| [6ac7ee] | 1 | /** \file vector.cpp
 | 
|---|
 | 2 |  *
 | 
|---|
 | 3 |  * Function implementations for the class vector.
 | 
|---|
 | 4 |  *
 | 
|---|
 | 5 |  */
 | 
|---|
 | 6 | 
 | 
|---|
 | 7 | #include "molecules.hpp"
 | 
|---|
 | 8 | 
 | 
|---|
 | 9 | 
 | 
|---|
 | 10 | /************************************ Functions for class vector ************************************/
 | 
|---|
 | 11 | 
 | 
|---|
 | 12 | /** Constructor of class vector.
 | 
|---|
 | 13 |  */
 | 
|---|
 | 14 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
 | 
|---|
 | 15 | 
 | 
|---|
 | 16 | /** Constructor of class vector.
 | 
|---|
 | 17 |  */
 | 
|---|
 | 18 | Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
 | 
|---|
 | 19 | 
 | 
|---|
 | 20 | /** Desctructor of class vector.
 | 
|---|
 | 21 |  */
 | 
|---|
 | 22 | Vector::~Vector() {};
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | /** Calculates square of distance between this and another vector.
 | 
|---|
 | 25 |  * \param *y array to second vector
 | 
|---|
 | 26 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 27 |  */
 | 
|---|
 | 28 | double Vector::DistanceSquared(const Vector *y) const
 | 
|---|
 | 29 | {
 | 
|---|
 | 30 |         double res = 0.;
 | 
|---|
 | 31 |         for (int i=NDIM;i--;)
 | 
|---|
 | 32 |                 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 33 |         return (res);
 | 
|---|
 | 34 | };
 | 
|---|
 | 35 | 
 | 
|---|
 | 36 | /** Calculates distance between this and another vector.
 | 
|---|
 | 37 |  * \param *y array to second vector
 | 
|---|
 | 38 |  * \return \f$| x - y |\f$
 | 
|---|
 | 39 |  */
 | 
|---|
 | 40 | double Vector::Distance(const Vector *y) const
 | 
|---|
 | 41 | {
 | 
|---|
 | 42 |         double res = 0.;
 | 
|---|
 | 43 |         for (int i=NDIM;i--;)
 | 
|---|
 | 44 |                 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 45 |         return (sqrt(res));
 | 
|---|
 | 46 | };
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 49 |  * \param *y array to second vector
 | 
|---|
 | 50 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 51 |  * \return \f$| x - y |\f$
 | 
|---|
 | 52 |  */
 | 
|---|
 | 53 | double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
 | 
|---|
 | 54 | {
 | 
|---|
 | 55 |         double res = Distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 56 |         Vector Shiftedy, TranslationVector;
 | 
|---|
 | 57 |         int N[NDIM];
 | 
|---|
 | 58 |         matrix[0] = cell_size[0];
 | 
|---|
 | 59 |         matrix[1] = cell_size[1];
 | 
|---|
 | 60 |         matrix[2] = cell_size[3];
 | 
|---|
 | 61 |         matrix[3] = cell_size[1];
 | 
|---|
 | 62 |         matrix[4] = cell_size[2];
 | 
|---|
 | 63 |         matrix[5] = cell_size[4];
 | 
|---|
 | 64 |         matrix[6] = cell_size[3];
 | 
|---|
 | 65 |         matrix[7] = cell_size[4];
 | 
|---|
 | 66 |         matrix[8] = cell_size[5];
 | 
|---|
 | 67 |         // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 68 |         for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 69 |                 for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 70 |                         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 71 |                                 // create the translation vector
 | 
|---|
 | 72 |                                 TranslationVector.Zero();
 | 
|---|
 | 73 |                                 for (int i=NDIM;i--;)
 | 
|---|
 | 74 |                                         TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 75 |                                 TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 76 |                                 // add onto the original vector to compare with
 | 
|---|
 | 77 |                                 Shiftedy.CopyVector(y);
 | 
|---|
 | 78 |                                 Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 79 |                                 // get distance and compare with minimum so far
 | 
|---|
 | 80 |                                 tmp = Distance(&Shiftedy);
 | 
|---|
 | 81 |                                 if (tmp < res) res = tmp;
 | 
|---|
 | 82 |                         }
 | 
|---|
 | 83 |         return (res);
 | 
|---|
 | 84 | };
 | 
|---|
 | 85 | 
 | 
|---|
 | 86 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 87 |  * \param *y array to second vector
 | 
|---|
 | 88 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 89 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 90 |  */
 | 
|---|
 | 91 | double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
 | 
|---|
 | 92 | {
 | 
|---|
 | 93 |         double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 94 |         Vector Shiftedy, TranslationVector;
 | 
|---|
 | 95 |         int N[NDIM];
 | 
|---|
 | 96 |         matrix[0] = cell_size[0];
 | 
|---|
 | 97 |         matrix[1] = cell_size[1];
 | 
|---|
 | 98 |         matrix[2] = cell_size[3];
 | 
|---|
 | 99 |         matrix[3] = cell_size[1];
 | 
|---|
 | 100 |         matrix[4] = cell_size[2];
 | 
|---|
 | 101 |         matrix[5] = cell_size[4];
 | 
|---|
 | 102 |         matrix[6] = cell_size[3];
 | 
|---|
 | 103 |         matrix[7] = cell_size[4];
 | 
|---|
 | 104 |         matrix[8] = cell_size[5];
 | 
|---|
 | 105 |         // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 106 |         for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 107 |                 for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 108 |                         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 109 |                                 // create the translation vector
 | 
|---|
 | 110 |                                 TranslationVector.Zero();
 | 
|---|
 | 111 |                                 for (int i=NDIM;i--;)
 | 
|---|
 | 112 |                                         TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 113 |                                 TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 114 |                                 // add onto the original vector to compare with
 | 
|---|
 | 115 |                                 Shiftedy.CopyVector(y);
 | 
|---|
 | 116 |                                 Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 117 |                                 // get distance and compare with minimum so far
 | 
|---|
 | 118 |                                 tmp = DistanceSquared(&Shiftedy);
 | 
|---|
 | 119 |                                 if (tmp < res) res = tmp;
 | 
|---|
 | 120 |                         }
 | 
|---|
 | 121 |         return (res);
 | 
|---|
 | 122 | };
 | 
|---|
 | 123 | 
 | 
|---|
 | 124 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
 | 125 |  * \param *out ofstream for debugging messages
 | 
|---|
 | 126 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
 | 127 |  */
 | 
|---|
 | 128 | void Vector::KeepPeriodic(ofstream *out, double *matrix)
 | 
|---|
 | 129 | {
 | 
|---|
 | 130 | //      int N[NDIM];
 | 
|---|
 | 131 | //      bool flag = false;
 | 
|---|
 | 132 |         //vector Shifted, TranslationVector;
 | 
|---|
 | 133 |         Vector TestVector;
 | 
|---|
 | 134 | //      *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
 | 135 | //      *out << Verbose(2) << "Vector is: ";
 | 
|---|
 | 136 | //      Output(out);
 | 
|---|
 | 137 | //      *out << endl;
 | 
|---|
 | 138 |         TestVector.CopyVector(this);
 | 
|---|
 | 139 |         TestVector.InverseMatrixMultiplication(matrix);
 | 
|---|
 | 140 |         for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
 | 141 |                 if (TestVector.x[i] < 0) {      // get every coefficient into the interval [0,1)
 | 
|---|
 | 142 |                         TestVector.x[i] += ceil(TestVector.x[i]);
 | 
|---|
 | 143 |                 } else {
 | 
|---|
 | 144 |                         TestVector.x[i] -= floor(TestVector.x[i]);
 | 
|---|
 | 145 |                 }
 | 
|---|
 | 146 |         }
 | 
|---|
 | 147 |         TestVector.MatrixMultiplication(matrix);
 | 
|---|
 | 148 |         CopyVector(&TestVector);
 | 
|---|
 | 149 | //      *out << Verbose(2) << "New corrected vector is: ";
 | 
|---|
 | 150 | //      Output(out);
 | 
|---|
 | 151 | //      *out << endl;
 | 
|---|
 | 152 | //      *out << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
 | 153 | };
 | 
|---|
 | 154 | 
 | 
|---|
 | 155 | /** Calculates scalar product between this and another vector.
 | 
|---|
 | 156 |  * \param *y array to second vector
 | 
|---|
 | 157 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 158 |  */
 | 
|---|
 | 159 | double Vector::ScalarProduct(const Vector *y) const
 | 
|---|
 | 160 | {
 | 
|---|
 | 161 |         double res = 0.;
 | 
|---|
 | 162 |         for (int i=NDIM;i--;)
 | 
|---|
 | 163 |                 res += x[i]*y->x[i];
 | 
|---|
 | 164 |         return (res);
 | 
|---|
 | 165 | };
 | 
|---|
 | 166 | 
 | 
|---|
 | 167 | 
 | 
|---|
 | 168 | /** Calculates VectorProduct between this and another vector.
 | 
|---|
 | 169 |  *      -# returns the Product in place of vector from which it was initiated
 | 
|---|
 | 170 |  *      -# ATTENTION: Only three dim.
 | 
|---|
 | 171 |  *      \param *y array to vector with which to calculate crossproduct
 | 
|---|
 | 172 |  *      \return \f$ x \times y \f&
 | 
|---|
 | 173 |  */
 | 
|---|
 | 174 | void Vector::VectorProduct(const Vector *y)
 | 
|---|
 | 175 | {
 | 
|---|
 | 176 |         Vector tmp;
 | 
|---|
 | 177 |         tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
 | 
|---|
 | 178 |         tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
 | 
|---|
 | 179 |         tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
 | 
|---|
 | 180 |         this->CopyVector(&tmp);
 | 
|---|
 | 181 | 
 | 
|---|
 | 182 | };
 | 
|---|
 | 183 | 
 | 
|---|
 | 184 | 
 | 
|---|
 | 185 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
 | 186 |  * \param *y normal vector of plane
 | 
|---|
 | 187 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 188 |  */
 | 
|---|
 | 189 | void Vector::ProjectOntoPlane(const Vector *y)
 | 
|---|
 | 190 | {
 | 
|---|
 | 191 |         Vector tmp;
 | 
|---|
 | 192 |         tmp.CopyVector(y);
 | 
|---|
 | 193 |         tmp.Normalize();
 | 
|---|
 | 194 |         tmp.Scale(ScalarProduct(&tmp));
 | 
|---|
 | 195 |         this->SubtractVector(&tmp);
 | 
|---|
 | 196 | };
 | 
|---|
 | 197 | 
 | 
|---|
 | 198 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 199 |  * \param *y array to second vector
 | 
|---|
 | 200 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 201 |  */
 | 
|---|
 | 202 | double Vector::Projection(const Vector *y) const
 | 
|---|
 | 203 | {
 | 
|---|
 | 204 |         return (ScalarProduct(y));
 | 
|---|
 | 205 | };
 | 
|---|
 | 206 | 
 | 
|---|
 | 207 | /** Calculates norm of this vector.
 | 
|---|
 | 208 |  * \return \f$|x|\f$
 | 
|---|
 | 209 |  */
 | 
|---|
 | 210 | double Vector::Norm() const
 | 
|---|
 | 211 | {
 | 
|---|
 | 212 |         double res = 0.;
 | 
|---|
 | 213 |         for (int i=NDIM;i--;)
 | 
|---|
 | 214 |                 res += this->x[i]*this->x[i];
 | 
|---|
 | 215 |         return (sqrt(res));
 | 
|---|
 | 216 | };
 | 
|---|
 | 217 | 
 | 
|---|
 | 218 | /** Normalizes this vector.
 | 
|---|
 | 219 |  */
 | 
|---|
 | 220 | void Vector::Normalize()
 | 
|---|
 | 221 | {
 | 
|---|
 | 222 |         double res = 0.;
 | 
|---|
 | 223 |         for (int i=NDIM;i--;)
 | 
|---|
 | 224 |                 res += this->x[i]*this->x[i];
 | 
|---|
 | 225 |         if (fabs(res) > MYEPSILON)
 | 
|---|
 | 226 |                 res = 1./sqrt(res);
 | 
|---|
 | 227 |         Scale(&res);
 | 
|---|
 | 228 | };
 | 
|---|
 | 229 | 
 | 
|---|
 | 230 | /** Zeros all components of this vector.
 | 
|---|
 | 231 |  */
 | 
|---|
 | 232 | void Vector::Zero()
 | 
|---|
 | 233 | {
 | 
|---|
 | 234 |         for (int i=NDIM;i--;)
 | 
|---|
 | 235 |                 this->x[i] = 0.;
 | 
|---|
 | 236 | };
 | 
|---|
 | 237 | 
 | 
|---|
 | 238 | /** Zeros all components of this vector.
 | 
|---|
 | 239 |  */
 | 
|---|
 | 240 | void Vector::One(double one)
 | 
|---|
 | 241 | {
 | 
|---|
 | 242 |         for (int i=NDIM;i--;)
 | 
|---|
 | 243 |                 this->x[i] = one;
 | 
|---|
 | 244 | };
 | 
|---|
 | 245 | 
 | 
|---|
 | 246 | /** Initialises all components of this vector.
 | 
|---|
 | 247 |  */
 | 
|---|
 | 248 | void Vector::Init(double x1, double x2, double x3)
 | 
|---|
 | 249 | {
 | 
|---|
 | 250 |         x[0] = x1;
 | 
|---|
 | 251 |         x[1] = x2;
 | 
|---|
 | 252 |         x[2] = x3;
 | 
|---|
 | 253 | };
 | 
|---|
 | 254 | 
 | 
|---|
 | 255 | /** Calculates the angle between this and another vector.
 | 
|---|
 | 256 |  * \param *y array to second vector
 | 
|---|
 | 257 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
 | 258 |  */
 | 
|---|
 | 259 | double Vector::Angle(const Vector *y) const
 | 
|---|
 | 260 | {
 | 
|---|
 | 261 |         return acos(this->ScalarProduct(y)/Norm()/y->Norm());
 | 
|---|
 | 262 | };
 | 
|---|
 | 263 | 
 | 
|---|
 | 264 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
 | 
|---|
 | 265 |  * \param *axis rotation axis
 | 
|---|
 | 266 |  * \param alpha rotation angle in radian
 | 
|---|
 | 267 |  */
 | 
|---|
 | 268 | void Vector::RotateVector(const Vector *axis, const double alpha)
 | 
|---|
 | 269 | {
 | 
|---|
 | 270 |         Vector a,y;
 | 
|---|
 | 271 |         // normalise this vector with respect to axis
 | 
|---|
 | 272 |         a.CopyVector(this);
 | 
|---|
 | 273 |         a.Scale(Projection(axis));
 | 
|---|
 | 274 |         SubtractVector(&a);
 | 
|---|
 | 275 |         // construct normal vector
 | 
|---|
 | 276 |         y.MakeNormalVector(axis,this);
 | 
|---|
 | 277 |         y.Scale(Norm());
 | 
|---|
 | 278 |         // scale normal vector by sine and this vector by cosine
 | 
|---|
 | 279 |         y.Scale(sin(alpha));
 | 
|---|
 | 280 |         Scale(cos(alpha));
 | 
|---|
 | 281 |         // add scaled normal vector onto this vector
 | 
|---|
 | 282 |         AddVector(&y);
 | 
|---|
 | 283 |         // add part in axis direction
 | 
|---|
 | 284 |         AddVector(&a);
 | 
|---|
 | 285 | };
 | 
|---|
 | 286 | 
 | 
|---|
 | 287 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
 | 288 |  * \param a base vector
 | 
|---|
 | 289 |  * \param b vector components to add
 | 
|---|
 | 290 |  * \return lhs + a
 | 
|---|
 | 291 |  */
 | 
|---|
 | 292 | Vector& operator+=(Vector& a, const Vector& b)
 | 
|---|
 | 293 | {
 | 
|---|
 | 294 |         a.AddVector(&b);
 | 
|---|
 | 295 |         return a;
 | 
|---|
 | 296 | };
 | 
|---|
 | 297 | /** factor each component of \a a times a double \a m.
 | 
|---|
 | 298 |  * \param a base vector
 | 
|---|
 | 299 |  * \param m factor
 | 
|---|
 | 300 |  * \return lhs.x[i] * m
 | 
|---|
 | 301 |  */
 | 
|---|
 | 302 | Vector& operator*=(Vector& a, const double m)
 | 
|---|
 | 303 | {
 | 
|---|
 | 304 |         a.Scale(m);
 | 
|---|
 | 305 |         return a;
 | 
|---|
 | 306 | };
 | 
|---|
 | 307 | 
 | 
|---|
 | 308 | /** Sums two vectors \a and \b component-wise.
 | 
|---|
 | 309 |  * \param a first vector
 | 
|---|
 | 310 |  * \param b second vector
 | 
|---|
 | 311 |  * \return a + b
 | 
|---|
 | 312 |  */
 | 
|---|
 | 313 | Vector& operator+(const Vector& a, const Vector& b)
 | 
|---|
 | 314 | {
 | 
|---|
 | 315 |         Vector *x = new Vector;
 | 
|---|
 | 316 |         x->CopyVector(&a);
 | 
|---|
 | 317 |         x->AddVector(&b);
 | 
|---|
 | 318 |         return *x;
 | 
|---|
 | 319 | };
 | 
|---|
 | 320 | 
 | 
|---|
 | 321 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 322 |  * \param a vector
 | 
|---|
 | 323 |  * \param m factor
 | 
|---|
 | 324 |  * \return a + b
 | 
|---|
 | 325 |  */
 | 
|---|
 | 326 | Vector& operator*(const Vector& a, const double m)
 | 
|---|
 | 327 | {
 | 
|---|
 | 328 |         Vector *x = new Vector;
 | 
|---|
 | 329 |         x->CopyVector(&a);
 | 
|---|
 | 330 |         x->Scale(m);
 | 
|---|
 | 331 |         return *x;
 | 
|---|
 | 332 | };
 | 
|---|
 | 333 | 
 | 
|---|
 | 334 | /** Prints a 3dim vector.
 | 
|---|
 | 335 |  * prints no end of line.
 | 
|---|
 | 336 |  * \param *out output stream
 | 
|---|
 | 337 |  */
 | 
|---|
 | 338 | bool Vector::Output(ofstream *out) const
 | 
|---|
 | 339 | {
 | 
|---|
 | 340 |         if (out != NULL) {
 | 
|---|
 | 341 |                 *out << "(";
 | 
|---|
 | 342 |                 for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 343 |                         *out << x[i];
 | 
|---|
 | 344 |                         if (i != 2)
 | 
|---|
 | 345 |                                 *out << ",";
 | 
|---|
 | 346 |                 }
 | 
|---|
 | 347 |                 *out << ")";
 | 
|---|
 | 348 |                 return true;
 | 
|---|
 | 349 |         } else
 | 
|---|
 | 350 |                 return false;
 | 
|---|
 | 351 | };
 | 
|---|
 | 352 | 
 | 
|---|
 | 353 | ostream& operator<<(ostream& ost,Vector& m)
 | 
|---|
 | 354 | {
 | 
|---|
 | 355 |         ost << "(";
 | 
|---|
 | 356 |         for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 357 |                 ost << m.x[i];
 | 
|---|
 | 358 |                 if (i != 2)
 | 
|---|
 | 359 |                         ost << ",";
 | 
|---|
 | 360 |         }
 | 
|---|
 | 361 |         ost << ")";
 | 
|---|
 | 362 |         return ost;
 | 
|---|
 | 363 | };
 | 
|---|
 | 364 | 
 | 
|---|
 | 365 | /** Scales each atom coordinate by an individual \a factor.
 | 
|---|
 | 366 |  * \param *factor pointer to scaling factor
 | 
|---|
 | 367 |  */
 | 
|---|
 | 368 | void Vector::Scale(double **factor)
 | 
|---|
 | 369 | {
 | 
|---|
 | 370 |         for (int i=NDIM;i--;)
 | 
|---|
 | 371 |                 x[i] *= (*factor)[i];
 | 
|---|
 | 372 | };
 | 
|---|
 | 373 | 
 | 
|---|
 | 374 | void Vector::Scale(double *factor)
 | 
|---|
 | 375 | {
 | 
|---|
 | 376 |         for (int i=NDIM;i--;)
 | 
|---|
 | 377 |                 x[i] *= *factor;
 | 
|---|
 | 378 | };
 | 
|---|
 | 379 | 
 | 
|---|
 | 380 | void Vector::Scale(double factor)
 | 
|---|
 | 381 | {
 | 
|---|
 | 382 |         for (int i=NDIM;i--;)
 | 
|---|
 | 383 |                 x[i] *= factor;
 | 
|---|
 | 384 | };
 | 
|---|
 | 385 | 
 | 
|---|
 | 386 | /** Translate atom by given vector.
 | 
|---|
 | 387 |  * \param trans[] translation vector.
 | 
|---|
 | 388 |  */
 | 
|---|
 | 389 | void Vector::Translate(const Vector *trans)
 | 
|---|
 | 390 | {
 | 
|---|
 | 391 |         for (int i=NDIM;i--;)
 | 
|---|
 | 392 |                 x[i] += trans->x[i];
 | 
|---|
 | 393 | };
 | 
|---|
 | 394 | 
 | 
|---|
 | 395 | /** Do a matrix multiplication.
 | 
|---|
 | 396 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 397 |  */
 | 
|---|
 | 398 | void Vector::MatrixMultiplication(double *M)
 | 
|---|
 | 399 | {
 | 
|---|
 | 400 |         Vector C;
 | 
|---|
 | 401 |         // do the matrix multiplication
 | 
|---|
 | 402 |         C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
 | 403 |         C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
 | 404 |         C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
 | 405 |         // transfer the result into this
 | 
|---|
 | 406 |         for (int i=NDIM;i--;)
 | 
|---|
 | 407 |                 x[i] = C.x[i];
 | 
|---|
 | 408 | };
 | 
|---|
 | 409 | 
 | 
|---|
 | 410 | /** Do a matrix multiplication with \a *matrix' inverse.
 | 
|---|
 | 411 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 412 |  */
 | 
|---|
 | 413 | void Vector::InverseMatrixMultiplication(double *A)
 | 
|---|
 | 414 | {
 | 
|---|
 | 415 |         Vector C;
 | 
|---|
 | 416 |         double B[NDIM*NDIM];
 | 
|---|
 | 417 |         double detA = RDET3(A);
 | 
|---|
 | 418 |         double detAReci;
 | 
|---|
 | 419 | 
 | 
|---|
 | 420 |         // calculate the inverse B
 | 
|---|
 | 421 |         if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 422 |                 detAReci = 1./detA;
 | 
|---|
 | 423 |                 B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);            // A_11
 | 
|---|
 | 424 |                 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);            // A_12
 | 
|---|
 | 425 |                 B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);            // A_13
 | 
|---|
 | 426 |                 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);            // A_21
 | 
|---|
 | 427 |                 B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);            // A_22
 | 
|---|
 | 428 |                 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);            // A_23
 | 
|---|
 | 429 |                 B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);            // A_31
 | 
|---|
 | 430 |                 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);            // A_32
 | 
|---|
 | 431 |                 B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);            // A_33
 | 
|---|
 | 432 | 
 | 
|---|
 | 433 |                 // do the matrix multiplication
 | 
|---|
 | 434 |                 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
 | 435 |                 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
 | 436 |                 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
 | 437 |                 // transfer the result into this
 | 
|---|
 | 438 |                 for (int i=NDIM;i--;)
 | 
|---|
 | 439 |                         x[i] = C.x[i];
 | 
|---|
 | 440 |         } else {
 | 
|---|
 | 441 |                 cerr << "ERROR: inverse of matrix does not exists!" << endl;
 | 
|---|
 | 442 |         }
 | 
|---|
 | 443 | };
 | 
|---|
 | 444 | 
 | 
|---|
 | 445 | 
 | 
|---|
 | 446 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
 | 447 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
 | 448 |  * \param *x1 first vector
 | 
|---|
 | 449 |  * \param *x2 second vector
 | 
|---|
 | 450 |  * \param *x3 third vector
 | 
|---|
 | 451 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
 | 452 |  */
 | 
|---|
 | 453 | void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
 | 
|---|
 | 454 | {
 | 
|---|
 | 455 |         for(int i=NDIM;i--;)
 | 
|---|
 | 456 |                 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
 | 
|---|
 | 457 | };
 | 
|---|
 | 458 | 
 | 
|---|
 | 459 | /** Mirrors atom against a given plane.
 | 
|---|
 | 460 |  * \param n[] normal vector of mirror plane.
 | 
|---|
 | 461 |  */
 | 
|---|
 | 462 | void Vector::Mirror(const Vector *n)
 | 
|---|
 | 463 | {
 | 
|---|
 | 464 |         double projection;
 | 
|---|
 | 465 |         projection = ScalarProduct(n)/n->ScalarProduct(n);              // remove constancy from n (keep as logical one)
 | 
|---|
 | 466 |         // withdraw projected vector twice from original one
 | 
|---|
 | 467 |         cout << Verbose(1) << "Vector: ";
 | 
|---|
 | 468 |         Output((ofstream *)&cout);
 | 
|---|
 | 469 |         cout << "\t";
 | 
|---|
 | 470 |         for (int i=NDIM;i--;)
 | 
|---|
 | 471 |                 x[i] -= 2.*projection*n->x[i];
 | 
|---|
 | 472 |         cout << "Projected vector: ";
 | 
|---|
 | 473 |         Output((ofstream *)&cout);
 | 
|---|
 | 474 |         cout << endl;
 | 
|---|
 | 475 | };
 | 
|---|
 | 476 | 
 | 
|---|
 | 477 | /** Calculates normal vector for three given vectors (being three points in space).
 | 
|---|
 | 478 |  * Makes this vector orthonormal to the three given points, making up a place in 3d space.
 | 
|---|
 | 479 |  * \param *y1 first vector
 | 
|---|
 | 480 |  * \param *y2 second vector
 | 
|---|
 | 481 |  * \param *y3 third vector
 | 
|---|
 | 482 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 483 |  */
 | 
|---|
 | 484 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
 | 
|---|
 | 485 | {
 | 
|---|
 | 486 |         Vector x1, x2;
 | 
|---|
 | 487 | 
 | 
|---|
 | 488 |         x1.CopyVector(y1);
 | 
|---|
 | 489 |         x1.SubtractVector(y2);
 | 
|---|
 | 490 |         x2.CopyVector(y3);
 | 
|---|
 | 491 |         x2.SubtractVector(y2);
 | 
|---|
 | 492 |         if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
 | 493 |                 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
 | 
|---|
 | 494 |                 return false;
 | 
|---|
 | 495 |         }
 | 
|---|
 | 496 | //      cout << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 497 | //      x1.Output((ofstream *)&cout);
 | 
|---|
 | 498 | //      cout << endl;
 | 
|---|
 | 499 | //      cout << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 500 | //      x2.Output((ofstream *)&cout);
 | 
|---|
 | 501 | //      cout << endl;
 | 
|---|
 | 502 | 
 | 
|---|
 | 503 |         this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 504 |         this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 505 |         this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 506 |         Normalize();
 | 
|---|
 | 507 | 
 | 
|---|
 | 508 |         return true;
 | 
|---|
 | 509 | };
 | 
|---|
 | 510 | 
 | 
|---|
 | 511 | 
 | 
|---|
 | 512 | /** Calculates orthonormal vector to two given vectors.
 | 
|---|
 | 513 |  * Makes this vector orthonormal to two given vectors. This is very similar to the other
 | 
|---|
 | 514 |  * vector::MakeNormalVector(), only there three points whereas here two difference
 | 
|---|
 | 515 |  * vectors are given.
 | 
|---|
 | 516 |  * \param *x1 first vector
 | 
|---|
 | 517 |  * \param *x2 second vector
 | 
|---|
 | 518 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 519 |  */
 | 
|---|
 | 520 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
 | 
|---|
 | 521 | {
 | 
|---|
 | 522 |         Vector x1,x2;
 | 
|---|
 | 523 |         x1.CopyVector(y1);
 | 
|---|
 | 524 |         x2.CopyVector(y2);
 | 
|---|
 | 525 |         Zero();
 | 
|---|
 | 526 |         if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
 | 527 |                 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
 | 
|---|
 | 528 |                 return false;
 | 
|---|
 | 529 |         }
 | 
|---|
 | 530 | //      cout << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 531 | //      x1.Output((ofstream *)&cout);
 | 
|---|
 | 532 | //      cout << endl;
 | 
|---|
 | 533 | //      cout << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 534 | //      x2.Output((ofstream *)&cout);
 | 
|---|
 | 535 | //      cout << endl;
 | 
|---|
 | 536 | 
 | 
|---|
 | 537 |         this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 538 |         this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 539 |         this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 540 |         Normalize();
 | 
|---|
 | 541 | 
 | 
|---|
 | 542 |         return true;
 | 
|---|
 | 543 | };
 | 
|---|
 | 544 | 
 | 
|---|
 | 545 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
 | 546 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
 | 547 |  * \param *x1 vector
 | 
|---|
 | 548 |  * \return true - success, false - vector is zero
 | 
|---|
 | 549 |  */
 | 
|---|
 | 550 | bool Vector::MakeNormalVector(const Vector *y1)
 | 
|---|
 | 551 | {
 | 
|---|
 | 552 |         bool result = false;
 | 
|---|
 | 553 |         Vector x1;
 | 
|---|
 | 554 |         x1.CopyVector(y1);
 | 
|---|
 | 555 |         x1.Scale(x1.Projection(this));
 | 
|---|
 | 556 |         SubtractVector(&x1);
 | 
|---|
 | 557 |         for (int i=NDIM;i--;)
 | 
|---|
 | 558 |                 result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
 | 559 | 
 | 
|---|
 | 560 |         return result;
 | 
|---|
 | 561 | };
 | 
|---|
 | 562 | 
 | 
|---|
 | 563 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
 | 564 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
 | 565 |  * try to get the skp of both to be zero accordingly.
 | 
|---|
 | 566 |  * \param *vector given vector
 | 
|---|
 | 567 |  * \return true - success, false - failure (null vector given)
 | 
|---|
 | 568 |  */
 | 
|---|
 | 569 | bool Vector::GetOneNormalVector(const Vector *GivenVector)
 | 
|---|
 | 570 | {
 | 
|---|
 | 571 |         int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
 | 572 |         int Last = 0;    // count the number of non-zero entries in vector
 | 
|---|
 | 573 |         int j;  // loop variables
 | 
|---|
 | 574 |         double norm;
 | 
|---|
 | 575 | 
 | 
|---|
 | 576 |         cout << Verbose(4);
 | 
|---|
 | 577 |         GivenVector->Output((ofstream *)&cout);
 | 
|---|
 | 578 |         cout << endl;
 | 
|---|
 | 579 |         for (j=NDIM;j--;)
 | 
|---|
 | 580 |                 Components[j] = -1;
 | 
|---|
 | 581 |         // find two components != 0
 | 
|---|
 | 582 |         for (j=0;j<NDIM;j++)
 | 
|---|
 | 583 |                 if (fabs(GivenVector->x[j]) > MYEPSILON)
 | 
|---|
 | 584 |                         Components[Last++] = j;
 | 
|---|
 | 585 |         cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
 | 
|---|
 | 586 | 
 | 
|---|
 | 587 |         switch(Last) {
 | 
|---|
 | 588 |                 case 3: // threecomponent system
 | 
|---|
 | 589 |                 case 2: // two component system
 | 
|---|
 | 590 |                         norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
 | 
|---|
 | 591 |                         x[Components[2]] = 0.;
 | 
|---|
 | 592 |                         // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
 | 593 |                         x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
 | 
|---|
 | 594 |                         x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
 | 
|---|
 | 595 |                         return true;
 | 
|---|
 | 596 |                         break;
 | 
|---|
 | 597 |                 case 1: // one component system
 | 
|---|
 | 598 |                         // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
 | 599 |                         x[(Components[0]+2)%NDIM] = 0.;
 | 
|---|
 | 600 |                         x[(Components[0]+1)%NDIM] = 1.;
 | 
|---|
 | 601 |                         x[Components[0]] = 0.;
 | 
|---|
 | 602 |                         return true;
 | 
|---|
 | 603 |                         break;
 | 
|---|
 | 604 |                 default:
 | 
|---|
 | 605 |                         return false;
 | 
|---|
 | 606 |         }
 | 
|---|
 | 607 | };
 | 
|---|
 | 608 | 
 | 
|---|
 | 609 | /** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
 | 
|---|
 | 610 |  * \param *A first plane vector
 | 
|---|
 | 611 |  * \param *B second plane vector
 | 
|---|
 | 612 |  * \param *C third plane vector
 | 
|---|
 | 613 |  * \return scaling parameter for this vector
 | 
|---|
 | 614 |  */
 | 
|---|
 | 615 | double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
 | 
|---|
 | 616 | {
 | 
|---|
 | 617 | //      cout << Verbose(3) << "For comparison: ";
 | 
|---|
 | 618 | //      cout << "A " << A->Projection(this) << "\t";
 | 
|---|
 | 619 | //      cout << "B " << B->Projection(this) << "\t";
 | 
|---|
 | 620 | //      cout << "C " << C->Projection(this) << "\t";
 | 
|---|
 | 621 | //      cout << endl;
 | 
|---|
 | 622 |         return A->Projection(this);
 | 
|---|
 | 623 | };
 | 
|---|
 | 624 | 
 | 
|---|
 | 625 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
 | 
|---|
 | 626 |  * \param *vectors set of vectors
 | 
|---|
 | 627 |  * \param num number of vectors
 | 
|---|
 | 628 |  * \return true if success, false if failed due to linear dependency
 | 
|---|
 | 629 |  */
 | 
|---|
 | 630 | bool Vector::LSQdistance(Vector **vectors, int num)
 | 
|---|
 | 631 | {
 | 
|---|
 | 632 |         int j;
 | 
|---|
 | 633 | 
 | 
|---|
 | 634 |         for (j=0;j<num;j++) {
 | 
|---|
 | 635 |                 cout << Verbose(1) << j << "th atom's vector: ";
 | 
|---|
 | 636 |                 (vectors[j])->Output((ofstream *)&cout);
 | 
|---|
 | 637 |                 cout << endl;
 | 
|---|
 | 638 |         }
 | 
|---|
 | 639 | 
 | 
|---|
 | 640 |         int np = 3;
 | 
|---|
 | 641 |         struct LSQ_params par;
 | 
|---|
 | 642 | 
 | 
|---|
 | 643 |          const gsl_multimin_fminimizer_type *T =
 | 
|---|
 | 644 |                  gsl_multimin_fminimizer_nmsimplex;
 | 
|---|
 | 645 |          gsl_multimin_fminimizer *s = NULL;
 | 
|---|
 | 646 |          gsl_vector *ss, *y;
 | 
|---|
 | 647 |          gsl_multimin_function minex_func;
 | 
|---|
 | 648 | 
 | 
|---|
 | 649 |          size_t iter = 0, i;
 | 
|---|
 | 650 |          int status;
 | 
|---|
 | 651 |          double size;
 | 
|---|
 | 652 | 
 | 
|---|
 | 653 |          /* Initial vertex size vector */
 | 
|---|
 | 654 |          ss = gsl_vector_alloc (np);
 | 
|---|
 | 655 |          y = gsl_vector_alloc (np);
 | 
|---|
 | 656 | 
 | 
|---|
 | 657 |          /* Set all step sizes to 1 */
 | 
|---|
 | 658 |          gsl_vector_set_all (ss, 1.0);
 | 
|---|
 | 659 | 
 | 
|---|
 | 660 |          /* Starting point */
 | 
|---|
 | 661 |          par.vectors = vectors;
 | 
|---|
 | 662 |          par.num = num;
 | 
|---|
 | 663 | 
 | 
|---|
 | 664 |          for (i=NDIM;i--;)
 | 
|---|
 | 665 |                 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
 | 
|---|
 | 666 | 
 | 
|---|
 | 667 |          /* Initialize method and iterate */
 | 
|---|
 | 668 |          minex_func.f = &LSQ;
 | 
|---|
 | 669 |          minex_func.n = np;
 | 
|---|
 | 670 |          minex_func.params = (void *)∥
 | 
|---|
 | 671 | 
 | 
|---|
 | 672 |          s = gsl_multimin_fminimizer_alloc (T, np);
 | 
|---|
 | 673 |          gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
 | 
|---|
 | 674 | 
 | 
|---|
 | 675 |          do
 | 
|---|
 | 676 |                  {
 | 
|---|
 | 677 |                          iter++;
 | 
|---|
 | 678 |                          status = gsl_multimin_fminimizer_iterate(s);
 | 
|---|
 | 679 | 
 | 
|---|
 | 680 |                          if (status)
 | 
|---|
 | 681 |                                  break;
 | 
|---|
 | 682 | 
 | 
|---|
 | 683 |                          size = gsl_multimin_fminimizer_size (s);
 | 
|---|
 | 684 |                          status = gsl_multimin_test_size (size, 1e-2);
 | 
|---|
 | 685 | 
 | 
|---|
 | 686 |                          if (status == GSL_SUCCESS)
 | 
|---|
 | 687 |                                  {
 | 
|---|
 | 688 |                                          printf ("converged to minimum at\n");
 | 
|---|
 | 689 |                                  }
 | 
|---|
 | 690 | 
 | 
|---|
 | 691 |                          printf ("%5d ", (int)iter);
 | 
|---|
 | 692 |                          for (i = 0; i < (size_t)np; i++)
 | 
|---|
 | 693 |                                  {
 | 
|---|
 | 694 |                                          printf ("%10.3e ", gsl_vector_get (s->x, i));
 | 
|---|
 | 695 |                                  }
 | 
|---|
 | 696 |                          printf ("f() = %7.3f size = %.3f\n", s->fval, size);
 | 
|---|
 | 697 |                  }
 | 
|---|
 | 698 |          while (status == GSL_CONTINUE && iter < 100);
 | 
|---|
 | 699 | 
 | 
|---|
 | 700 |         for (i=(size_t)np;i--;)
 | 
|---|
 | 701 |                 this->x[i] = gsl_vector_get(s->x, i);
 | 
|---|
 | 702 |          gsl_vector_free(y);
 | 
|---|
 | 703 |          gsl_vector_free(ss);
 | 
|---|
 | 704 |          gsl_multimin_fminimizer_free (s);
 | 
|---|
 | 705 | 
 | 
|---|
 | 706 |         return true;
 | 
|---|
 | 707 | };
 | 
|---|
 | 708 | 
 | 
|---|
 | 709 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 710 |  * \param *y vector
 | 
|---|
 | 711 |  */
 | 
|---|
 | 712 | void Vector::AddVector(const Vector *y)
 | 
|---|
 | 713 | {
 | 
|---|
 | 714 |         for (int i=NDIM;i--;)
 | 
|---|
 | 715 |                 this->x[i] += y->x[i];
 | 
|---|
 | 716 | }
 | 
|---|
 | 717 | 
 | 
|---|
 | 718 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 719 |  * \param *y vector
 | 
|---|
 | 720 |  */
 | 
|---|
 | 721 | void Vector::SubtractVector(const Vector *y)
 | 
|---|
 | 722 | {
 | 
|---|
 | 723 |         for (int i=NDIM;i--;)
 | 
|---|
 | 724 |                 this->x[i] -= y->x[i];
 | 
|---|
 | 725 | }
 | 
|---|
 | 726 | 
 | 
|---|
 | 727 | /** Copy vector \a *y componentwise.
 | 
|---|
 | 728 |  * \param *y vector
 | 
|---|
 | 729 |  */
 | 
|---|
 | 730 | void Vector::CopyVector(const Vector *y)
 | 
|---|
 | 731 | {
 | 
|---|
 | 732 |         for (int i=NDIM;i--;)
 | 
|---|
 | 733 |                 this->x[i] = y->x[i];
 | 
|---|
 | 734 | }
 | 
|---|
 | 735 | 
 | 
|---|
 | 736 | 
 | 
|---|
 | 737 | /** Asks for position, checks for boundary.
 | 
|---|
 | 738 |  * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
 | 
|---|
 | 739 |  * \param check whether bounds shall be checked (true) or not (false)
 | 
|---|
 | 740 |  */
 | 
|---|
 | 741 | void Vector::AskPosition(double *cell_size, bool check)
 | 
|---|
 | 742 | {
 | 
|---|
 | 743 |         char coords[3] = {'x','y','z'};
 | 
|---|
 | 744 |         int j = -1;
 | 
|---|
 | 745 |         for (int i=0;i<3;i++) {
 | 
|---|
 | 746 |                 j += i+1;
 | 
|---|
 | 747 |                 do {
 | 
|---|
 | 748 |                         cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
 | 
|---|
 | 749 |                         cin >> x[i];
 | 
|---|
 | 750 |                 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
 | 
|---|
 | 751 |         }
 | 
|---|
 | 752 | };
 | 
|---|
 | 753 | 
 | 
|---|
 | 754 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
 | 
|---|
 | 755 |  * This is linear system of equations to be solved, however of the three given (skp of this vector\
 | 
|---|
 | 756 |  * with either of the three hast to be zero) only two are linear independent. The third equation
 | 
|---|
 | 757 |  * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
 | 
|---|
 | 758 |  * where very often it has to be checked whether a certain value is zero or not and thus forked into
 | 
|---|
 | 759 |  * another case.
 | 
|---|
 | 760 |  * \param *x1 first vector
 | 
|---|
 | 761 |  * \param *x2 second vector
 | 
|---|
 | 762 |  * \param *y third vector
 | 
|---|
 | 763 |  * \param alpha first angle
 | 
|---|
 | 764 |  * \param beta second angle
 | 
|---|
 | 765 |  * \param c norm of final vector
 | 
|---|
 | 766 |  * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
 | 
|---|
 | 767 |  * \bug this is not yet working properly
 | 
|---|
 | 768 |  */
 | 
|---|
 | 769 | bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
 | 
|---|
 | 770 | {
 | 
|---|
 | 771 |         double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
 | 
|---|
 | 772 |         double ang; // angle on testing
 | 
|---|
 | 773 |         double sign[3];
 | 
|---|
 | 774 |         int i,j,k;
 | 
|---|
 | 775 |         A = cos(alpha) * x1->Norm() * c;
 | 
|---|
 | 776 |         B1 = cos(beta + M_PI/2.) * y->Norm() * c;
 | 
|---|
 | 777 |         B2 = cos(beta) * x2->Norm() * c;
 | 
|---|
 | 778 |         C = c * c;
 | 
|---|
 | 779 |         cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
 | 
|---|
 | 780 |         int flag = 0;
 | 
|---|
 | 781 |         if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
 | 
|---|
 | 782 |                 if (fabs(x1->x[1]) > MYEPSILON) {
 | 
|---|
 | 783 |                         flag = 1;
 | 
|---|
 | 784 |                 } else if (fabs(x1->x[2]) > MYEPSILON) {
 | 
|---|
 | 785 |                          flag = 2;
 | 
|---|
 | 786 |                 } else {
 | 
|---|
 | 787 |                         return false;
 | 
|---|
 | 788 |                 }
 | 
|---|
 | 789 |         }
 | 
|---|
 | 790 |         switch (flag) {
 | 
|---|
 | 791 |                 default:
 | 
|---|
 | 792 |                 case 0:
 | 
|---|
 | 793 |                         break;
 | 
|---|
 | 794 |                 case 2:
 | 
|---|
 | 795 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 796 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 797 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 798 |                         //flip(&x[0],&x[1]);
 | 
|---|
 | 799 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 800 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 801 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 802 |                         //flip(&x[1],&x[2]);
 | 
|---|
 | 803 |                 case 1:
 | 
|---|
 | 804 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 805 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 806 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 807 |                         //flip(&x[0],&x[1]);
 | 
|---|
 | 808 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 809 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 810 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 811 |                         //flip(&x[1],&x[2]);
 | 
|---|
 | 812 |                         break;
 | 
|---|
 | 813 |         }
 | 
|---|
 | 814 |         // now comes the case system
 | 
|---|
 | 815 |         D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
 | 
|---|
 | 816 |         D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
 | 
|---|
 | 817 |         D3 = y->x[0]/x1->x[0]*A-B1;
 | 
|---|
 | 818 |         cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
 | 
|---|
 | 819 |         if (fabs(D1) < MYEPSILON) {
 | 
|---|
 | 820 |                 cout << Verbose(2) << "D1 == 0!\n";
 | 
|---|
 | 821 |                 if (fabs(D2) > MYEPSILON) {
 | 
|---|
 | 822 |                         cout << Verbose(3) << "D2 != 0!\n";
 | 
|---|
 | 823 |                         x[2] = -D3/D2;
 | 
|---|
 | 824 |                         E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
 | 
|---|
 | 825 |                         E2 = -x1->x[1]/x1->x[0];
 | 
|---|
 | 826 |                         cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
 | 827 |                         F1 = E1*E1 + 1.;
 | 
|---|
 | 828 |                         F2 = -E1*E2;
 | 
|---|
 | 829 |                         F3 = E1*E1 + D3*D3/(D2*D2) - C;
 | 
|---|
 | 830 |                         cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
 | 831 |                         if (fabs(F1) < MYEPSILON) {
 | 
|---|
 | 832 |                                 cout << Verbose(4) << "F1 == 0!\n";
 | 
|---|
 | 833 |                                 cout << Verbose(4) << "Gleichungssystem linear\n";
 | 
|---|
 | 834 |                                 x[1] = F3/(2.*F2);
 | 
|---|
 | 835 |                         } else {
 | 
|---|
 | 836 |                                 p = F2/F1;
 | 
|---|
 | 837 |                                 q = p*p - F3/F1;
 | 
|---|
 | 838 |                                 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
 | 
|---|
 | 839 |                                 if (q < 0) {
 | 
|---|
 | 840 |                                         cout << Verbose(4) << "q < 0" << endl;
 | 
|---|
 | 841 |                                         return false;
 | 
|---|
 | 842 |                                 }
 | 
|---|
 | 843 |                                 x[1] = p + sqrt(q);
 | 
|---|
 | 844 |                         }
 | 
|---|
 | 845 |                         x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 846 |                 } else {
 | 
|---|
 | 847 |                         cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
 | 
|---|
 | 848 |                         return false;
 | 
|---|
 | 849 |                 }
 | 
|---|
 | 850 |         } else {
 | 
|---|
 | 851 |                 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
 | 
|---|
 | 852 |                 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
 | 
|---|
 | 853 |                 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
 | 854 |                 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
 | 
|---|
 | 855 |                 F2 = -(E1*E2 + D2*D3/(D1*D1));
 | 
|---|
 | 856 |                 F3 = E1*E1 + D3*D3/(D1*D1) - C;
 | 
|---|
 | 857 |                 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
 | 858 |                 if (fabs(F1) < MYEPSILON) {
 | 
|---|
 | 859 |                         cout << Verbose(3) << "F1 == 0!\n";
 | 
|---|
 | 860 |                         cout << Verbose(3) << "Gleichungssystem linear\n";
 | 
|---|
 | 861 |                         x[2] = F3/(2.*F2);
 | 
|---|
 | 862 |                 } else {
 | 
|---|
 | 863 |                         p = F2/F1;
 | 
|---|
 | 864 |                         q = p*p - F3/F1;
 | 
|---|
 | 865 |                         cout << Verbose(3) << "p " << p << "\tq " << q << endl;
 | 
|---|
 | 866 |                         if (q < 0) {
 | 
|---|
 | 867 |                                 cout << Verbose(3) << "q < 0" << endl;
 | 
|---|
 | 868 |                                 return false;
 | 
|---|
 | 869 |                         }
 | 
|---|
 | 870 |                         x[2] = p + sqrt(q);
 | 
|---|
 | 871 |                 }
 | 
|---|
 | 872 |                 x[1] = (-D2 * x[2] - D3)/D1;
 | 
|---|
 | 873 |                 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 874 |         }
 | 
|---|
 | 875 |         switch (flag) { // back-flipping
 | 
|---|
 | 876 |                 default:
 | 
|---|
 | 877 |                 case 0:
 | 
|---|
 | 878 |                         break;
 | 
|---|
 | 879 |                 case 2:
 | 
|---|
 | 880 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 881 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 882 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 883 |                         flip(&x[0],&x[1]);
 | 
|---|
 | 884 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 885 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 886 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 887 |                         flip(&x[1],&x[2]);
 | 
|---|
 | 888 |                 case 1:
 | 
|---|
 | 889 |                         flip(&x1->x[0],&x1->x[1]);
 | 
|---|
 | 890 |                         flip(&x2->x[0],&x2->x[1]);
 | 
|---|
 | 891 |                         flip(&y->x[0],&y->x[1]);
 | 
|---|
 | 892 |                         //flip(&x[0],&x[1]);
 | 
|---|
 | 893 |                         flip(&x1->x[1],&x1->x[2]);
 | 
|---|
 | 894 |                         flip(&x2->x[1],&x2->x[2]);
 | 
|---|
 | 895 |                         flip(&y->x[1],&y->x[2]);
 | 
|---|
 | 896 |                         flip(&x[1],&x[2]);
 | 
|---|
 | 897 |                         break;
 | 
|---|
 | 898 |         }
 | 
|---|
 | 899 |         // one z component is only determined by its radius (without sign)
 | 
|---|
 | 900 |         // thus check eight possible sign flips and determine by checking angle with second vector
 | 
|---|
 | 901 |         for (i=0;i<8;i++) {
 | 
|---|
 | 902 |                 // set sign vector accordingly
 | 
|---|
 | 903 |                 for (j=2;j>=0;j--) {
 | 
|---|
 | 904 |                         k = (i & pot(2,j)) << j;
 | 
|---|
 | 905 |                         cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
 | 
|---|
 | 906 |                         sign[j] = (k == 0) ? 1. : -1.;
 | 
|---|
 | 907 |                 }
 | 
|---|
 | 908 |                 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
 | 
|---|
 | 909 |                 // apply sign matrix
 | 
|---|
 | 910 |                 for (j=NDIM;j--;)
 | 
|---|
 | 911 |                         x[j] *= sign[j];
 | 
|---|
 | 912 |                 // calculate angle and check
 | 
|---|
 | 913 |                 ang = x2->Angle (this);
 | 
|---|
 | 914 |                 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
 | 
|---|
 | 915 |                 if (fabs(ang - cos(beta)) < MYEPSILON) {
 | 
|---|
 | 916 |                         break;
 | 
|---|
 | 917 |                 }
 | 
|---|
 | 918 |                 // unapply sign matrix (is its own inverse)
 | 
|---|
 | 919 |                 for (j=NDIM;j--;)
 | 
|---|
 | 920 |                         x[j] *= sign[j];
 | 
|---|
 | 921 |         }
 | 
|---|
 | 922 |         return true;
 | 
|---|
 | 923 | };
 | 
|---|