| [6ac7ee] | 1 | /** \file vector.cpp | 
|---|
|  | 2 | * | 
|---|
|  | 3 | * Function implementations for the class vector. | 
|---|
|  | 4 | * | 
|---|
|  | 5 | */ | 
|---|
|  | 6 |  | 
|---|
| [edb93c] | 7 |  | 
|---|
| [54a746] | 8 | #include "defs.hpp" | 
|---|
|  | 9 | #include "helpers.hpp" | 
|---|
| [97498a] | 10 | #include "info.hpp" | 
|---|
| [54a746] | 11 | #include "leastsquaremin.hpp" | 
|---|
| [e138de] | 12 | #include "log.hpp" | 
|---|
| [97498a] | 13 | #include "memoryallocator.hpp" | 
|---|
| [54a746] | 14 | #include "vector.hpp" | 
|---|
|  | 15 | #include "verbose.hpp" | 
|---|
| [6ac7ee] | 16 |  | 
|---|
| [97498a] | 17 | #include <gsl/gsl_linalg.h> | 
|---|
|  | 18 | #include <gsl/gsl_matrix.h> | 
|---|
|  | 19 | #include <gsl/gsl_permutation.h> | 
|---|
|  | 20 | #include <gsl/gsl_vector.h> | 
|---|
|  | 21 |  | 
|---|
| [6ac7ee] | 22 | /************************************ Functions for class vector ************************************/ | 
|---|
|  | 23 |  | 
|---|
|  | 24 | /** Constructor of class vector. | 
|---|
|  | 25 | */ | 
|---|
|  | 26 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; }; | 
|---|
|  | 27 |  | 
|---|
|  | 28 | /** Constructor of class vector. | 
|---|
|  | 29 | */ | 
|---|
| [776b64] | 30 | Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; }; | 
|---|
| [6ac7ee] | 31 |  | 
|---|
|  | 32 | /** Desctructor of class vector. | 
|---|
|  | 33 | */ | 
|---|
|  | 34 | Vector::~Vector() {}; | 
|---|
|  | 35 |  | 
|---|
|  | 36 | /** Calculates square of distance between this and another vector. | 
|---|
|  | 37 | * \param *y array to second vector | 
|---|
|  | 38 | * \return \f$| x - y |^2\f$ | 
|---|
|  | 39 | */ | 
|---|
| [776b64] | 40 | double Vector::DistanceSquared(const Vector * const y) const | 
|---|
| [6ac7ee] | 41 | { | 
|---|
| [042f82] | 42 | double res = 0.; | 
|---|
|  | 43 | for (int i=NDIM;i--;) | 
|---|
|  | 44 | res += (x[i]-y->x[i])*(x[i]-y->x[i]); | 
|---|
|  | 45 | return (res); | 
|---|
| [6ac7ee] | 46 | }; | 
|---|
|  | 47 |  | 
|---|
|  | 48 | /** Calculates distance between this and another vector. | 
|---|
|  | 49 | * \param *y array to second vector | 
|---|
|  | 50 | * \return \f$| x - y |\f$ | 
|---|
|  | 51 | */ | 
|---|
| [776b64] | 52 | double Vector::Distance(const Vector * const y) const | 
|---|
| [6ac7ee] | 53 | { | 
|---|
| [042f82] | 54 | double res = 0.; | 
|---|
|  | 55 | for (int i=NDIM;i--;) | 
|---|
|  | 56 | res += (x[i]-y->x[i])*(x[i]-y->x[i]); | 
|---|
|  | 57 | return (sqrt(res)); | 
|---|
| [6ac7ee] | 58 | }; | 
|---|
|  | 59 |  | 
|---|
|  | 60 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
|  | 61 | * \param *y array to second vector | 
|---|
|  | 62 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
|  | 63 | * \return \f$| x - y |\f$ | 
|---|
|  | 64 | */ | 
|---|
| [776b64] | 65 | double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const | 
|---|
| [6ac7ee] | 66 | { | 
|---|
| [042f82] | 67 | double res = Distance(y), tmp, matrix[NDIM*NDIM]; | 
|---|
|  | 68 | Vector Shiftedy, TranslationVector; | 
|---|
|  | 69 | int N[NDIM]; | 
|---|
|  | 70 | matrix[0] = cell_size[0]; | 
|---|
|  | 71 | matrix[1] = cell_size[1]; | 
|---|
|  | 72 | matrix[2] = cell_size[3]; | 
|---|
|  | 73 | matrix[3] = cell_size[1]; | 
|---|
|  | 74 | matrix[4] = cell_size[2]; | 
|---|
|  | 75 | matrix[5] = cell_size[4]; | 
|---|
|  | 76 | matrix[6] = cell_size[3]; | 
|---|
|  | 77 | matrix[7] = cell_size[4]; | 
|---|
|  | 78 | matrix[8] = cell_size[5]; | 
|---|
|  | 79 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
|  | 80 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
|  | 81 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
|  | 82 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
|  | 83 | // create the translation vector | 
|---|
|  | 84 | TranslationVector.Zero(); | 
|---|
|  | 85 | for (int i=NDIM;i--;) | 
|---|
|  | 86 | TranslationVector.x[i] = (double)N[i]; | 
|---|
|  | 87 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
|  | 88 | // add onto the original vector to compare with | 
|---|
|  | 89 | Shiftedy.CopyVector(y); | 
|---|
|  | 90 | Shiftedy.AddVector(&TranslationVector); | 
|---|
|  | 91 | // get distance and compare with minimum so far | 
|---|
|  | 92 | tmp = Distance(&Shiftedy); | 
|---|
|  | 93 | if (tmp < res) res = tmp; | 
|---|
|  | 94 | } | 
|---|
|  | 95 | return (res); | 
|---|
| [6ac7ee] | 96 | }; | 
|---|
|  | 97 |  | 
|---|
|  | 98 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
|  | 99 | * \param *y array to second vector | 
|---|
|  | 100 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
|  | 101 | * \return \f$| x - y |^2\f$ | 
|---|
|  | 102 | */ | 
|---|
| [776b64] | 103 | double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const | 
|---|
| [6ac7ee] | 104 | { | 
|---|
| [042f82] | 105 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM]; | 
|---|
|  | 106 | Vector Shiftedy, TranslationVector; | 
|---|
|  | 107 | int N[NDIM]; | 
|---|
|  | 108 | matrix[0] = cell_size[0]; | 
|---|
|  | 109 | matrix[1] = cell_size[1]; | 
|---|
|  | 110 | matrix[2] = cell_size[3]; | 
|---|
|  | 111 | matrix[3] = cell_size[1]; | 
|---|
|  | 112 | matrix[4] = cell_size[2]; | 
|---|
|  | 113 | matrix[5] = cell_size[4]; | 
|---|
|  | 114 | matrix[6] = cell_size[3]; | 
|---|
|  | 115 | matrix[7] = cell_size[4]; | 
|---|
|  | 116 | matrix[8] = cell_size[5]; | 
|---|
|  | 117 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
|  | 118 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
|  | 119 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
|  | 120 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
|  | 121 | // create the translation vector | 
|---|
|  | 122 | TranslationVector.Zero(); | 
|---|
|  | 123 | for (int i=NDIM;i--;) | 
|---|
|  | 124 | TranslationVector.x[i] = (double)N[i]; | 
|---|
|  | 125 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
|  | 126 | // add onto the original vector to compare with | 
|---|
|  | 127 | Shiftedy.CopyVector(y); | 
|---|
|  | 128 | Shiftedy.AddVector(&TranslationVector); | 
|---|
|  | 129 | // get distance and compare with minimum so far | 
|---|
|  | 130 | tmp = DistanceSquared(&Shiftedy); | 
|---|
|  | 131 | if (tmp < res) res = tmp; | 
|---|
|  | 132 | } | 
|---|
|  | 133 | return (res); | 
|---|
| [6ac7ee] | 134 | }; | 
|---|
|  | 135 |  | 
|---|
|  | 136 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix. | 
|---|
|  | 137 | * \param *out ofstream for debugging messages | 
|---|
|  | 138 | * Tries to translate a vector into each adjacent neighbouring cell. | 
|---|
|  | 139 | */ | 
|---|
| [e138de] | 140 | void Vector::KeepPeriodic(const double * const matrix) | 
|---|
| [6ac7ee] | 141 | { | 
|---|
| [042f82] | 142 | //  int N[NDIM]; | 
|---|
|  | 143 | //  bool flag = false; | 
|---|
|  | 144 | //vector Shifted, TranslationVector; | 
|---|
|  | 145 | Vector TestVector; | 
|---|
| [e138de] | 146 | //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl; | 
|---|
|  | 147 | //  Log() << Verbose(2) << "Vector is: "; | 
|---|
| [042f82] | 148 | //  Output(out); | 
|---|
| [e138de] | 149 | //  Log() << Verbose(0) << endl; | 
|---|
| [042f82] | 150 | TestVector.CopyVector(this); | 
|---|
|  | 151 | TestVector.InverseMatrixMultiplication(matrix); | 
|---|
|  | 152 | for(int i=NDIM;i--;) { // correct periodically | 
|---|
|  | 153 | if (TestVector.x[i] < 0) {  // get every coefficient into the interval [0,1) | 
|---|
|  | 154 | TestVector.x[i] += ceil(TestVector.x[i]); | 
|---|
|  | 155 | } else { | 
|---|
|  | 156 | TestVector.x[i] -= floor(TestVector.x[i]); | 
|---|
|  | 157 | } | 
|---|
|  | 158 | } | 
|---|
|  | 159 | TestVector.MatrixMultiplication(matrix); | 
|---|
|  | 160 | CopyVector(&TestVector); | 
|---|
| [e138de] | 161 | //  Log() << Verbose(2) << "New corrected vector is: "; | 
|---|
| [042f82] | 162 | //  Output(out); | 
|---|
| [e138de] | 163 | //  Log() << Verbose(0) << endl; | 
|---|
|  | 164 | //  Log() << Verbose(1) << "End of KeepPeriodic." << endl; | 
|---|
| [6ac7ee] | 165 | }; | 
|---|
|  | 166 |  | 
|---|
|  | 167 | /** Calculates scalar product between this and another vector. | 
|---|
|  | 168 | * \param *y array to second vector | 
|---|
|  | 169 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 170 | */ | 
|---|
| [776b64] | 171 | double Vector::ScalarProduct(const Vector * const y) const | 
|---|
| [6ac7ee] | 172 | { | 
|---|
| [042f82] | 173 | double res = 0.; | 
|---|
|  | 174 | for (int i=NDIM;i--;) | 
|---|
|  | 175 | res += x[i]*y->x[i]; | 
|---|
|  | 176 | return (res); | 
|---|
| [6ac7ee] | 177 | }; | 
|---|
|  | 178 |  | 
|---|
|  | 179 |  | 
|---|
|  | 180 | /** Calculates VectorProduct between this and another vector. | 
|---|
| [042f82] | 181 | *  -# returns the Product in place of vector from which it was initiated | 
|---|
|  | 182 | *  -# ATTENTION: Only three dim. | 
|---|
|  | 183 | *  \param *y array to vector with which to calculate crossproduct | 
|---|
|  | 184 | *  \return \f$ x \times y \f& | 
|---|
| [6ac7ee] | 185 | */ | 
|---|
| [776b64] | 186 | void Vector::VectorProduct(const Vector * const y) | 
|---|
| [6ac7ee] | 187 | { | 
|---|
| [042f82] | 188 | Vector tmp; | 
|---|
|  | 189 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]); | 
|---|
|  | 190 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]); | 
|---|
|  | 191 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]); | 
|---|
|  | 192 | this->CopyVector(&tmp); | 
|---|
| [6ac7ee] | 193 | }; | 
|---|
|  | 194 |  | 
|---|
|  | 195 |  | 
|---|
|  | 196 | /** projects this vector onto plane defined by \a *y. | 
|---|
|  | 197 | * \param *y normal vector of plane | 
|---|
|  | 198 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 199 | */ | 
|---|
| [776b64] | 200 | void Vector::ProjectOntoPlane(const Vector * const y) | 
|---|
| [6ac7ee] | 201 | { | 
|---|
| [042f82] | 202 | Vector tmp; | 
|---|
|  | 203 | tmp.CopyVector(y); | 
|---|
|  | 204 | tmp.Normalize(); | 
|---|
|  | 205 | tmp.Scale(ScalarProduct(&tmp)); | 
|---|
|  | 206 | this->SubtractVector(&tmp); | 
|---|
| [6ac7ee] | 207 | }; | 
|---|
|  | 208 |  | 
|---|
| [2319ed] | 209 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset. | 
|---|
|  | 210 | * According to [Bronstein] the vectorial plane equation is: | 
|---|
|  | 211 | *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$, | 
|---|
|  | 212 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and | 
|---|
|  | 213 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$, | 
|---|
|  | 214 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where | 
|---|
|  | 215 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize | 
|---|
|  | 216 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization | 
|---|
|  | 217 | * of the line yields the intersection point on the plane. | 
|---|
|  | 218 | * \param *out output stream for debugging | 
|---|
|  | 219 | * \param *PlaneNormal Plane's normal vector | 
|---|
|  | 220 | * \param *PlaneOffset Plane's offset vector | 
|---|
| [ef9df36] | 221 | * \param *Origin first vector of line | 
|---|
|  | 222 | * \param *LineVector second vector of line | 
|---|
| [2319ed] | 223 | * \return true -  \a this contains intersection point on return, false - line is parallel to plane | 
|---|
|  | 224 | */ | 
|---|
| [e138de] | 225 | bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector) | 
|---|
| [2319ed] | 226 | { | 
|---|
| [97498a] | 227 | Info FunctionInfo(__func__); | 
|---|
| [2319ed] | 228 | double factor; | 
|---|
| [46670d] | 229 | Vector Direction, helper; | 
|---|
| [2319ed] | 230 |  | 
|---|
|  | 231 | // find intersection of a line defined by Offset and Direction with a  plane defined by triangle | 
|---|
| [46670d] | 232 | Direction.CopyVector(LineVector); | 
|---|
|  | 233 | Direction.SubtractVector(Origin); | 
|---|
| [e4a379] | 234 | Direction.Normalize(); | 
|---|
| [97498a] | 235 | Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl; | 
|---|
| [46670d] | 236 | factor = Direction.ScalarProduct(PlaneNormal); | 
|---|
|  | 237 | if (factor < MYEPSILON) { // Uniqueness: line parallel to plane? | 
|---|
| [717e0c] | 238 | eLog() << Verbose(2) << "Line is parallel to plane, no intersection." << endl; | 
|---|
| [2319ed] | 239 | return false; | 
|---|
| [46670d] | 240 | } | 
|---|
|  | 241 | helper.CopyVector(PlaneOffset); | 
|---|
| [ef9df36] | 242 | helper.SubtractVector(Origin); | 
|---|
| [46670d] | 243 | factor = helper.ScalarProduct(PlaneNormal)/factor; | 
|---|
| [e4a379] | 244 | if (factor < MYEPSILON) { // Origin is in-plane | 
|---|
| [97498a] | 245 | Log() << Verbose(1) << "Origin of line is in-plane, simple." << endl; | 
|---|
| [e4a379] | 246 | CopyVector(Origin); | 
|---|
|  | 247 | return true; | 
|---|
|  | 248 | } | 
|---|
| [46670d] | 249 | //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal)); | 
|---|
| [2319ed] | 250 | Direction.Scale(factor); | 
|---|
| [ef9df36] | 251 | CopyVector(Origin); | 
|---|
| [97498a] | 252 | Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl; | 
|---|
| [46670d] | 253 | AddVector(&Direction); | 
|---|
| [2319ed] | 254 |  | 
|---|
|  | 255 | // test whether resulting vector really is on plane | 
|---|
| [46670d] | 256 | helper.CopyVector(this); | 
|---|
|  | 257 | helper.SubtractVector(PlaneOffset); | 
|---|
|  | 258 | if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) { | 
|---|
| [97498a] | 259 | Log() << Verbose(1) << "INFO: Intersection at " << *this << " is good." << endl; | 
|---|
| [2319ed] | 260 | return true; | 
|---|
| [46670d] | 261 | } else { | 
|---|
| [717e0c] | 262 | eLog() << Verbose(2) << "Intersection point " << *this << " is not on plane." << endl; | 
|---|
| [2319ed] | 263 | return false; | 
|---|
| [46670d] | 264 | } | 
|---|
| [2319ed] | 265 | }; | 
|---|
|  | 266 |  | 
|---|
| [c4d4df] | 267 | /** Calculates the minimum distance of this vector to the plane. | 
|---|
|  | 268 | * \param *out output stream for debugging | 
|---|
|  | 269 | * \param *PlaneNormal normal of plane | 
|---|
|  | 270 | * \param *PlaneOffset offset of plane | 
|---|
|  | 271 | * \return distance to plane | 
|---|
|  | 272 | */ | 
|---|
| [e138de] | 273 | double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const | 
|---|
| [c4d4df] | 274 | { | 
|---|
|  | 275 | Vector temp; | 
|---|
|  | 276 |  | 
|---|
|  | 277 | // first create part that is orthonormal to PlaneNormal with withdraw | 
|---|
|  | 278 | temp.CopyVector(this); | 
|---|
|  | 279 | temp.SubtractVector(PlaneOffset); | 
|---|
|  | 280 | temp.MakeNormalVector(PlaneNormal); | 
|---|
|  | 281 | temp.Scale(-1.); | 
|---|
|  | 282 | // then add connecting vector from plane to point | 
|---|
|  | 283 | temp.AddVector(this); | 
|---|
|  | 284 | temp.SubtractVector(PlaneOffset); | 
|---|
| [99593f] | 285 | double sign = temp.ScalarProduct(PlaneNormal); | 
|---|
| [7ea9e6] | 286 | if (fabs(sign) > MYEPSILON) | 
|---|
|  | 287 | sign /= fabs(sign); | 
|---|
|  | 288 | else | 
|---|
|  | 289 | sign = 0.; | 
|---|
| [c4d4df] | 290 |  | 
|---|
| [99593f] | 291 | return (temp.Norm()*sign); | 
|---|
| [c4d4df] | 292 | }; | 
|---|
|  | 293 |  | 
|---|
| [2319ed] | 294 | /** Calculates the intersection of the two lines that are both on the same plane. | 
|---|
| [ef9df36] | 295 | * We construct auxiliary plane with its vector normal to one line direction and the PlaneNormal, then a vector | 
|---|
|  | 296 | * from the first line's offset onto the plane. Finally, scale by factor is 1/cos(angle(line1,line2..)) = 1/SP(...), and | 
|---|
|  | 297 | * project onto the first line's direction and add its offset. | 
|---|
| [2319ed] | 298 | * \param *out output stream for debugging | 
|---|
|  | 299 | * \param *Line1a first vector of first line | 
|---|
|  | 300 | * \param *Line1b second vector of first line | 
|---|
|  | 301 | * \param *Line2a first vector of second line | 
|---|
|  | 302 | * \param *Line2b second vector of second line | 
|---|
| [46670d] | 303 | * \param *PlaneNormal normal of plane, is supplemental/arbitrary | 
|---|
| [2319ed] | 304 | * \return true - \a this will contain the intersection on return, false - lines are parallel | 
|---|
|  | 305 | */ | 
|---|
| [e138de] | 306 | bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal) | 
|---|
| [2319ed] | 307 | { | 
|---|
| [97498a] | 308 | Info FunctionInfo(__func__); | 
|---|
| [ef9df36] | 309 | Vector Direction, OtherDirection; | 
|---|
| [97498a] | 310 | gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM); | 
|---|
|  | 311 | gsl_vector *b = gsl_vector_alloc(NDIM); | 
|---|
|  | 312 | gsl_vector *x = gsl_vector_alloc(NDIM); | 
|---|
|  | 313 | gsl_permutation *perm = NULL; | 
|---|
|  | 314 | int signum; | 
|---|
| [ef9df36] | 315 |  | 
|---|
|  | 316 | // construct both direction vectors | 
|---|
|  | 317 | Direction.CopyVector(Line1b); | 
|---|
|  | 318 | Direction.SubtractVector(Line1a); | 
|---|
|  | 319 | if (Direction.IsZero()) | 
|---|
|  | 320 | return false; | 
|---|
|  | 321 | OtherDirection.CopyVector(Line2b); | 
|---|
|  | 322 | OtherDirection.SubtractVector(Line2a); | 
|---|
|  | 323 | if (OtherDirection.IsZero()) | 
|---|
|  | 324 | return false; | 
|---|
| [2319ed] | 325 |  | 
|---|
| [97498a] | 326 | // set vector | 
|---|
|  | 327 | for (int i=0;i<NDIM;i++) | 
|---|
|  | 328 | gsl_vector_set(b, i, Line1a->x[i]-Line2a->x[i]); | 
|---|
|  | 329 | Log() << Verbose(1) << "b = " << endl; | 
|---|
|  | 330 | gsl_vector_fprintf(stdout, b, "%g"); | 
|---|
|  | 331 |  | 
|---|
|  | 332 | // set matrix | 
|---|
|  | 333 | for (int i=0;i<NDIM;i++) | 
|---|
|  | 334 | gsl_matrix_set(A, 0, i, -Direction.x[i]); | 
|---|
|  | 335 | for (int i=0;i<NDIM;i++) | 
|---|
|  | 336 | gsl_matrix_set(A, 1, i, OtherDirection.x[i]); | 
|---|
|  | 337 | for (int i=0;i<NDIM;i++) | 
|---|
|  | 338 | gsl_matrix_set(A, 2, i, 1.); | 
|---|
|  | 339 | Log() << Verbose(1) << "A = " << endl; | 
|---|
|  | 340 | gsl_matrix_fprintf(stdout, A, "%g"); | 
|---|
|  | 341 |  | 
|---|
|  | 342 | // Solve A x=b for x | 
|---|
|  | 343 | perm = gsl_permutation_alloc(NDIM); | 
|---|
|  | 344 | gsl_linalg_LU_decomp(A, perm, &signum); | 
|---|
|  | 345 | gsl_linalg_LU_solve(A, perm, b, x); | 
|---|
|  | 346 | gsl_permutation_free(perm); | 
|---|
|  | 347 | gsl_vector_free(b); | 
|---|
|  | 348 | gsl_matrix_free(A); | 
|---|
|  | 349 |  | 
|---|
|  | 350 | Log() << Verbose(1) << "Solution is " << gsl_vector_get(x,0) << ", " << gsl_vector_get(x,1) << "." << endl; | 
|---|
|  | 351 |  | 
|---|
|  | 352 | CopyVector(&Direction); | 
|---|
|  | 353 | Scale(gsl_vector_get(x,0)); | 
|---|
|  | 354 | AddVector(Line1a); | 
|---|
|  | 355 | Log() << Verbose(1) << "INFO: First intersection is " << *this << "." << endl; | 
|---|
|  | 356 |  | 
|---|
|  | 357 | Vector test; | 
|---|
|  | 358 | test.CopyVector(&OtherDirection); | 
|---|
|  | 359 | test.Scale(gsl_vector_get(x,1)); | 
|---|
|  | 360 | test.AddVector(Line2a); | 
|---|
|  | 361 | Log() << Verbose(1) << "INFO: Second intersection is " << test << "." << endl; | 
|---|
|  | 362 | test.SubtractVector(this); | 
|---|
|  | 363 |  | 
|---|
|  | 364 | gsl_vector_free(x); | 
|---|
|  | 365 |  | 
|---|
|  | 366 | if (test.IsZero()) | 
|---|
| [ef9df36] | 367 | return true; | 
|---|
| [97498a] | 368 | else | 
|---|
|  | 369 | return false; | 
|---|
| [2319ed] | 370 | }; | 
|---|
|  | 371 |  | 
|---|
| [6ac7ee] | 372 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
|  | 373 | * \param *y array to second vector | 
|---|
|  | 374 | */ | 
|---|
| [776b64] | 375 | void Vector::ProjectIt(const Vector * const y) | 
|---|
| [6ac7ee] | 376 | { | 
|---|
| [ef9df36] | 377 | Vector helper(*y); | 
|---|
|  | 378 | helper.Scale(-(ScalarProduct(y))); | 
|---|
|  | 379 | AddVector(&helper); | 
|---|
|  | 380 | }; | 
|---|
|  | 381 |  | 
|---|
|  | 382 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
|  | 383 | * \param *y array to second vector | 
|---|
|  | 384 | * \return Vector | 
|---|
|  | 385 | */ | 
|---|
| [776b64] | 386 | Vector Vector::Projection(const Vector * const y) const | 
|---|
| [ef9df36] | 387 | { | 
|---|
|  | 388 | Vector helper(*y); | 
|---|
|  | 389 | helper.Scale((ScalarProduct(y)/y->NormSquared())); | 
|---|
|  | 390 |  | 
|---|
|  | 391 | return helper; | 
|---|
| [6ac7ee] | 392 | }; | 
|---|
|  | 393 |  | 
|---|
|  | 394 | /** Calculates norm of this vector. | 
|---|
|  | 395 | * \return \f$|x|\f$ | 
|---|
|  | 396 | */ | 
|---|
|  | 397 | double Vector::Norm() const | 
|---|
|  | 398 | { | 
|---|
| [042f82] | 399 | double res = 0.; | 
|---|
|  | 400 | for (int i=NDIM;i--;) | 
|---|
|  | 401 | res += this->x[i]*this->x[i]; | 
|---|
|  | 402 | return (sqrt(res)); | 
|---|
| [6ac7ee] | 403 | }; | 
|---|
|  | 404 |  | 
|---|
| [d4d0dd] | 405 | /** Calculates squared norm of this vector. | 
|---|
|  | 406 | * \return \f$|x|^2\f$ | 
|---|
|  | 407 | */ | 
|---|
|  | 408 | double Vector::NormSquared() const | 
|---|
|  | 409 | { | 
|---|
|  | 410 | return (ScalarProduct(this)); | 
|---|
|  | 411 | }; | 
|---|
|  | 412 |  | 
|---|
| [6ac7ee] | 413 | /** Normalizes this vector. | 
|---|
|  | 414 | */ | 
|---|
|  | 415 | void Vector::Normalize() | 
|---|
|  | 416 | { | 
|---|
| [042f82] | 417 | double res = 0.; | 
|---|
|  | 418 | for (int i=NDIM;i--;) | 
|---|
|  | 419 | res += this->x[i]*this->x[i]; | 
|---|
|  | 420 | if (fabs(res) > MYEPSILON) | 
|---|
|  | 421 | res = 1./sqrt(res); | 
|---|
|  | 422 | Scale(&res); | 
|---|
| [6ac7ee] | 423 | }; | 
|---|
|  | 424 |  | 
|---|
|  | 425 | /** Zeros all components of this vector. | 
|---|
|  | 426 | */ | 
|---|
|  | 427 | void Vector::Zero() | 
|---|
|  | 428 | { | 
|---|
| [042f82] | 429 | for (int i=NDIM;i--;) | 
|---|
|  | 430 | this->x[i] = 0.; | 
|---|
| [6ac7ee] | 431 | }; | 
|---|
|  | 432 |  | 
|---|
|  | 433 | /** Zeros all components of this vector. | 
|---|
|  | 434 | */ | 
|---|
| [776b64] | 435 | void Vector::One(const double one) | 
|---|
| [6ac7ee] | 436 | { | 
|---|
| [042f82] | 437 | for (int i=NDIM;i--;) | 
|---|
|  | 438 | this->x[i] = one; | 
|---|
| [6ac7ee] | 439 | }; | 
|---|
|  | 440 |  | 
|---|
|  | 441 | /** Initialises all components of this vector. | 
|---|
|  | 442 | */ | 
|---|
| [776b64] | 443 | void Vector::Init(const double x1, const double x2, const double x3) | 
|---|
| [6ac7ee] | 444 | { | 
|---|
| [042f82] | 445 | x[0] = x1; | 
|---|
|  | 446 | x[1] = x2; | 
|---|
|  | 447 | x[2] = x3; | 
|---|
| [6ac7ee] | 448 | }; | 
|---|
|  | 449 |  | 
|---|
| [9c20aa] | 450 | /** Checks whether vector has all components zero. | 
|---|
|  | 451 | * @return true - vector is zero, false - vector is not | 
|---|
|  | 452 | */ | 
|---|
| [54a746] | 453 | bool Vector::IsZero() const | 
|---|
| [9c20aa] | 454 | { | 
|---|
| [54a746] | 455 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON); | 
|---|
|  | 456 | }; | 
|---|
|  | 457 |  | 
|---|
|  | 458 | /** Checks whether vector has length of 1. | 
|---|
|  | 459 | * @return true - vector is normalized, false - vector is not | 
|---|
|  | 460 | */ | 
|---|
|  | 461 | bool Vector::IsOne() const | 
|---|
|  | 462 | { | 
|---|
|  | 463 | return (fabs(Norm() - 1.) < MYEPSILON); | 
|---|
| [9c20aa] | 464 | }; | 
|---|
|  | 465 |  | 
|---|
| [ef9df36] | 466 | /** Checks whether vector is normal to \a *normal. | 
|---|
|  | 467 | * @return true - vector is normalized, false - vector is not | 
|---|
|  | 468 | */ | 
|---|
| [776b64] | 469 | bool Vector::IsNormalTo(const Vector * const normal) const | 
|---|
| [ef9df36] | 470 | { | 
|---|
|  | 471 | if (ScalarProduct(normal) < MYEPSILON) | 
|---|
|  | 472 | return true; | 
|---|
|  | 473 | else | 
|---|
|  | 474 | return false; | 
|---|
|  | 475 | }; | 
|---|
|  | 476 |  | 
|---|
| [b998c3] | 477 | /** Checks whether vector is normal to \a *normal. | 
|---|
|  | 478 | * @return true - vector is normalized, false - vector is not | 
|---|
|  | 479 | */ | 
|---|
|  | 480 | bool Vector::IsEqualTo(const Vector * const a) const | 
|---|
|  | 481 | { | 
|---|
|  | 482 | bool status = true; | 
|---|
|  | 483 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 484 | if (fabs(x[i] - a->x[i]) > MYEPSILON) | 
|---|
|  | 485 | status = false; | 
|---|
|  | 486 | } | 
|---|
|  | 487 | return status; | 
|---|
|  | 488 | }; | 
|---|
|  | 489 |  | 
|---|
| [6ac7ee] | 490 | /** Calculates the angle between this and another vector. | 
|---|
|  | 491 | * \param *y array to second vector | 
|---|
|  | 492 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$ | 
|---|
|  | 493 | */ | 
|---|
| [776b64] | 494 | double Vector::Angle(const Vector * const y) const | 
|---|
| [6ac7ee] | 495 | { | 
|---|
| [d4d0dd] | 496 | double norm1 = Norm(), norm2 = y->Norm(); | 
|---|
| [ef9df36] | 497 | double angle = -1; | 
|---|
| [d4d0dd] | 498 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON)) | 
|---|
|  | 499 | angle = this->ScalarProduct(y)/norm1/norm2; | 
|---|
| [02da9e] | 500 | // -1-MYEPSILON occured due to numerical imprecision, catch ... | 
|---|
| [e138de] | 501 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl; | 
|---|
| [02da9e] | 502 | if (angle < -1) | 
|---|
|  | 503 | angle = -1; | 
|---|
|  | 504 | if (angle > 1) | 
|---|
|  | 505 | angle = 1; | 
|---|
| [042f82] | 506 | return acos(angle); | 
|---|
| [6ac7ee] | 507 | }; | 
|---|
|  | 508 |  | 
|---|
| [78b73c] | 509 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha. | 
|---|
| [6ac7ee] | 510 | * \param *axis rotation axis | 
|---|
|  | 511 | * \param alpha rotation angle in radian | 
|---|
|  | 512 | */ | 
|---|
| [776b64] | 513 | void Vector::RotateVector(const Vector * const axis, const double alpha) | 
|---|
| [6ac7ee] | 514 | { | 
|---|
| [042f82] | 515 | Vector a,y; | 
|---|
|  | 516 | // normalise this vector with respect to axis | 
|---|
|  | 517 | a.CopyVector(this); | 
|---|
| [ef9df36] | 518 | a.ProjectOntoPlane(axis); | 
|---|
| [042f82] | 519 | // construct normal vector | 
|---|
| [78b73c] | 520 | bool rotatable = y.MakeNormalVector(axis,&a); | 
|---|
|  | 521 | // The normal vector cannot be created if there is linar dependency. | 
|---|
|  | 522 | // Then the vector to rotate is on the axis and any rotation leads to the vector itself. | 
|---|
|  | 523 | if (!rotatable) { | 
|---|
|  | 524 | return; | 
|---|
|  | 525 | } | 
|---|
| [042f82] | 526 | y.Scale(Norm()); | 
|---|
|  | 527 | // scale normal vector by sine and this vector by cosine | 
|---|
|  | 528 | y.Scale(sin(alpha)); | 
|---|
| [78b73c] | 529 | a.Scale(cos(alpha)); | 
|---|
|  | 530 | CopyVector(Projection(axis)); | 
|---|
| [042f82] | 531 | // add scaled normal vector onto this vector | 
|---|
|  | 532 | AddVector(&y); | 
|---|
|  | 533 | // add part in axis direction | 
|---|
|  | 534 | AddVector(&a); | 
|---|
| [6ac7ee] | 535 | }; | 
|---|
|  | 536 |  | 
|---|
| [ef9df36] | 537 | /** Compares vector \a to vector \a b component-wise. | 
|---|
|  | 538 | * \param a base vector | 
|---|
|  | 539 | * \param b vector components to add | 
|---|
|  | 540 | * \return a == b | 
|---|
|  | 541 | */ | 
|---|
|  | 542 | bool operator==(const Vector& a, const Vector& b) | 
|---|
|  | 543 | { | 
|---|
|  | 544 | bool status = true; | 
|---|
|  | 545 | for (int i=0;i<NDIM;i++) | 
|---|
|  | 546 | status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON); | 
|---|
|  | 547 | return status; | 
|---|
|  | 548 | }; | 
|---|
|  | 549 |  | 
|---|
| [6ac7ee] | 550 | /** Sums vector \a to this lhs component-wise. | 
|---|
|  | 551 | * \param a base vector | 
|---|
|  | 552 | * \param b vector components to add | 
|---|
|  | 553 | * \return lhs + a | 
|---|
|  | 554 | */ | 
|---|
|  | 555 | Vector& operator+=(Vector& a, const Vector& b) | 
|---|
|  | 556 | { | 
|---|
| [042f82] | 557 | a.AddVector(&b); | 
|---|
|  | 558 | return a; | 
|---|
| [6ac7ee] | 559 | }; | 
|---|
| [54a746] | 560 |  | 
|---|
|  | 561 | /** Subtracts vector \a from this lhs component-wise. | 
|---|
|  | 562 | * \param a base vector | 
|---|
|  | 563 | * \param b vector components to add | 
|---|
|  | 564 | * \return lhs - a | 
|---|
|  | 565 | */ | 
|---|
|  | 566 | Vector& operator-=(Vector& a, const Vector& b) | 
|---|
|  | 567 | { | 
|---|
|  | 568 | a.SubtractVector(&b); | 
|---|
|  | 569 | return a; | 
|---|
|  | 570 | }; | 
|---|
|  | 571 |  | 
|---|
| [6ac7ee] | 572 | /** factor each component of \a a times a double \a m. | 
|---|
|  | 573 | * \param a base vector | 
|---|
|  | 574 | * \param m factor | 
|---|
|  | 575 | * \return lhs.x[i] * m | 
|---|
|  | 576 | */ | 
|---|
|  | 577 | Vector& operator*=(Vector& a, const double m) | 
|---|
|  | 578 | { | 
|---|
| [042f82] | 579 | a.Scale(m); | 
|---|
|  | 580 | return a; | 
|---|
| [6ac7ee] | 581 | }; | 
|---|
|  | 582 |  | 
|---|
| [042f82] | 583 | /** Sums two vectors \a  and \b component-wise. | 
|---|
| [6ac7ee] | 584 | * \param a first vector | 
|---|
|  | 585 | * \param b second vector | 
|---|
|  | 586 | * \return a + b | 
|---|
|  | 587 | */ | 
|---|
|  | 588 | Vector& operator+(const Vector& a, const Vector& b) | 
|---|
|  | 589 | { | 
|---|
| [042f82] | 590 | Vector *x = new Vector; | 
|---|
|  | 591 | x->CopyVector(&a); | 
|---|
|  | 592 | x->AddVector(&b); | 
|---|
|  | 593 | return *x; | 
|---|
| [6ac7ee] | 594 | }; | 
|---|
|  | 595 |  | 
|---|
| [54a746] | 596 | /** Subtracts vector \a from \b component-wise. | 
|---|
|  | 597 | * \param a first vector | 
|---|
|  | 598 | * \param b second vector | 
|---|
|  | 599 | * \return a - b | 
|---|
|  | 600 | */ | 
|---|
|  | 601 | Vector& operator-(const Vector& a, const Vector& b) | 
|---|
|  | 602 | { | 
|---|
|  | 603 | Vector *x = new Vector; | 
|---|
|  | 604 | x->CopyVector(&a); | 
|---|
|  | 605 | x->SubtractVector(&b); | 
|---|
|  | 606 | return *x; | 
|---|
|  | 607 | }; | 
|---|
|  | 608 |  | 
|---|
| [6ac7ee] | 609 | /** Factors given vector \a a times \a m. | 
|---|
|  | 610 | * \param a vector | 
|---|
|  | 611 | * \param m factor | 
|---|
| [54a746] | 612 | * \return m * a | 
|---|
| [6ac7ee] | 613 | */ | 
|---|
|  | 614 | Vector& operator*(const Vector& a, const double m) | 
|---|
|  | 615 | { | 
|---|
| [042f82] | 616 | Vector *x = new Vector; | 
|---|
|  | 617 | x->CopyVector(&a); | 
|---|
|  | 618 | x->Scale(m); | 
|---|
|  | 619 | return *x; | 
|---|
| [6ac7ee] | 620 | }; | 
|---|
|  | 621 |  | 
|---|
| [54a746] | 622 | /** Factors given vector \a a times \a m. | 
|---|
|  | 623 | * \param m factor | 
|---|
|  | 624 | * \param a vector | 
|---|
|  | 625 | * \return m * a | 
|---|
|  | 626 | */ | 
|---|
|  | 627 | Vector& operator*(const double m, const Vector& a ) | 
|---|
|  | 628 | { | 
|---|
|  | 629 | Vector *x = new Vector; | 
|---|
|  | 630 | x->CopyVector(&a); | 
|---|
|  | 631 | x->Scale(m); | 
|---|
|  | 632 | return *x; | 
|---|
|  | 633 | }; | 
|---|
|  | 634 |  | 
|---|
| [6ac7ee] | 635 | /** Prints a 3dim vector. | 
|---|
|  | 636 | * prints no end of line. | 
|---|
|  | 637 | */ | 
|---|
| [e138de] | 638 | void Vector::Output() const | 
|---|
| [6ac7ee] | 639 | { | 
|---|
| [e138de] | 640 | Log() << Verbose(0) << "("; | 
|---|
|  | 641 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 642 | Log() << Verbose(0) << x[i]; | 
|---|
|  | 643 | if (i != 2) | 
|---|
|  | 644 | Log() << Verbose(0) << ","; | 
|---|
|  | 645 | } | 
|---|
|  | 646 | Log() << Verbose(0) << ")"; | 
|---|
| [6ac7ee] | 647 | }; | 
|---|
|  | 648 |  | 
|---|
| [9c20aa] | 649 | ostream& operator<<(ostream& ost, const Vector& m) | 
|---|
| [6ac7ee] | 650 | { | 
|---|
| [042f82] | 651 | ost << "("; | 
|---|
|  | 652 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 653 | ost << m.x[i]; | 
|---|
|  | 654 | if (i != 2) | 
|---|
|  | 655 | ost << ","; | 
|---|
|  | 656 | } | 
|---|
|  | 657 | ost << ")"; | 
|---|
|  | 658 | return ost; | 
|---|
| [6ac7ee] | 659 | }; | 
|---|
|  | 660 |  | 
|---|
|  | 661 | /** Scales each atom coordinate by an individual \a factor. | 
|---|
|  | 662 | * \param *factor pointer to scaling factor | 
|---|
|  | 663 | */ | 
|---|
| [776b64] | 664 | void Vector::Scale(const double ** const factor) | 
|---|
| [6ac7ee] | 665 | { | 
|---|
| [042f82] | 666 | for (int i=NDIM;i--;) | 
|---|
|  | 667 | x[i] *= (*factor)[i]; | 
|---|
| [6ac7ee] | 668 | }; | 
|---|
|  | 669 |  | 
|---|
| [776b64] | 670 | void Vector::Scale(const double * const factor) | 
|---|
| [6ac7ee] | 671 | { | 
|---|
| [042f82] | 672 | for (int i=NDIM;i--;) | 
|---|
|  | 673 | x[i] *= *factor; | 
|---|
| [6ac7ee] | 674 | }; | 
|---|
|  | 675 |  | 
|---|
| [776b64] | 676 | void Vector::Scale(const double factor) | 
|---|
| [6ac7ee] | 677 | { | 
|---|
| [042f82] | 678 | for (int i=NDIM;i--;) | 
|---|
|  | 679 | x[i] *= factor; | 
|---|
| [6ac7ee] | 680 | }; | 
|---|
|  | 681 |  | 
|---|
|  | 682 | /** Translate atom by given vector. | 
|---|
|  | 683 | * \param trans[] translation vector. | 
|---|
|  | 684 | */ | 
|---|
| [776b64] | 685 | void Vector::Translate(const Vector * const trans) | 
|---|
| [6ac7ee] | 686 | { | 
|---|
| [042f82] | 687 | for (int i=NDIM;i--;) | 
|---|
|  | 688 | x[i] += trans->x[i]; | 
|---|
| [6ac7ee] | 689 | }; | 
|---|
|  | 690 |  | 
|---|
| [d09ff7] | 691 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box. | 
|---|
|  | 692 | * \param *M matrix of box | 
|---|
|  | 693 | * \param *Minv inverse matrix | 
|---|
|  | 694 | */ | 
|---|
| [776b64] | 695 | void Vector::WrapPeriodically(const double * const M, const double * const Minv) | 
|---|
| [d09ff7] | 696 | { | 
|---|
|  | 697 | MatrixMultiplication(Minv); | 
|---|
|  | 698 | // truncate to [0,1] for each axis | 
|---|
|  | 699 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 700 | x[i] += 0.5;  // set to center of box | 
|---|
|  | 701 | while (x[i] >= 1.) | 
|---|
|  | 702 | x[i] -= 1.; | 
|---|
|  | 703 | while (x[i] < 0.) | 
|---|
|  | 704 | x[i] += 1.; | 
|---|
|  | 705 | } | 
|---|
|  | 706 | MatrixMultiplication(M); | 
|---|
|  | 707 | }; | 
|---|
|  | 708 |  | 
|---|
| [6ac7ee] | 709 | /** Do a matrix multiplication. | 
|---|
|  | 710 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 711 | */ | 
|---|
| [776b64] | 712 | void Vector::MatrixMultiplication(const double * const M) | 
|---|
| [6ac7ee] | 713 | { | 
|---|
| [042f82] | 714 | Vector C; | 
|---|
|  | 715 | // do the matrix multiplication | 
|---|
|  | 716 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2]; | 
|---|
|  | 717 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2]; | 
|---|
|  | 718 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2]; | 
|---|
|  | 719 | // transfer the result into this | 
|---|
|  | 720 | for (int i=NDIM;i--;) | 
|---|
|  | 721 | x[i] = C.x[i]; | 
|---|
| [6ac7ee] | 722 | }; | 
|---|
|  | 723 |  | 
|---|
| [2319ed] | 724 | /** Do a matrix multiplication with the \a *A' inverse. | 
|---|
| [6ac7ee] | 725 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 726 | */ | 
|---|
| [776b64] | 727 | void Vector::InverseMatrixMultiplication(const double * const A) | 
|---|
| [6ac7ee] | 728 | { | 
|---|
| [042f82] | 729 | Vector C; | 
|---|
|  | 730 | double B[NDIM*NDIM]; | 
|---|
|  | 731 | double detA = RDET3(A); | 
|---|
|  | 732 | double detAReci; | 
|---|
|  | 733 |  | 
|---|
|  | 734 | // calculate the inverse B | 
|---|
|  | 735 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
|  | 736 | detAReci = 1./detA; | 
|---|
|  | 737 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11 | 
|---|
|  | 738 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12 | 
|---|
|  | 739 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13 | 
|---|
|  | 740 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21 | 
|---|
|  | 741 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22 | 
|---|
|  | 742 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23 | 
|---|
|  | 743 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31 | 
|---|
|  | 744 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32 | 
|---|
|  | 745 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33 | 
|---|
|  | 746 |  | 
|---|
|  | 747 | // do the matrix multiplication | 
|---|
|  | 748 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2]; | 
|---|
|  | 749 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2]; | 
|---|
|  | 750 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2]; | 
|---|
|  | 751 | // transfer the result into this | 
|---|
|  | 752 | for (int i=NDIM;i--;) | 
|---|
|  | 753 | x[i] = C.x[i]; | 
|---|
|  | 754 | } else { | 
|---|
| [717e0c] | 755 | eLog() << Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl; | 
|---|
| [042f82] | 756 | } | 
|---|
| [6ac7ee] | 757 | }; | 
|---|
|  | 758 |  | 
|---|
|  | 759 |  | 
|---|
|  | 760 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three. | 
|---|
|  | 761 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2] | 
|---|
|  | 762 | * \param *x1 first vector | 
|---|
|  | 763 | * \param *x2 second vector | 
|---|
|  | 764 | * \param *x3 third vector | 
|---|
|  | 765 | * \param *factors three-component vector with the factor for each given vector | 
|---|
|  | 766 | */ | 
|---|
| [776b64] | 767 | void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors) | 
|---|
| [6ac7ee] | 768 | { | 
|---|
| [042f82] | 769 | for(int i=NDIM;i--;) | 
|---|
|  | 770 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i]; | 
|---|
| [6ac7ee] | 771 | }; | 
|---|
|  | 772 |  | 
|---|
|  | 773 | /** Mirrors atom against a given plane. | 
|---|
|  | 774 | * \param n[] normal vector of mirror plane. | 
|---|
|  | 775 | */ | 
|---|
| [776b64] | 776 | void Vector::Mirror(const Vector * const n) | 
|---|
| [6ac7ee] | 777 | { | 
|---|
| [042f82] | 778 | double projection; | 
|---|
|  | 779 | projection = ScalarProduct(n)/n->ScalarProduct(n);    // remove constancy from n (keep as logical one) | 
|---|
|  | 780 | // withdraw projected vector twice from original one | 
|---|
| [e138de] | 781 | Log() << Verbose(1) << "Vector: "; | 
|---|
|  | 782 | Output(); | 
|---|
|  | 783 | Log() << Verbose(0) << "\t"; | 
|---|
| [042f82] | 784 | for (int i=NDIM;i--;) | 
|---|
|  | 785 | x[i] -= 2.*projection*n->x[i]; | 
|---|
| [e138de] | 786 | Log() << Verbose(0) << "Projected vector: "; | 
|---|
|  | 787 | Output(); | 
|---|
|  | 788 | Log() << Verbose(0) << endl; | 
|---|
| [6ac7ee] | 789 | }; | 
|---|
|  | 790 |  | 
|---|
|  | 791 | /** Calculates normal vector for three given vectors (being three points in space). | 
|---|
|  | 792 | * Makes this vector orthonormal to the three given points, making up a place in 3d space. | 
|---|
|  | 793 | * \param *y1 first vector | 
|---|
|  | 794 | * \param *y2 second vector | 
|---|
|  | 795 | * \param *y3 third vector | 
|---|
|  | 796 | * \return true - success, vectors are linear independent, false - failure due to linear dependency | 
|---|
|  | 797 | */ | 
|---|
| [776b64] | 798 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3) | 
|---|
| [6ac7ee] | 799 | { | 
|---|
| [042f82] | 800 | Vector x1, x2; | 
|---|
| [6ac7ee] | 801 |  | 
|---|
| [042f82] | 802 | x1.CopyVector(y1); | 
|---|
|  | 803 | x1.SubtractVector(y2); | 
|---|
|  | 804 | x2.CopyVector(y3); | 
|---|
|  | 805 | x2.SubtractVector(y2); | 
|---|
|  | 806 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) { | 
|---|
| [717e0c] | 807 | eLog() << Verbose(2) << "Given vectors are linear dependent." << endl; | 
|---|
| [042f82] | 808 | return false; | 
|---|
|  | 809 | } | 
|---|
| [e138de] | 810 | //  Log() << Verbose(4) << "relative, first plane coordinates:"; | 
|---|
| [042f82] | 811 | //  x1.Output((ofstream *)&cout); | 
|---|
| [e138de] | 812 | //  Log() << Verbose(0) << endl; | 
|---|
|  | 813 | //  Log() << Verbose(4) << "second plane coordinates:"; | 
|---|
| [042f82] | 814 | //  x2.Output((ofstream *)&cout); | 
|---|
| [e138de] | 815 | //  Log() << Verbose(0) << endl; | 
|---|
| [6ac7ee] | 816 |  | 
|---|
| [042f82] | 817 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]); | 
|---|
|  | 818 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]); | 
|---|
|  | 819 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]); | 
|---|
|  | 820 | Normalize(); | 
|---|
| [6ac7ee] | 821 |  | 
|---|
| [042f82] | 822 | return true; | 
|---|
| [6ac7ee] | 823 | }; | 
|---|
|  | 824 |  | 
|---|
|  | 825 |  | 
|---|
|  | 826 | /** Calculates orthonormal vector to two given vectors. | 
|---|
|  | 827 | * Makes this vector orthonormal to two given vectors. This is very similar to the other | 
|---|
|  | 828 | * vector::MakeNormalVector(), only there three points whereas here two difference | 
|---|
|  | 829 | * vectors are given. | 
|---|
|  | 830 | * \param *x1 first vector | 
|---|
|  | 831 | * \param *x2 second vector | 
|---|
|  | 832 | * \return true - success, vectors are linear independent, false - failure due to linear dependency | 
|---|
|  | 833 | */ | 
|---|
| [776b64] | 834 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2) | 
|---|
| [6ac7ee] | 835 | { | 
|---|
| [042f82] | 836 | Vector x1,x2; | 
|---|
|  | 837 | x1.CopyVector(y1); | 
|---|
|  | 838 | x2.CopyVector(y2); | 
|---|
|  | 839 | Zero(); | 
|---|
|  | 840 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) { | 
|---|
| [717e0c] | 841 | eLog() << Verbose(2) << "Given vectors are linear dependent." << endl; | 
|---|
| [042f82] | 842 | return false; | 
|---|
|  | 843 | } | 
|---|
| [e138de] | 844 | //  Log() << Verbose(4) << "relative, first plane coordinates:"; | 
|---|
| [042f82] | 845 | //  x1.Output((ofstream *)&cout); | 
|---|
| [e138de] | 846 | //  Log() << Verbose(0) << endl; | 
|---|
|  | 847 | //  Log() << Verbose(4) << "second plane coordinates:"; | 
|---|
| [042f82] | 848 | //  x2.Output((ofstream *)&cout); | 
|---|
| [e138de] | 849 | //  Log() << Verbose(0) << endl; | 
|---|
| [042f82] | 850 |  | 
|---|
|  | 851 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]); | 
|---|
|  | 852 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]); | 
|---|
|  | 853 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]); | 
|---|
|  | 854 | Normalize(); | 
|---|
|  | 855 |  | 
|---|
|  | 856 | return true; | 
|---|
| [6ac7ee] | 857 | }; | 
|---|
|  | 858 |  | 
|---|
|  | 859 | /** Calculates orthonormal vector to one given vectors. | 
|---|
|  | 860 | * Just subtracts the projection onto the given vector from this vector. | 
|---|
| [ef9df36] | 861 | * The removed part of the vector is Vector::Projection() | 
|---|
| [6ac7ee] | 862 | * \param *x1 vector | 
|---|
|  | 863 | * \return true - success, false - vector is zero | 
|---|
|  | 864 | */ | 
|---|
| [776b64] | 865 | bool Vector::MakeNormalVector(const Vector * const y1) | 
|---|
| [6ac7ee] | 866 | { | 
|---|
| [042f82] | 867 | bool result = false; | 
|---|
| [ef9df36] | 868 | double factor = y1->ScalarProduct(this)/y1->NormSquared(); | 
|---|
| [042f82] | 869 | Vector x1; | 
|---|
|  | 870 | x1.CopyVector(y1); | 
|---|
| [46670d] | 871 | x1.Scale(factor); | 
|---|
| [042f82] | 872 | SubtractVector(&x1); | 
|---|
|  | 873 | for (int i=NDIM;i--;) | 
|---|
|  | 874 | result = result || (fabs(x[i]) > MYEPSILON); | 
|---|
| [6ac7ee] | 875 |  | 
|---|
| [042f82] | 876 | return result; | 
|---|
| [6ac7ee] | 877 | }; | 
|---|
|  | 878 |  | 
|---|
|  | 879 | /** Creates this vector as one of the possible orthonormal ones to the given one. | 
|---|
|  | 880 | * Just scan how many components of given *vector are unequal to zero and | 
|---|
|  | 881 | * try to get the skp of both to be zero accordingly. | 
|---|
|  | 882 | * \param *vector given vector | 
|---|
|  | 883 | * \return true - success, false - failure (null vector given) | 
|---|
|  | 884 | */ | 
|---|
| [776b64] | 885 | bool Vector::GetOneNormalVector(const Vector * const GivenVector) | 
|---|
| [6ac7ee] | 886 | { | 
|---|
| [042f82] | 887 | int Components[NDIM]; // contains indices of non-zero components | 
|---|
|  | 888 | int Last = 0;   // count the number of non-zero entries in vector | 
|---|
|  | 889 | int j;  // loop variables | 
|---|
|  | 890 | double norm; | 
|---|
|  | 891 |  | 
|---|
| [e138de] | 892 | Log() << Verbose(4); | 
|---|
|  | 893 | GivenVector->Output(); | 
|---|
|  | 894 | Log() << Verbose(0) << endl; | 
|---|
| [042f82] | 895 | for (j=NDIM;j--;) | 
|---|
|  | 896 | Components[j] = -1; | 
|---|
|  | 897 | // find two components != 0 | 
|---|
|  | 898 | for (j=0;j<NDIM;j++) | 
|---|
|  | 899 | if (fabs(GivenVector->x[j]) > MYEPSILON) | 
|---|
|  | 900 | Components[Last++] = j; | 
|---|
| [e138de] | 901 | Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl; | 
|---|
| [042f82] | 902 |  | 
|---|
|  | 903 | switch(Last) { | 
|---|
|  | 904 | case 3:  // threecomponent system | 
|---|
|  | 905 | case 2:  // two component system | 
|---|
|  | 906 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]])); | 
|---|
|  | 907 | x[Components[2]] = 0.; | 
|---|
|  | 908 | // in skp both remaining parts shall become zero but with opposite sign and third is zero | 
|---|
|  | 909 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm; | 
|---|
|  | 910 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm; | 
|---|
|  | 911 | return true; | 
|---|
|  | 912 | break; | 
|---|
|  | 913 | case 1: // one component system | 
|---|
|  | 914 | // set sole non-zero component to 0, and one of the other zero component pendants to 1 | 
|---|
|  | 915 | x[(Components[0]+2)%NDIM] = 0.; | 
|---|
|  | 916 | x[(Components[0]+1)%NDIM] = 1.; | 
|---|
|  | 917 | x[Components[0]] = 0.; | 
|---|
|  | 918 | return true; | 
|---|
|  | 919 | break; | 
|---|
|  | 920 | default: | 
|---|
|  | 921 | return false; | 
|---|
|  | 922 | } | 
|---|
| [6ac7ee] | 923 | }; | 
|---|
|  | 924 |  | 
|---|
| [ef9df36] | 925 | /** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C. | 
|---|
| [6ac7ee] | 926 | * \param *A first plane vector | 
|---|
|  | 927 | * \param *B second plane vector | 
|---|
|  | 928 | * \param *C third plane vector | 
|---|
|  | 929 | * \return scaling parameter for this vector | 
|---|
|  | 930 | */ | 
|---|
| [776b64] | 931 | double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const | 
|---|
| [6ac7ee] | 932 | { | 
|---|
| [e138de] | 933 | //  Log() << Verbose(3) << "For comparison: "; | 
|---|
|  | 934 | //  Log() << Verbose(0) << "A " << A->Projection(this) << "\t"; | 
|---|
|  | 935 | //  Log() << Verbose(0) << "B " << B->Projection(this) << "\t"; | 
|---|
|  | 936 | //  Log() << Verbose(0) << "C " << C->Projection(this) << "\t"; | 
|---|
|  | 937 | //  Log() << Verbose(0) << endl; | 
|---|
| [ef9df36] | 938 | return A->ScalarProduct(this); | 
|---|
| [6ac7ee] | 939 | }; | 
|---|
|  | 940 |  | 
|---|
|  | 941 | /** Creates a new vector as the one with least square distance to a given set of \a vectors. | 
|---|
|  | 942 | * \param *vectors set of vectors | 
|---|
|  | 943 | * \param num number of vectors | 
|---|
|  | 944 | * \return true if success, false if failed due to linear dependency | 
|---|
|  | 945 | */ | 
|---|
| [776b64] | 946 | bool Vector::LSQdistance(const Vector **vectors, int num) | 
|---|
| [6ac7ee] | 947 | { | 
|---|
| [042f82] | 948 | int j; | 
|---|
| [6ac7ee] | 949 |  | 
|---|
| [042f82] | 950 | for (j=0;j<num;j++) { | 
|---|
| [e138de] | 951 | Log() << Verbose(1) << j << "th atom's vector: "; | 
|---|
|  | 952 | (vectors[j])->Output(); | 
|---|
|  | 953 | Log() << Verbose(0) << endl; | 
|---|
| [042f82] | 954 | } | 
|---|
| [6ac7ee] | 955 |  | 
|---|
| [042f82] | 956 | int np = 3; | 
|---|
|  | 957 | struct LSQ_params par; | 
|---|
| [6ac7ee] | 958 |  | 
|---|
| [042f82] | 959 | const gsl_multimin_fminimizer_type *T = | 
|---|
|  | 960 | gsl_multimin_fminimizer_nmsimplex; | 
|---|
|  | 961 | gsl_multimin_fminimizer *s = NULL; | 
|---|
|  | 962 | gsl_vector *ss, *y; | 
|---|
|  | 963 | gsl_multimin_function minex_func; | 
|---|
| [6ac7ee] | 964 |  | 
|---|
| [042f82] | 965 | size_t iter = 0, i; | 
|---|
|  | 966 | int status; | 
|---|
|  | 967 | double size; | 
|---|
| [6ac7ee] | 968 |  | 
|---|
| [042f82] | 969 | /* Initial vertex size vector */ | 
|---|
|  | 970 | ss = gsl_vector_alloc (np); | 
|---|
|  | 971 | y = gsl_vector_alloc (np); | 
|---|
| [6ac7ee] | 972 |  | 
|---|
| [042f82] | 973 | /* Set all step sizes to 1 */ | 
|---|
|  | 974 | gsl_vector_set_all (ss, 1.0); | 
|---|
| [6ac7ee] | 975 |  | 
|---|
| [042f82] | 976 | /* Starting point */ | 
|---|
|  | 977 | par.vectors = vectors; | 
|---|
|  | 978 | par.num = num; | 
|---|
| [6ac7ee] | 979 |  | 
|---|
| [042f82] | 980 | for (i=NDIM;i--;) | 
|---|
|  | 981 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.); | 
|---|
| [6ac7ee] | 982 |  | 
|---|
| [042f82] | 983 | /* Initialize method and iterate */ | 
|---|
|  | 984 | minex_func.f = &LSQ; | 
|---|
|  | 985 | minex_func.n = np; | 
|---|
|  | 986 | minex_func.params = (void *)∥ | 
|---|
| [6ac7ee] | 987 |  | 
|---|
| [042f82] | 988 | s = gsl_multimin_fminimizer_alloc (T, np); | 
|---|
|  | 989 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss); | 
|---|
| [6ac7ee] | 990 |  | 
|---|
| [042f82] | 991 | do | 
|---|
|  | 992 | { | 
|---|
|  | 993 | iter++; | 
|---|
|  | 994 | status = gsl_multimin_fminimizer_iterate(s); | 
|---|
| [6ac7ee] | 995 |  | 
|---|
| [042f82] | 996 | if (status) | 
|---|
|  | 997 | break; | 
|---|
| [6ac7ee] | 998 |  | 
|---|
| [042f82] | 999 | size = gsl_multimin_fminimizer_size (s); | 
|---|
|  | 1000 | status = gsl_multimin_test_size (size, 1e-2); | 
|---|
| [6ac7ee] | 1001 |  | 
|---|
| [042f82] | 1002 | if (status == GSL_SUCCESS) | 
|---|
|  | 1003 | { | 
|---|
|  | 1004 | printf ("converged to minimum at\n"); | 
|---|
|  | 1005 | } | 
|---|
| [6ac7ee] | 1006 |  | 
|---|
| [042f82] | 1007 | printf ("%5d ", (int)iter); | 
|---|
|  | 1008 | for (i = 0; i < (size_t)np; i++) | 
|---|
|  | 1009 | { | 
|---|
|  | 1010 | printf ("%10.3e ", gsl_vector_get (s->x, i)); | 
|---|
|  | 1011 | } | 
|---|
|  | 1012 | printf ("f() = %7.3f size = %.3f\n", s->fval, size); | 
|---|
|  | 1013 | } | 
|---|
|  | 1014 | while (status == GSL_CONTINUE && iter < 100); | 
|---|
| [6ac7ee] | 1015 |  | 
|---|
| [042f82] | 1016 | for (i=(size_t)np;i--;) | 
|---|
|  | 1017 | this->x[i] = gsl_vector_get(s->x, i); | 
|---|
|  | 1018 | gsl_vector_free(y); | 
|---|
|  | 1019 | gsl_vector_free(ss); | 
|---|
|  | 1020 | gsl_multimin_fminimizer_free (s); | 
|---|
| [6ac7ee] | 1021 |  | 
|---|
| [042f82] | 1022 | return true; | 
|---|
| [6ac7ee] | 1023 | }; | 
|---|
|  | 1024 |  | 
|---|
|  | 1025 | /** Adds vector \a *y componentwise. | 
|---|
|  | 1026 | * \param *y vector | 
|---|
|  | 1027 | */ | 
|---|
| [776b64] | 1028 | void Vector::AddVector(const Vector * const y) | 
|---|
| [6ac7ee] | 1029 | { | 
|---|
| [042f82] | 1030 | for (int i=NDIM;i--;) | 
|---|
|  | 1031 | this->x[i] += y->x[i]; | 
|---|
| [6ac7ee] | 1032 | } | 
|---|
|  | 1033 |  | 
|---|
|  | 1034 | /** Adds vector \a *y componentwise. | 
|---|
|  | 1035 | * \param *y vector | 
|---|
|  | 1036 | */ | 
|---|
| [776b64] | 1037 | void Vector::SubtractVector(const Vector * const y) | 
|---|
| [6ac7ee] | 1038 | { | 
|---|
| [042f82] | 1039 | for (int i=NDIM;i--;) | 
|---|
|  | 1040 | this->x[i] -= y->x[i]; | 
|---|
| [6ac7ee] | 1041 | } | 
|---|
|  | 1042 |  | 
|---|
|  | 1043 | /** Copy vector \a *y componentwise. | 
|---|
|  | 1044 | * \param *y vector | 
|---|
|  | 1045 | */ | 
|---|
| [776b64] | 1046 | void Vector::CopyVector(const Vector * const y) | 
|---|
| [6ac7ee] | 1047 | { | 
|---|
| [042f82] | 1048 | for (int i=NDIM;i--;) | 
|---|
|  | 1049 | this->x[i] = y->x[i]; | 
|---|
| [6ac7ee] | 1050 | } | 
|---|
|  | 1051 |  | 
|---|
| [ef9df36] | 1052 | /** Copy vector \a y componentwise. | 
|---|
|  | 1053 | * \param y vector | 
|---|
|  | 1054 | */ | 
|---|
| [776b64] | 1055 | void Vector::CopyVector(const Vector &y) | 
|---|
| [ef9df36] | 1056 | { | 
|---|
|  | 1057 | for (int i=NDIM;i--;) | 
|---|
|  | 1058 | this->x[i] = y.x[i]; | 
|---|
|  | 1059 | } | 
|---|
|  | 1060 |  | 
|---|
| [6ac7ee] | 1061 |  | 
|---|
|  | 1062 | /** Asks for position, checks for boundary. | 
|---|
|  | 1063 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size | 
|---|
|  | 1064 | * \param check whether bounds shall be checked (true) or not (false) | 
|---|
|  | 1065 | */ | 
|---|
| [776b64] | 1066 | void Vector::AskPosition(const double * const cell_size, const bool check) | 
|---|
| [6ac7ee] | 1067 | { | 
|---|
| [042f82] | 1068 | char coords[3] = {'x','y','z'}; | 
|---|
|  | 1069 | int j = -1; | 
|---|
|  | 1070 | for (int i=0;i<3;i++) { | 
|---|
|  | 1071 | j += i+1; | 
|---|
|  | 1072 | do { | 
|---|
| [e138de] | 1073 | Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: "; | 
|---|
| [042f82] | 1074 | cin >> x[i]; | 
|---|
|  | 1075 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check)); | 
|---|
|  | 1076 | } | 
|---|
| [6ac7ee] | 1077 | }; | 
|---|
|  | 1078 |  | 
|---|
|  | 1079 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement. | 
|---|
|  | 1080 | * This is linear system of equations to be solved, however of the three given (skp of this vector\ | 
|---|
|  | 1081 | * with either of the three hast to be zero) only two are linear independent. The third equation | 
|---|
|  | 1082 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution | 
|---|
|  | 1083 | * where very often it has to be checked whether a certain value is zero or not and thus forked into | 
|---|
|  | 1084 | * another case. | 
|---|
|  | 1085 | * \param *x1 first vector | 
|---|
|  | 1086 | * \param *x2 second vector | 
|---|
|  | 1087 | * \param *y third vector | 
|---|
|  | 1088 | * \param alpha first angle | 
|---|
|  | 1089 | * \param beta second angle | 
|---|
|  | 1090 | * \param c norm of final vector | 
|---|
|  | 1091 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c. | 
|---|
|  | 1092 | * \bug this is not yet working properly | 
|---|
|  | 1093 | */ | 
|---|
| [776b64] | 1094 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c) | 
|---|
| [6ac7ee] | 1095 | { | 
|---|
| [042f82] | 1096 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C; | 
|---|
|  | 1097 | double ang; // angle on testing | 
|---|
|  | 1098 | double sign[3]; | 
|---|
|  | 1099 | int i,j,k; | 
|---|
|  | 1100 | A = cos(alpha) * x1->Norm() * c; | 
|---|
|  | 1101 | B1 = cos(beta + M_PI/2.) * y->Norm() * c; | 
|---|
|  | 1102 | B2 = cos(beta) * x2->Norm() * c; | 
|---|
|  | 1103 | C = c * c; | 
|---|
| [e138de] | 1104 | Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl; | 
|---|
| [042f82] | 1105 | int flag = 0; | 
|---|
|  | 1106 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping | 
|---|
|  | 1107 | if (fabs(x1->x[1]) > MYEPSILON) { | 
|---|
|  | 1108 | flag = 1; | 
|---|
|  | 1109 | } else if (fabs(x1->x[2]) > MYEPSILON) { | 
|---|
|  | 1110 | flag = 2; | 
|---|
|  | 1111 | } else { | 
|---|
|  | 1112 | return false; | 
|---|
|  | 1113 | } | 
|---|
|  | 1114 | } | 
|---|
|  | 1115 | switch (flag) { | 
|---|
|  | 1116 | default: | 
|---|
|  | 1117 | case 0: | 
|---|
|  | 1118 | break; | 
|---|
|  | 1119 | case 2: | 
|---|
| [ad8b0d] | 1120 | flip(x1->x[0],x1->x[1]); | 
|---|
|  | 1121 | flip(x2->x[0],x2->x[1]); | 
|---|
|  | 1122 | flip(y->x[0],y->x[1]); | 
|---|
|  | 1123 | //flip(x[0],x[1]); | 
|---|
|  | 1124 | flip(x1->x[1],x1->x[2]); | 
|---|
|  | 1125 | flip(x2->x[1],x2->x[2]); | 
|---|
|  | 1126 | flip(y->x[1],y->x[2]); | 
|---|
|  | 1127 | //flip(x[1],x[2]); | 
|---|
| [042f82] | 1128 | case 1: | 
|---|
| [ad8b0d] | 1129 | flip(x1->x[0],x1->x[1]); | 
|---|
|  | 1130 | flip(x2->x[0],x2->x[1]); | 
|---|
|  | 1131 | flip(y->x[0],y->x[1]); | 
|---|
|  | 1132 | //flip(x[0],x[1]); | 
|---|
|  | 1133 | flip(x1->x[1],x1->x[2]); | 
|---|
|  | 1134 | flip(x2->x[1],x2->x[2]); | 
|---|
|  | 1135 | flip(y->x[1],y->x[2]); | 
|---|
|  | 1136 | //flip(x[1],x[2]); | 
|---|
| [042f82] | 1137 | break; | 
|---|
|  | 1138 | } | 
|---|
|  | 1139 | // now comes the case system | 
|---|
|  | 1140 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1]; | 
|---|
|  | 1141 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2]; | 
|---|
|  | 1142 | D3 = y->x[0]/x1->x[0]*A-B1; | 
|---|
| [e138de] | 1143 | Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n"; | 
|---|
| [042f82] | 1144 | if (fabs(D1) < MYEPSILON) { | 
|---|
| [e138de] | 1145 | Log() << Verbose(2) << "D1 == 0!\n"; | 
|---|
| [042f82] | 1146 | if (fabs(D2) > MYEPSILON) { | 
|---|
| [e138de] | 1147 | Log() << Verbose(3) << "D2 != 0!\n"; | 
|---|
| [042f82] | 1148 | x[2] = -D3/D2; | 
|---|
|  | 1149 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2; | 
|---|
|  | 1150 | E2 = -x1->x[1]/x1->x[0]; | 
|---|
| [e138de] | 1151 | Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n"; | 
|---|
| [042f82] | 1152 | F1 = E1*E1 + 1.; | 
|---|
|  | 1153 | F2 = -E1*E2; | 
|---|
|  | 1154 | F3 = E1*E1 + D3*D3/(D2*D2) - C; | 
|---|
| [e138de] | 1155 | Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n"; | 
|---|
| [042f82] | 1156 | if (fabs(F1) < MYEPSILON) { | 
|---|
| [e138de] | 1157 | Log() << Verbose(4) << "F1 == 0!\n"; | 
|---|
|  | 1158 | Log() << Verbose(4) << "Gleichungssystem linear\n"; | 
|---|
| [042f82] | 1159 | x[1] = F3/(2.*F2); | 
|---|
|  | 1160 | } else { | 
|---|
|  | 1161 | p = F2/F1; | 
|---|
|  | 1162 | q = p*p - F3/F1; | 
|---|
| [e138de] | 1163 | Log() << Verbose(4) << "p " << p << "\tq " << q << endl; | 
|---|
| [042f82] | 1164 | if (q < 0) { | 
|---|
| [e138de] | 1165 | Log() << Verbose(4) << "q < 0" << endl; | 
|---|
| [042f82] | 1166 | return false; | 
|---|
|  | 1167 | } | 
|---|
|  | 1168 | x[1] = p + sqrt(q); | 
|---|
|  | 1169 | } | 
|---|
|  | 1170 | x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2]; | 
|---|
|  | 1171 | } else { | 
|---|
| [e138de] | 1172 | Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n"; | 
|---|
| [042f82] | 1173 | return false; | 
|---|
|  | 1174 | } | 
|---|
|  | 1175 | } else { | 
|---|
|  | 1176 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1; | 
|---|
|  | 1177 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2]; | 
|---|
| [e138de] | 1178 | Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n"; | 
|---|
| [042f82] | 1179 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.; | 
|---|
|  | 1180 | F2 = -(E1*E2 + D2*D3/(D1*D1)); | 
|---|
|  | 1181 | F3 = E1*E1 + D3*D3/(D1*D1) - C; | 
|---|
| [e138de] | 1182 | Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n"; | 
|---|
| [042f82] | 1183 | if (fabs(F1) < MYEPSILON) { | 
|---|
| [e138de] | 1184 | Log() << Verbose(3) << "F1 == 0!\n"; | 
|---|
|  | 1185 | Log() << Verbose(3) << "Gleichungssystem linear\n"; | 
|---|
| [042f82] | 1186 | x[2] = F3/(2.*F2); | 
|---|
|  | 1187 | } else { | 
|---|
|  | 1188 | p = F2/F1; | 
|---|
|  | 1189 | q = p*p - F3/F1; | 
|---|
| [e138de] | 1190 | Log() << Verbose(3) << "p " << p << "\tq " << q << endl; | 
|---|
| [042f82] | 1191 | if (q < 0) { | 
|---|
| [e138de] | 1192 | Log() << Verbose(3) << "q < 0" << endl; | 
|---|
| [042f82] | 1193 | return false; | 
|---|
|  | 1194 | } | 
|---|
|  | 1195 | x[2] = p + sqrt(q); | 
|---|
|  | 1196 | } | 
|---|
|  | 1197 | x[1] = (-D2 * x[2] - D3)/D1; | 
|---|
|  | 1198 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2]; | 
|---|
|  | 1199 | } | 
|---|
|  | 1200 | switch (flag) { // back-flipping | 
|---|
|  | 1201 | default: | 
|---|
|  | 1202 | case 0: | 
|---|
|  | 1203 | break; | 
|---|
|  | 1204 | case 2: | 
|---|
| [ad8b0d] | 1205 | flip(x1->x[0],x1->x[1]); | 
|---|
|  | 1206 | flip(x2->x[0],x2->x[1]); | 
|---|
|  | 1207 | flip(y->x[0],y->x[1]); | 
|---|
|  | 1208 | flip(x[0],x[1]); | 
|---|
|  | 1209 | flip(x1->x[1],x1->x[2]); | 
|---|
|  | 1210 | flip(x2->x[1],x2->x[2]); | 
|---|
|  | 1211 | flip(y->x[1],y->x[2]); | 
|---|
|  | 1212 | flip(x[1],x[2]); | 
|---|
| [042f82] | 1213 | case 1: | 
|---|
| [ad8b0d] | 1214 | flip(x1->x[0],x1->x[1]); | 
|---|
|  | 1215 | flip(x2->x[0],x2->x[1]); | 
|---|
|  | 1216 | flip(y->x[0],y->x[1]); | 
|---|
|  | 1217 | //flip(x[0],x[1]); | 
|---|
|  | 1218 | flip(x1->x[1],x1->x[2]); | 
|---|
|  | 1219 | flip(x2->x[1],x2->x[2]); | 
|---|
|  | 1220 | flip(y->x[1],y->x[2]); | 
|---|
|  | 1221 | flip(x[1],x[2]); | 
|---|
| [042f82] | 1222 | break; | 
|---|
|  | 1223 | } | 
|---|
|  | 1224 | // one z component is only determined by its radius (without sign) | 
|---|
|  | 1225 | // thus check eight possible sign flips and determine by checking angle with second vector | 
|---|
|  | 1226 | for (i=0;i<8;i++) { | 
|---|
|  | 1227 | // set sign vector accordingly | 
|---|
|  | 1228 | for (j=2;j>=0;j--) { | 
|---|
|  | 1229 | k = (i & pot(2,j)) << j; | 
|---|
| [e138de] | 1230 | Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl; | 
|---|
| [042f82] | 1231 | sign[j] = (k == 0) ? 1. : -1.; | 
|---|
|  | 1232 | } | 
|---|
| [e138de] | 1233 | Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n"; | 
|---|
| [042f82] | 1234 | // apply sign matrix | 
|---|
|  | 1235 | for (j=NDIM;j--;) | 
|---|
|  | 1236 | x[j] *= sign[j]; | 
|---|
|  | 1237 | // calculate angle and check | 
|---|
|  | 1238 | ang = x2->Angle (this); | 
|---|
| [e138de] | 1239 | Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t"; | 
|---|
| [042f82] | 1240 | if (fabs(ang - cos(beta)) < MYEPSILON) { | 
|---|
|  | 1241 | break; | 
|---|
|  | 1242 | } | 
|---|
|  | 1243 | // unapply sign matrix (is its own inverse) | 
|---|
|  | 1244 | for (j=NDIM;j--;) | 
|---|
|  | 1245 | x[j] *= sign[j]; | 
|---|
|  | 1246 | } | 
|---|
|  | 1247 | return true; | 
|---|
| [6ac7ee] | 1248 | }; | 
|---|
| [89c8b2] | 1249 |  | 
|---|
|  | 1250 | /** | 
|---|
|  | 1251 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and | 
|---|
|  | 1252 | * their offset. | 
|---|
|  | 1253 | * | 
|---|
|  | 1254 | * @param offest for the origin of the parallelepiped | 
|---|
|  | 1255 | * @param three vectors forming the matrix that defines the shape of the parallelpiped | 
|---|
|  | 1256 | */ | 
|---|
| [776b64] | 1257 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const | 
|---|
| [89c8b2] | 1258 | { | 
|---|
|  | 1259 | Vector a; | 
|---|
|  | 1260 | a.CopyVector(this); | 
|---|
|  | 1261 | a.SubtractVector(&offset); | 
|---|
|  | 1262 | a.InverseMatrixMultiplication(parallelepiped); | 
|---|
|  | 1263 | bool isInside = true; | 
|---|
|  | 1264 |  | 
|---|
|  | 1265 | for (int i=NDIM;i--;) | 
|---|
|  | 1266 | isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0)); | 
|---|
|  | 1267 |  | 
|---|
|  | 1268 | return isInside; | 
|---|
|  | 1269 | } | 
|---|