endl; | 
|---|
|  | 152 | //      *out << Verbose(1) << "End of KeepPeriodic." << endl; | 
|---|
|  | 153 | }; | 
|---|
|  | 154 |  | 
|---|
|  | 155 | /** Calculates scalar product between this and another vector. | 
|---|
|  | 156 | * \param *y array to second vector | 
|---|
|  | 157 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 158 | */ | 
|---|
|  | 159 | double Vector::ScalarProduct(const Vector *y) const | 
|---|
|  | 160 | { | 
|---|
|  | 161 | double res = 0.; | 
|---|
|  | 162 | for (int i=NDIM;i--;) | 
|---|
|  | 163 | res += x[i]*y->x[i]; | 
|---|
|  | 164 | return (res); | 
|---|
|  | 165 | }; | 
|---|
|  | 166 |  | 
|---|
|  | 167 |  | 
|---|
|  | 168 | /** Calculates VectorProduct between this and another vector. | 
|---|
|  | 169 | *      -# returns the Product in place of vector from which it was initiated | 
|---|
|  | 170 | *      -# ATTENTION: Only three dim. | 
|---|
|  | 171 | *      \param *y array to vector with which to calculate crossproduct | 
|---|
|  | 172 | *      \return \f$ x \times y \f& | 
|---|
|  | 173 | */ | 
|---|
|  | 174 | void Vector::VectorProduct(const Vector *y) | 
|---|
|  | 175 | { | 
|---|
|  | 176 | Vector tmp; | 
|---|
|  | 177 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]); | 
|---|
|  | 178 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]); | 
|---|
|  | 179 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]); | 
|---|
|  | 180 | this->CopyVector(&tmp); | 
|---|
|  | 181 |  | 
|---|
|  | 182 | }; | 
|---|
|  | 183 |  | 
|---|
|  | 184 |  | 
|---|
|  | 185 | /** projects this vector onto plane defined by \a *y. | 
|---|
|  | 186 | * \param *y normal vector of plane | 
|---|
|  | 187 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 188 | */ | 
|---|
|  | 189 | void Vector::ProjectOntoPlane(const Vector *y) | 
|---|
|  | 190 | { | 
|---|
|  | 191 | Vector tmp; | 
|---|
|  | 192 | tmp.CopyVector(y); | 
|---|
|  | 193 | tmp.Normalize(); | 
|---|
|  | 194 | tmp.Scale(ScalarProduct(&tmp)); | 
|---|
|  | 195 | this->SubtractVector(&tmp); | 
|---|
|  | 196 | }; | 
|---|
|  | 197 |  | 
|---|
|  | 198 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
|  | 199 | * \param *y array to second vector | 
|---|
|  | 200 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 201 | */ | 
|---|
|  | 202 | double Vector::Projection(const Vector *y) const | 
|---|
|  | 203 | { | 
|---|
|  | 204 | return (ScalarProduct(y)); | 
|---|
|  | 205 | }; | 
|---|
|  | 206 |  | 
|---|
|  | 207 | /** Calculates norm of this vector. | 
|---|
|  | 208 | * \return \f$|x|\f$ | 
|---|
|  | 209 | */ | 
|---|
|  | 210 | double Vector::Norm() const | 
|---|
|  | 211 | { | 
|---|
|  | 212 | double res = 0.; | 
|---|
|  | 213 | for (int i=NDIM;i--;) | 
|---|
|  | 214 | res += this->x[i]*this->x[i]; | 
|---|
|  | 215 | return (sqrt(res)); | 
|---|
|  | 216 | }; | 
|---|
|  | 217 |  | 
|---|
|  | 218 | /** Normalizes this vector. | 
|---|
|  | 219 | */ | 
|---|
|  | 220 | void Vector::Normalize() | 
|---|
|  | 221 | { | 
|---|
|  | 222 | double res = 0.; | 
|---|
|  | 223 | for (int i=NDIM;i--;) | 
|---|
|  | 224 | res += this->x[i]*this->x[i]; | 
|---|
|  | 225 | if (fabs(res) > MYEPSILON) | 
|---|
|  | 226 | res = 1./sqrt(res); | 
|---|
|  | 227 | Scale(&res); | 
|---|
|  | 228 | }; | 
|---|
|  | 229 |  | 
|---|
|  | 230 | /** Zeros all components of this vector. | 
|---|
|  | 231 | */ | 
|---|
|  | 232 | void Vector::Zero() | 
|---|
|  | 233 | { | 
|---|
|  | 234 | for (int i=NDIM;i--;) | 
|---|
|  | 235 | this->x[i] = 0.; | 
|---|
|  | 236 | }; | 
|---|
|  | 237 |  | 
|---|
|  | 238 | /** Zeros all components of this vector. | 
|---|
|  | 239 | */ | 
|---|
|  | 240 | void Vector::One(double one) | 
|---|
|  | 241 | { | 
|---|
|  | 242 | for (int i=NDIM;i--;) | 
|---|
|  | 243 | this->x[i] = one; | 
|---|
|  | 244 | }; | 
|---|
|  | 245 |  | 
|---|
|  | 246 | /** Initialises all components of this vector. | 
|---|
|  | 247 | */ | 
|---|
|  | 248 | void Vector::Init(double x1, double x2, double x3) | 
|---|
|  | 249 | { | 
|---|
|  | 250 | x[0] = x1; | 
|---|
|  | 251 | x[1] = x2; | 
|---|
|  | 252 | x[2] = x3; | 
|---|
|  | 253 | }; | 
|---|
|  | 254 |  | 
|---|
|  | 255 | /** Calculates the angle between this and another vector. | 
|---|
|  | 256 | * \param *y array to second vector | 
|---|
|  | 257 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$ | 
|---|
|  | 258 | */ | 
|---|
|  | 259 | double Vector::Angle(const Vector *y) const | 
|---|
|  | 260 | { | 
|---|
| [02da9e] | 261 | double angle = this->ScalarProduct(y)/Norm()/y->Norm(); | 
|---|
|  | 262 | // -1-MYEPSILON occured due to numerical imprecision, catch ... | 
|---|
|  | 263 | //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl; | 
|---|
|  | 264 | if (angle < -1) | 
|---|
|  | 265 | angle = -1; | 
|---|
|  | 266 | if (angle > 1) | 
|---|
|  | 267 | angle = 1; | 
|---|
|  | 268 | return acos(angle); | 
|---|
| [6ac7ee] | 269 | }; | 
|---|
|  | 270 |  | 
|---|
|  | 271 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha. | 
|---|
|  | 272 | * \param *axis rotation axis | 
|---|
|  | 273 | * \param alpha rotation angle in radian | 
|---|
|  | 274 | */ | 
|---|
|  | 275 | void Vector::RotateVector(const Vector *axis, const double alpha) | 
|---|
|  | 276 | { | 
|---|
|  | 277 | Vector a,y; | 
|---|
|  | 278 | // normalise this vector with respect to axis | 
|---|
|  | 279 | a.CopyVector(this); | 
|---|
|  | 280 | a.Scale(Projection(axis)); | 
|---|
|  | 281 | SubtractVector(&a); | 
|---|
|  | 282 | // construct normal vector | 
|---|
|  | 283 | y.MakeNormalVector(axis,this); | 
|---|
|  | 284 | y.Scale(Norm()); | 
|---|
|  | 285 | // scale normal vector by sine and this vector by cosine | 
|---|
|  | 286 | y.Scale(sin(alpha)); | 
|---|
|  | 287 | Scale(cos(alpha)); | 
|---|
|  | 288 | // add scaled normal vector onto this vector | 
|---|
|  | 289 | AddVector(&y); | 
|---|
|  | 290 | // add part in axis direction | 
|---|
|  | 291 | AddVector(&a); | 
|---|
|  | 292 | }; | 
|---|
|  | 293 |  | 
|---|
|  | 294 | /** Sums vector \a to this lhs component-wise. | 
|---|
|  | 295 | * \param a base vector | 
|---|
|  | 296 | * \param b vector components to add | 
|---|
|  | 297 | * \return lhs + a | 
|---|
|  | 298 | */ | 
|---|
|  | 299 | Vector& operator+=(Vector& a, const Vector& b) | 
|---|
|  | 300 | { | 
|---|
|  | 301 | a.AddVector(&b); | 
|---|
|  | 302 | return a; | 
|---|
|  | 303 | }; | 
|---|
|  | 304 | /** factor each component of \a a times a double \a m. | 
|---|
|  | 305 | * \param a base vector | 
|---|
|  | 306 | * \param m factor | 
|---|
|  | 307 | * \return lhs.x[i] * m | 
|---|
|  | 308 | */ | 
|---|
|  | 309 | Vector& operator*=(Vector& a, const double m) | 
|---|
|  | 310 | { | 
|---|
|  | 311 | a.Scale(m); | 
|---|
|  | 312 | return a; | 
|---|
|  | 313 | }; | 
|---|
|  | 314 |  | 
|---|
|  | 315 | /** Sums two vectors \a and \b component-wise. | 
|---|
|  | 316 | * \param a first vector | 
|---|
|  | 317 | * \param b second vector | 
|---|
|  | 318 | * \return a + b | 
|---|
|  | 319 | */ | 
|---|
|  | 320 | Vector& operator+(const Vector& a, const Vector& b) | 
|---|
|  | 321 | { | 
|---|
|  | 322 | Vector *x = new Vector; | 
|---|
|  | 323 | x->CopyVector(&a); | 
|---|
|  | 324 | x->AddVector(&b); | 
|---|
|  | 325 | return *x; | 
|---|
|  | 326 | }; | 
|---|
|  | 327 |  | 
|---|
|  | 328 | /** Factors given vector \a a times \a m. | 
|---|
|  | 329 | * \param a vector | 
|---|
|  | 330 | * \param m factor | 
|---|
|  | 331 | * \return a + b | 
|---|
|  | 332 | */ | 
|---|
|  | 333 | Vector& operator*(const Vector& a, const double m) | 
|---|
|  | 334 | { | 
|---|
|  | 335 | Vector *x = new Vector; | 
|---|
|  | 336 | x->CopyVector(&a); | 
|---|
|  | 337 | x->Scale(m); | 
|---|
|  | 338 | return *x; | 
|---|
|  | 339 | }; | 
|---|
|  | 340 |  | 
|---|
|  | 341 | /** Prints a 3dim vector. | 
|---|
|  | 342 | * prints no end of line. | 
|---|
|  | 343 | * \param *out output stream | 
|---|
|  | 344 | */ | 
|---|
|  | 345 | bool Vector::Output(ofstream *out) const | 
|---|
|  | 346 | { | 
|---|
|  | 347 | if (out != NULL) { | 
|---|
|  | 348 | *out << "("; | 
|---|
|  | 349 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 350 | *out << x[i]; | 
|---|
|  | 351 | if (i != 2) | 
|---|
|  | 352 | *out << ","; | 
|---|
|  | 353 | } | 
|---|
|  | 354 | *out << ")"; | 
|---|
|  | 355 | return true; | 
|---|
|  | 356 | } else | 
|---|
|  | 357 | return false; | 
|---|
|  | 358 | }; | 
|---|
|  | 359 |  | 
|---|
|  | 360 | ostream& operator<<(ostream& ost,Vector& m) | 
|---|
|  | 361 | { | 
|---|
|  | 362 | ost << "("; | 
|---|
|  | 363 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 364 | ost << m.x[i]; | 
|---|
|  | 365 | if (i != 2) | 
|---|
|  | 366 | ost << ","; | 
|---|
|  | 367 | } | 
|---|
|  | 368 | ost << ")"; | 
|---|
|  | 369 | return ost; | 
|---|
|  | 370 | }; | 
|---|
|  | 371 |  | 
|---|
|  | 372 | /** Scales each atom coordinate by an individual \a factor. | 
|---|
|  | 373 | * \param *factor pointer to scaling factor | 
|---|
|  | 374 | */ | 
|---|
|  | 375 | void Vector::Scale(double **factor) | 
|---|
|  | 376 | { | 
|---|
|  | 377 | for (int i=NDIM;i--;) | 
|---|
|  | 378 | x[i] *= (*factor)[i]; | 
|---|
|  | 379 | }; | 
|---|
|  | 380 |  | 
|---|
|  | 381 | void Vector::Scale(double *factor) | 
|---|
|  | 382 | { | 
|---|
|  | 383 | for (int i=NDIM;i--;) | 
|---|
|  | 384 | x[i] *= *factor; | 
|---|
|  | 385 | }; | 
|---|
|  | 386 |  | 
|---|
|  | 387 | void Vector::Scale(double factor) | 
|---|
|  | 388 | { | 
|---|
|  | 389 | for (int i=NDIM;i--;) | 
|---|
|  | 390 | x[i] *= factor; | 
|---|
|  | 391 | }; | 
|---|
|  | 392 |  | 
|---|
|  | 393 | /** Translate atom by given vector. | 
|---|
|  | 394 | * \param trans[] translation vector. | 
|---|
|  | 395 | */ | 
|---|
|  | 396 | void Vector::Translate(const Vector *trans) | 
|---|
|  | 397 | { | 
|---|
|  | 398 | for (int i=NDIM;i--;) | 
|---|
|  | 399 | x[i] += trans->x[i]; | 
|---|
|  | 400 | }; | 
|---|
|  | 401 |  | 
|---|
|  | 402 | /** Do a matrix multiplication. | 
|---|
|  | 403 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 404 | */ | 
|---|
|  | 405 | void Vector::MatrixMultiplication(double *M) | 
|---|
|  | 406 | { | 
|---|
|  | 407 | Vector C; | 
|---|
|  | 408 | // do the matrix multiplication | 
|---|
|  | 409 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2]; | 
|---|
|  | 410 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2]; | 
|---|
|  | 411 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2]; | 
|---|
|  | 412 | // transfer the result into this | 
|---|
|  | 413 | for (int i=NDIM;i--;) | 
|---|
|  | 414 | x[i] = C.x[i]; | 
|---|
|  | 415 | }; | 
|---|
|  | 416 |  | 
|---|
| [21c017] | 417 | /** Calculate the inverse of a 3x3 matrix. | 
|---|
|  | 418 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 419 | */ | 
|---|
|  | 420 | double * Vector::InverseMatrix(double *A) | 
|---|
|  | 421 | { | 
|---|
|  | 422 | double *B = (double *) Malloc(sizeof(double)*NDIM*NDIM, "Vector::InverseMatrix: *B"); | 
|---|
|  | 423 | double detA = RDET3(A); | 
|---|
|  | 424 | double detAReci; | 
|---|
|  | 425 |  | 
|---|
|  | 426 | for (int i=0;i<NDIM*NDIM;++i) | 
|---|
|  | 427 | B[i] = 0.; | 
|---|
|  | 428 | // calculate the inverse B | 
|---|
|  | 429 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
|  | 430 | detAReci = 1./detA; | 
|---|
|  | 431 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11 | 
|---|
|  | 432 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12 | 
|---|
|  | 433 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13 | 
|---|
|  | 434 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21 | 
|---|
|  | 435 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22 | 
|---|
|  | 436 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23 | 
|---|
|  | 437 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31 | 
|---|
|  | 438 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32 | 
|---|
|  | 439 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33 | 
|---|
|  | 440 | } | 
|---|
|  | 441 | return B; | 
|---|
|  | 442 | }; | 
|---|
|  | 443 |  | 
|---|
| [6ac7ee] | 444 | /** Do a matrix multiplication with \a *matrix' inverse. | 
|---|
|  | 445 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 446 | */ | 
|---|
|  | 447 | void Vector::InverseMatrixMultiplication(double *A) | 
|---|
|  | 448 | { | 
|---|
|  | 449 | Vector C; | 
|---|
|  | 450 | double B[NDIM*NDIM]; | 
|---|
|  | 451 | double detA = RDET3(A); | 
|---|
|  | 452 | double detAReci; | 
|---|
|  | 453 |  | 
|---|
|  | 454 | // calculate the inverse B | 
|---|
|  | 455 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
|  | 456 | detAReci = 1./detA; | 
|---|
|  | 457 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);            // A_11 | 
|---|
|  | 458 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);            // A_12 | 
|---|
|  | 459 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);            // A_13 | 
|---|
|  | 460 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);            // A_21 | 
|---|
|  | 461 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);            // A_22 | 
|---|
|  | 462 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);            // A_23 | 
|---|
|  | 463 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);            // A_31 | 
|---|
|  | 464 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);            // A_32 | 
|---|
|  | 465 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);            // A_33 | 
|---|
|  | 466 |  | 
|---|
|  | 467 | // do the matrix multiplication | 
|---|
|  | 468 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2]; | 
|---|
|  | 469 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2]; | 
|---|
|  | 470 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2]; | 
|---|
|  | 471 | // transfer the result into this | 
|---|
|  | 472 | for (int i=NDIM;i--;) | 
|---|
|  | 473 | x[i] = C.x[i]; | 
|---|
|  | 474 | } else { | 
|---|
|  | 475 | cerr << "ERROR: inverse of matrix does not exists!" << endl; | 
|---|
|  | 476 | } | 
|---|
|  | 477 | }; | 
|---|
|  | 478 |  | 
|---|
|  | 479 |  | 
|---|
|  | 480 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three. | 
|---|
|  | 481 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2] | 
|---|
|  | 482 | * \param *x1 first vector | 
|---|
|  | 483 | * \param *x2 second vector | 
|---|
|  | 484 | * \param *x3 third vector | 
|---|
|  | 485 | * \param *factors three-component vector with the factor for each given vector | 
|---|
|  | 486 | */ | 
|---|
|  | 487 | void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors) | 
|---|
|  | 488 | { | 
|---|
|  | 489 | for(int i=NDIM;i--;) | 
|---|
|  | 490 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i]; | 
|---|
|  | 491 | }; | 
|---|
|  | 492 |  | 
|---|
|  | 493 | /** Mirrors atom against a given plane. | 
|---|
|  | 494 | * \param n[] normal vector of mirror plane. | 
|---|
|  | 495 | */ | 
|---|
|  | 496 | void Vector::Mirror(const Vector *n) | 
|---|
|  | 497 | { | 
|---|
|  | 498 | double projection; | 
|---|
|  | 499 | projection = ScalarProduct(n)/n->ScalarProduct(n);              // remove constancy from n (keep as logical one) | 
|---|
|  | 500 | // withdraw projected vector twice from original one | 
|---|
|  | 501 | cout << Verbose(1) << "Vector: "; | 
|---|
|  | 502 | Output((ofstream *)&cout); | 
|---|
|  | 503 | cout << "\t"; | 
|---|
|  | 504 | for (int i=NDIM;i--;) | 
|---|
|  | 505 | x[i] -= 2.*projection*n->x[i]; | 
|---|
|  | 506 | cout << "Projected vector: "; | 
|---|
|  | 507 | Output((ofstream *)&cout); | 
|---|
|  | 508 | cout << endl; | 
|---|
|  | 509 | }; | 
|---|
|  | 510 |  | 
|---|
|  | 511 | /** Calculates normal vector for three given vectors (being three points in space). | 
|---|
|  | 512 | * Makes this vector orthonormal to the three given points, making up a place in 3d space. | 
|---|
|  | 513 | * \param *y1 first vector | 
|---|
|  | 514 | * \param *y2 second vector | 
|---|
|  | 515 | * \param *y3 third vector | 
|---|
|  | 516 | * \return true - success, vectors are linear independent, false - failure due to linear dependency | 
|---|
|  | 517 | */ | 
|---|
|  | 518 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3) | 
|---|
|  | 519 | { | 
|---|
|  | 520 | Vector x1, x2; | 
|---|
|  | 521 |  | 
|---|
|  | 522 | x1.CopyVector(y1); | 
|---|
|  | 523 | x1.SubtractVector(y2); | 
|---|
|  | 524 | x2.CopyVector(y3); | 
|---|
|  | 525 | x2.SubtractVector(y2); | 
|---|
|  | 526 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) { | 
|---|
|  | 527 | cout << Verbose(4) << "Given vectors are linear dependent." << endl; | 
|---|
|  | 528 | return false; | 
|---|
|  | 529 | } | 
|---|
|  | 530 | //      cout << Verbose(4) << "relative, first plane coordinates:"; | 
|---|
|  | 531 | //      x1.Output((ofstream *)&cout); | 
|---|
|  | 532 | //      cout << endl; | 
|---|
|  | 533 | //      cout << Verbose(4) << "second plane coordinates:"; | 
|---|
|  | 534 | //      x2.Output((ofstream *)&cout); | 
|---|
|  | 535 | //      cout << endl; | 
|---|
|  | 536 |  | 
|---|
|  | 537 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]); | 
|---|
|  | 538 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]); | 
|---|
|  | 539 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]); | 
|---|
|  | 540 | Normalize(); | 
|---|
|  | 541 |  | 
|---|
|  | 542 | return true; | 
|---|
|  | 543 | }; | 
|---|
|  | 544 |  | 
|---|
|  | 545 |  | 
|---|
|  | 546 | /** Calculates orthonormal vector to two given vectors. | 
|---|
|  | 547 | * Makes this vector orthonormal to two given vectors. This is very similar to the other | 
|---|
|  | 548 | * vector::MakeNormalVector(), only there three points whereas here two difference | 
|---|
|  | 549 | * vectors are given. | 
|---|
|  | 550 | * \param *x1 first vector | 
|---|
|  | 551 | * \param *x2 second vector | 
|---|
|  | 552 | * \return true - success, vectors are linear independent, false - failure due to linear dependency | 
|---|
|  | 553 | */ | 
|---|
|  | 554 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2) | 
|---|
|  | 555 | { | 
|---|
|  | 556 | Vector x1,x2; | 
|---|
|  | 557 | x1.CopyVector(y1); | 
|---|
|  | 558 | x2.CopyVector(y2); | 
|---|
|  | 559 | Zero(); | 
|---|
|  | 560 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) { | 
|---|
|  | 561 | cout << Verbose(4) << "Given vectors are linear dependent." << endl; | 
|---|
|  | 562 | return false; | 
|---|
|  | 563 | } | 
|---|
|  | 564 | //      cout << Verbose(4) << "relative, first plane coordinates:"; | 
|---|
|  | 565 | //      x1.Output((ofstream *)&cout); | 
|---|
|  | 566 | //      cout << endl; | 
|---|
|  | 567 | //      cout << Verbose(4) << "second plane coordinates:"; | 
|---|
|  | 568 | //      x2.Output((ofstream *)&cout); | 
|---|
|  | 569 | //      cout << endl; | 
|---|
|  | 570 |  | 
|---|
|  | 571 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]); | 
|---|
|  | 572 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]); | 
|---|
|  | 573 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]); | 
|---|
|  | 574 | Normalize(); | 
|---|
|  | 575 |  | 
|---|
|  | 576 | return true; | 
|---|
|  | 577 | }; | 
|---|
|  | 578 |  | 
|---|
|  | 579 | /** Calculates orthonormal vector to one given vectors. | 
|---|
|  | 580 | * Just subtracts the projection onto the given vector from this vector. | 
|---|
|  | 581 | * \param *x1 vector | 
|---|
|  | 582 | * \return true - success, false - vector is zero | 
|---|
|  | 583 | */ | 
|---|
|  | 584 | bool Vector::MakeNormalVector(const Vector *y1) | 
|---|
|  | 585 | { | 
|---|
|  | 586 | bool result = false; | 
|---|
|  | 587 | Vector x1; | 
|---|
|  | 588 | x1.CopyVector(y1); | 
|---|
|  | 589 | x1.Scale(x1.Projection(this)); | 
|---|
|  | 590 | SubtractVector(&x1); | 
|---|
|  | 591 | for (int i=NDIM;i--;) | 
|---|
|  | 592 | result = result || (fabs(x[i]) > MYEPSILON); | 
|---|
|  | 593 |  | 
|---|
|  | 594 | return result; | 
|---|
|  | 595 | }; | 
|---|
|  | 596 |  | 
|---|
|  | 597 | /** Creates this vector as one of the possible orthonormal ones to the given one. | 
|---|
|  | 598 | * Just scan how many components of given *vector are unequal to zero and | 
|---|
|  | 599 | * try to get the skp of both to be zero accordingly. | 
|---|
|  | 600 | * \param *vector given vector | 
|---|
|  | 601 | * \return true - success, false - failure (null vector given) | 
|---|
|  | 602 | */ | 
|---|
|  | 603 | bool Vector::GetOneNormalVector(const Vector *GivenVector) | 
|---|
|  | 604 | { | 
|---|
|  | 605 | int Components[NDIM]; // contains indices of non-zero components | 
|---|
|  | 606 | int Last = 0;    // count the number of non-zero entries in vector | 
|---|
|  | 607 | int j;  // loop variables | 
|---|
|  | 608 | double norm; | 
|---|
|  | 609 |  | 
|---|
|  | 610 | cout << Verbose(4); | 
|---|
|  | 611 | GivenVector->Output((ofstream *)&cout); | 
|---|
|  | 612 | cout << endl; | 
|---|
|  | 613 | for (j=NDIM;j--;) | 
|---|
|  | 614 | Components[j] = -1; | 
|---|
|  | 615 | // find two components != 0 | 
|---|
|  | 616 | for (j=0;j<NDIM;j++) | 
|---|
|  | 617 | if (fabs(GivenVector->x[j]) > MYEPSILON) | 
|---|
|  | 618 | Components[Last++] = j; | 
|---|
|  | 619 | cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl; | 
|---|
|  | 620 |  | 
|---|
|  | 621 | switch(Last) { | 
|---|
|  | 622 | case 3: // threecomponent system | 
|---|
|  | 623 | case 2: // two component system | 
|---|
|  | 624 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]])); | 
|---|
|  | 625 | x[Components[2]] = 0.; | 
|---|
|  | 626 | // in skp both remaining parts shall become zero but with opposite sign and third is zero | 
|---|
|  | 627 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm; | 
|---|
|  | 628 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm; | 
|---|
|  | 629 | return true; | 
|---|
|  | 630 | break; | 
|---|
|  | 631 | case 1: // one component system | 
|---|
|  | 632 | // set sole non-zero component to 0, and one of the other zero component pendants to 1 | 
|---|
|  | 633 | x[(Components[0]+2)%NDIM] = 0.; | 
|---|
|  | 634 | x[(Components[0]+1)%NDIM] = 1.; | 
|---|
|  | 635 | x[Components[0]] = 0.; | 
|---|
|  | 636 | return true; | 
|---|
|  | 637 | break; | 
|---|
|  | 638 | default: | 
|---|
|  | 639 | return false; | 
|---|
|  | 640 | } | 
|---|
|  | 641 | }; | 
|---|
|  | 642 |  | 
|---|
|  | 643 | /** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C. | 
|---|
|  | 644 | * \param *A first plane vector | 
|---|
|  | 645 | * \param *B second plane vector | 
|---|
|  | 646 | * \param *C third plane vector | 
|---|
|  | 647 | * \return scaling parameter for this vector | 
|---|
|  | 648 | */ | 
|---|
|  | 649 | double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C) | 
|---|
|  | 650 | { | 
|---|
|  | 651 | //      cout << Verbose(3) << "For comparison: "; | 
|---|
|  | 652 | //      cout << "A " << A->Projection(this) << "\t"; | 
|---|
|  | 653 | //      cout << "B " << B->Projection(this) << "\t"; | 
|---|
|  | 654 | //      cout << "C " << C->Projection(this) << "\t"; | 
|---|
|  | 655 | //      cout << endl; | 
|---|
|  | 656 | return A->Projection(this); | 
|---|
|  | 657 | }; | 
|---|
|  | 658 |  | 
|---|
|  | 659 | /** Creates a new vector as the one with least square distance to a given set of \a vectors. | 
|---|
|  | 660 | * \param *vectors set of vectors | 
|---|
|  | 661 | * \param num number of vectors | 
|---|
|  | 662 | * \return true if success, false if failed due to linear dependency | 
|---|
|  | 663 | */ | 
|---|
|  | 664 | bool Vector::LSQdistance(Vector **vectors, int num) | 
|---|
|  | 665 | { | 
|---|
|  | 666 | int j; | 
|---|
|  | 667 |  | 
|---|
|  | 668 | for (j=0;j<num;j++) { | 
|---|
|  | 669 | cout << Verbose(1) << j << "th atom's vector: "; | 
|---|
|  | 670 | (vectors[j])->Output((ofstream *)&cout); | 
|---|
|  | 671 | cout << endl; | 
|---|
|  | 672 | } | 
|---|
|  | 673 |  | 
|---|
|  | 674 | int np = 3; | 
|---|
|  | 675 | struct LSQ_params par; | 
|---|
|  | 676 |  | 
|---|
|  | 677 | const gsl_multimin_fminimizer_type *T = | 
|---|
|  | 678 | gsl_multimin_fminimizer_nmsimplex; | 
|---|
|  | 679 | gsl_multimin_fminimizer *s = NULL; | 
|---|
|  | 680 | gsl_vector *ss, *y; | 
|---|
|  | 681 | gsl_multimin_function minex_func; | 
|---|
|  | 682 |  | 
|---|
|  | 683 | size_t iter = 0, i; | 
|---|
|  | 684 | int status; | 
|---|
|  | 685 | double size; | 
|---|
|  | 686 |  | 
|---|
|  | 687 | /* Initial vertex size vector */ | 
|---|
|  | 688 | ss = gsl_vector_alloc (np); | 
|---|
|  | 689 | y = gsl_vector_alloc (np); | 
|---|
|  | 690 |  | 
|---|
|  | 691 | /* Set all step sizes to 1 */ | 
|---|
|  | 692 | gsl_vector_set_all (ss, 1.0); | 
|---|
|  | 693 |  | 
|---|
|  | 694 | /* Starting point */ | 
|---|
|  | 695 | par.vectors = vectors; | 
|---|
|  | 696 | par.num = num; | 
|---|
|  | 697 |  | 
|---|
|  | 698 | for (i=NDIM;i--;) | 
|---|
|  | 699 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.); | 
|---|
|  | 700 |  | 
|---|
|  | 701 | /* Initialize method and iterate */ | 
|---|
|  | 702 | minex_func.f = &LSQ; | 
|---|
|  | 703 | minex_func.n = np; | 
|---|
|  | 704 | minex_func.params = (void *)∥ | 
|---|
|  | 705 |  | 
|---|
|  | 706 | s = gsl_multimin_fminimizer_alloc (T, np); | 
|---|
|  | 707 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss); | 
|---|
|  | 708 |  | 
|---|
|  | 709 | do | 
|---|
|  | 710 | { | 
|---|
|  | 711 | iter++; | 
|---|
|  | 712 | status = gsl_multimin_fminimizer_iterate(s); | 
|---|
|  | 713 |  | 
|---|
|  | 714 | if (status) | 
|---|
|  | 715 | break; | 
|---|
|  | 716 |  | 
|---|
|  | 717 | size = gsl_multimin_fminimizer_size (s); | 
|---|
|  | 718 | status = gsl_multimin_test_size (size, 1e-2); | 
|---|
|  | 719 |  | 
|---|
|  | 720 | if (status == GSL_SUCCESS) | 
|---|
|  | 721 | { | 
|---|
|  | 722 | printf ("converged to minimum at\n"); | 
|---|
|  | 723 | } | 
|---|
|  | 724 |  | 
|---|
|  | 725 | printf ("%5d ", (int)iter); | 
|---|
|  | 726 | for (i = 0; i < (size_t)np; i++) | 
|---|
|  | 727 | { | 
|---|
|  | 728 | printf ("%10.3e ", gsl_vector_get (s->x, i)); | 
|---|
|  | 729 | } | 
|---|
|  | 730 | printf ("f() = %7.3f size = %.3f\n", s->fval, size); | 
|---|
|  | 731 | } | 
|---|
|  | 732 | while (status == GSL_CONTINUE && iter < 100); | 
|---|
|  | 733 |  | 
|---|
|  | 734 | for (i=(size_t)np;i--;) | 
|---|
|  | 735 | this->x[i] = gsl_vector_get(s->x, i); | 
|---|
|  | 736 | gsl_vector_free(y); | 
|---|
|  | 737 | gsl_vector_free(ss); | 
|---|
|  | 738 | gsl_multimin_fminimizer_free (s); | 
|---|
|  | 739 |  | 
|---|
|  | 740 | return true; | 
|---|
|  | 741 | }; | 
|---|
|  | 742 |  | 
|---|
|  | 743 | /** Adds vector \a *y componentwise. | 
|---|
|  | 744 | * \param *y vector | 
|---|
|  | 745 | */ | 
|---|
|  | 746 | void Vector::AddVector(const Vector *y) | 
|---|
|  | 747 | { | 
|---|
|  | 748 | for (int i=NDIM;i--;) | 
|---|
|  | 749 | this->x[i] += y->x[i]; | 
|---|
|  | 750 | } | 
|---|
|  | 751 |  | 
|---|
|  | 752 | /** Adds vector \a *y componentwise. | 
|---|
|  | 753 | * \param *y vector | 
|---|
|  | 754 | */ | 
|---|
|  | 755 | void Vector::SubtractVector(const Vector *y) | 
|---|
|  | 756 | { | 
|---|
|  | 757 | for (int i=NDIM;i--;) | 
|---|
|  | 758 | this->x[i] -= y->x[i]; | 
|---|
|  | 759 | } | 
|---|
|  | 760 |  | 
|---|
|  | 761 | /** Copy vector \a *y componentwise. | 
|---|
|  | 762 | * \param *y vector | 
|---|
|  | 763 | */ | 
|---|
|  | 764 | void Vector::CopyVector(const Vector *y) | 
|---|
|  | 765 | { | 
|---|
|  | 766 | for (int i=NDIM;i--;) | 
|---|
|  | 767 | this->x[i] = y->x[i]; | 
|---|
|  | 768 | } | 
|---|
|  | 769 |  | 
|---|
|  | 770 |  | 
|---|
|  | 771 | /** Asks for position, checks for boundary. | 
|---|
|  | 772 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size | 
|---|
|  | 773 | * \param check whether bounds shall be checked (true) or not (false) | 
|---|
|  | 774 | */ | 
|---|
|  | 775 | void Vector::AskPosition(double *cell_size, bool check) | 
|---|
|  | 776 | { | 
|---|
|  | 777 | char coords[3] = {'x','y','z'}; | 
|---|
|  | 778 | int j = -1; | 
|---|
|  | 779 | for (int i=0;i<3;i++) { | 
|---|
|  | 780 | j += i+1; | 
|---|
|  | 781 | do { | 
|---|
|  | 782 | cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: "; | 
|---|
|  | 783 | cin >> x[i]; | 
|---|
|  | 784 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check)); | 
|---|
|  | 785 | } | 
|---|
|  | 786 | }; | 
|---|
|  | 787 |  | 
|---|
|  | 788 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement. | 
|---|
|  | 789 | * This is linear system of equations to be solved, however of the three given (skp of this vector\ | 
|---|
|  | 790 | * with either of the three hast to be zero) only two are linear independent. The third equation | 
|---|
|  | 791 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution | 
|---|
|  | 792 | * where very often it has to be checked whether a certain value is zero or not and thus forked into | 
|---|
|  | 793 | * another case. | 
|---|
|  | 794 | * \param *x1 first vector | 
|---|
|  | 795 | * \param *x2 second vector | 
|---|
|  | 796 | * \param *y third vector | 
|---|
|  | 797 | * \param alpha first angle | 
|---|
|  | 798 | * \param beta second angle | 
|---|
|  | 799 | * \param c norm of final vector | 
|---|
|  | 800 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c. | 
|---|
|  | 801 | * \bug this is not yet working properly | 
|---|
|  | 802 | */ | 
|---|
|  | 803 | bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c) | 
|---|
|  | 804 | { | 
|---|
|  | 805 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C; | 
|---|
|  | 806 | double ang; // angle on testing | 
|---|
|  | 807 | double sign[3]; | 
|---|
|  | 808 | int i,j,k; | 
|---|
|  | 809 | A = cos(alpha) * x1->Norm() * c; | 
|---|
|  | 810 | B1 = cos(beta + M_PI/2.) * y->Norm() * c; | 
|---|
|  | 811 | B2 = cos(beta) * x2->Norm() * c; | 
|---|
|  | 812 | C = c * c; | 
|---|
|  | 813 | cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl; | 
|---|
|  | 814 | int flag = 0; | 
|---|
|  | 815 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping | 
|---|
|  | 816 | if (fabs(x1->x[1]) > MYEPSILON) { | 
|---|
|  | 817 | flag = 1; | 
|---|
|  | 818 | } else if (fabs(x1->x[2]) > MYEPSILON) { | 
|---|
|  | 819 | flag = 2; | 
|---|
|  | 820 | } else { | 
|---|
|  | 821 | return false; | 
|---|
|  | 822 | } | 
|---|
|  | 823 | } | 
|---|
|  | 824 | switch (flag) { | 
|---|
|  | 825 | default: | 
|---|
|  | 826 | case 0: | 
|---|
|  | 827 | break; | 
|---|
|  | 828 | case 2: | 
|---|
|  | 829 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 830 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 831 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 832 | //flip(&x[0],&x[1]); | 
|---|
|  | 833 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 834 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 835 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 836 | //flip(&x[1],&x[2]); | 
|---|
|  | 837 | case 1: | 
|---|
|  | 838 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 839 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 840 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 841 | //flip(&x[0],&x[1]); | 
|---|
|  | 842 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 843 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 844 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 845 | //flip(&x[1],&x[2]); | 
|---|
|  | 846 | break; | 
|---|
|  | 847 | } | 
|---|
|  | 848 | // now comes the case system | 
|---|
|  | 849 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1]; | 
|---|
|  | 850 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2]; | 
|---|
|  | 851 | D3 = y->x[0]/x1->x[0]*A-B1; | 
|---|
|  | 852 | cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n"; | 
|---|
|  | 853 | if (fabs(D1) < MYEPSILON) { | 
|---|
|  | 854 | cout << Verbose(2) << "D1 == 0!\n"; | 
|---|
|  | 855 | if (fabs(D2) > MYEPSILON) { | 
|---|
|  | 856 | cout << Verbose(3) << "D2 != 0!\n"; | 
|---|
|  | 857 | x[2] = -D3/D2; | 
|---|
|  | 858 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2; | 
|---|
|  | 859 | E2 = -x1->x[1]/x1->x[0]; | 
|---|
|  | 860 | cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n"; | 
|---|
|  | 861 | F1 = E1*E1 + 1.; | 
|---|
|  | 862 | F2 = -E1*E2; | 
|---|
|  | 863 | F3 = E1*E1 + D3*D3/(D2*D2) - C; | 
|---|
|  | 864 | cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n"; | 
|---|
|  | 865 | if (fabs(F1) < MYEPSILON) { | 
|---|
|  | 866 | cout << Verbose(4) << "F1 == 0!\n"; | 
|---|
|  | 867 | cout << Verbose(4) << "Gleichungssystem linear\n"; | 
|---|
|  | 868 | x[1] = F3/(2.*F2); | 
|---|
|  | 869 | } else { | 
|---|
|  | 870 | p = F2/F1; | 
|---|
|  | 871 | q = p*p - F3/F1; | 
|---|
|  | 872 | cout << Verbose(4) << "p " << p << "\tq " << q << endl; | 
|---|
|  | 873 | if (q < 0) { | 
|---|
|  | 874 | cout << Verbose(4) << "q < 0" << endl; | 
|---|
|  | 875 | return false; | 
|---|
|  | 876 | } | 
|---|
|  | 877 | x[1] = p + sqrt(q); | 
|---|
|  | 878 | } | 
|---|
|  | 879 | x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2]; | 
|---|
|  | 880 | } else { | 
|---|
|  | 881 | cout << Verbose(2) << "Gleichungssystem unterbestimmt\n"; | 
|---|
|  | 882 | return false; | 
|---|
|  | 883 | } | 
|---|
|  | 884 | } else { | 
|---|
|  | 885 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1; | 
|---|
|  | 886 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2]; | 
|---|
|  | 887 | cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n"; | 
|---|
|  | 888 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.; | 
|---|
|  | 889 | F2 = -(E1*E2 + D2*D3/(D1*D1)); | 
|---|
|  | 890 | F3 = E1*E1 + D3*D3/(D1*D1) - C; | 
|---|
|  | 891 | cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n"; | 
|---|
|  | 892 | if (fabs(F1) < MYEPSILON) { | 
|---|
|  | 893 | cout << Verbose(3) << "F1 == 0!\n"; | 
|---|
|  | 894 | cout << Verbose(3) << "Gleichungssystem linear\n"; | 
|---|
|  | 895 | x[2] = F3/(2.*F2); | 
|---|
|  | 896 | } else { | 
|---|
|  | 897 | p = F2/F1; | 
|---|
|  | 898 | q = p*p - F3/F1; | 
|---|
|  | 899 | cout << Verbose(3) << "p " << p << "\tq " << q << endl; | 
|---|
|  | 900 | if (q < 0) { | 
|---|
|  | 901 | cout << Verbose(3) << "q < 0" << endl; | 
|---|
|  | 902 | return false; | 
|---|
|  | 903 | } | 
|---|
|  | 904 | x[2] = p + sqrt(q); | 
|---|
|  | 905 | } | 
|---|
|  | 906 | x[1] = (-D2 * x[2] - D3)/D1; | 
|---|
|  | 907 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2]; | 
|---|
|  | 908 | } | 
|---|
|  | 909 | switch (flag) { // back-flipping | 
|---|
|  | 910 | default: | 
|---|
|  | 911 | case 0: | 
|---|
|  | 912 | break; | 
|---|
|  | 913 | case 2: | 
|---|
|  | 914 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 915 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 916 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 917 | flip(&x[0],&x[1]); | 
|---|
|  | 918 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 919 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 920 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 921 | flip(&x[1],&x[2]); | 
|---|
|  | 922 | case 1: | 
|---|
|  | 923 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 924 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 925 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 926 | //flip(&x[0],&x[1]); | 
|---|
|  | 927 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 928 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 929 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 930 | flip(&x[1],&x[2]); | 
|---|
|  | 931 | break; | 
|---|
|  | 932 | } | 
|---|
|  | 933 | // one z component is only determined by its radius (without sign) | 
|---|
|  | 934 | // thus check eight possible sign flips and determine by checking angle with second vector | 
|---|
|  | 935 | for (i=0;i<8;i++) { | 
|---|
|  | 936 | // set sign vector accordingly | 
|---|
|  | 937 | for (j=2;j>=0;j--) { | 
|---|
|  | 938 | k = (i & pot(2,j)) << j; | 
|---|
|  | 939 | cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl; | 
|---|
|  | 940 | sign[j] = (k == 0) ? 1. : -1.; | 
|---|
|  | 941 | } | 
|---|
|  | 942 | cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n"; | 
|---|
|  | 943 | // apply sign matrix | 
|---|
|  | 944 | for (j=NDIM;j--;) | 
|---|
|  | 945 | x[j] *= sign[j]; | 
|---|
|  | 946 | // calculate angle and check | 
|---|
|  | 947 | ang = x2->Angle (this); | 
|---|
|  | 948 | cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t"; | 
|---|
|  | 949 | if (fabs(ang - cos(beta)) < MYEPSILON) { | 
|---|
|  | 950 | break; | 
|---|
|  | 951 | } | 
|---|
|  | 952 | // unapply sign matrix (is its own inverse) | 
|---|
|  | 953 | for (j=NDIM;j--;) | 
|---|
|  | 954 | x[j] *= sign[j]; | 
|---|
|  | 955 | } | 
|---|
|  | 956 | return true; | 
|---|
|  | 957 | }; | 
|---|