1 | /*
|
---|
2 | * TesselationHelpers.cpp
|
---|
3 | *
|
---|
4 | * Created on: Aug 3, 2009
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "tesselationhelpers.hpp"
|
---|
9 |
|
---|
10 | double DetGet(gsl_matrix *A, int inPlace) {
|
---|
11 | /*
|
---|
12 | inPlace = 1 => A is replaced with the LU decomposed copy.
|
---|
13 | inPlace = 0 => A is retained, and a copy is used for LU.
|
---|
14 | */
|
---|
15 |
|
---|
16 | double det;
|
---|
17 | int signum;
|
---|
18 | gsl_permutation *p = gsl_permutation_alloc(A->size1);
|
---|
19 | gsl_matrix *tmpA;
|
---|
20 |
|
---|
21 | if (inPlace)
|
---|
22 | tmpA = A;
|
---|
23 | else {
|
---|
24 | gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
|
---|
25 | gsl_matrix_memcpy(tmpA , A);
|
---|
26 | }
|
---|
27 |
|
---|
28 |
|
---|
29 | gsl_linalg_LU_decomp(tmpA , p , &signum);
|
---|
30 | det = gsl_linalg_LU_det(tmpA , signum);
|
---|
31 | gsl_permutation_free(p);
|
---|
32 | if (! inPlace)
|
---|
33 | gsl_matrix_free(tmpA);
|
---|
34 |
|
---|
35 | return det;
|
---|
36 | };
|
---|
37 |
|
---|
38 | void GetSphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS)
|
---|
39 | {
|
---|
40 | gsl_matrix *A = gsl_matrix_calloc(3,3);
|
---|
41 | double m11, m12, m13, m14;
|
---|
42 |
|
---|
43 | for(int i=0;i<3;i++) {
|
---|
44 | gsl_matrix_set(A, i, 0, a.x[i]);
|
---|
45 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
46 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
47 | }
|
---|
48 | m11 = DetGet(A, 1);
|
---|
49 |
|
---|
50 | for(int i=0;i<3;i++) {
|
---|
51 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
52 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
53 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
54 | }
|
---|
55 | m12 = DetGet(A, 1);
|
---|
56 |
|
---|
57 | for(int i=0;i<3;i++) {
|
---|
58 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
59 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
60 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
61 | }
|
---|
62 | m13 = DetGet(A, 1);
|
---|
63 |
|
---|
64 | for(int i=0;i<3;i++) {
|
---|
65 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
66 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
67 | gsl_matrix_set(A, i, 2, b.x[i]);
|
---|
68 | }
|
---|
69 | m14 = DetGet(A, 1);
|
---|
70 |
|
---|
71 | if (fabs(m11) < MYEPSILON)
|
---|
72 | cerr << "ERROR: three points are colinear." << endl;
|
---|
73 |
|
---|
74 | center->x[0] = 0.5 * m12/ m11;
|
---|
75 | center->x[1] = -0.5 * m13/ m11;
|
---|
76 | center->x[2] = 0.5 * m14/ m11;
|
---|
77 |
|
---|
78 | if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
|
---|
79 | cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
|
---|
80 |
|
---|
81 | gsl_matrix_free(A);
|
---|
82 | };
|
---|
83 |
|
---|
84 |
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
88 | * @param Center this vector will be used for return
|
---|
89 | * @param a vector first point of triangle
|
---|
90 | * @param b vector second point of triangle
|
---|
91 | * @param c vector third point of triangle
|
---|
92 | * @param *Umkreismittelpunkt new cneter point of circumference
|
---|
93 | * @param Direction vector indicates up/down
|
---|
94 | * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle
|
---|
95 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
96 | * @param AlternativeIndicator doube indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
97 | * @param alpha double angle at a
|
---|
98 | * @param beta double, angle at b
|
---|
99 | * @param gamma, double, angle at c
|
---|
100 | * @param Radius, double
|
---|
101 | * @param Umkreisradius double radius of circumscribing circle
|
---|
102 | */
|
---|
103 | void GetCenterOfSphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
|
---|
104 | double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
|
---|
105 | {
|
---|
106 | Vector TempNormal, helper;
|
---|
107 | double Restradius;
|
---|
108 | Vector OtherCenter;
|
---|
109 | cout << Verbose(3) << "Begin of GetCenterOfSphere.\n";
|
---|
110 | Center->Zero();
|
---|
111 | helper.CopyVector(&a);
|
---|
112 | helper.Scale(sin(2.*alpha));
|
---|
113 | Center->AddVector(&helper);
|
---|
114 | helper.CopyVector(&b);
|
---|
115 | helper.Scale(sin(2.*beta));
|
---|
116 | Center->AddVector(&helper);
|
---|
117 | helper.CopyVector(&c);
|
---|
118 | helper.Scale(sin(2.*gamma));
|
---|
119 | Center->AddVector(&helper);
|
---|
120 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
121 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
122 | NewUmkreismittelpunkt->CopyVector(Center);
|
---|
123 | cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
|
---|
124 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
125 | cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
|
---|
126 |
|
---|
127 | TempNormal.CopyVector(&a);
|
---|
128 | TempNormal.SubtractVector(&b);
|
---|
129 | helper.CopyVector(&a);
|
---|
130 | helper.SubtractVector(&c);
|
---|
131 | TempNormal.VectorProduct(&helper);
|
---|
132 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
133 | {
|
---|
134 | if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
|
---|
135 | {
|
---|
136 | TempNormal.Scale(-1);
|
---|
137 | }
|
---|
138 | }
|
---|
139 | else
|
---|
140 | {
|
---|
141 | if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
|
---|
142 | {
|
---|
143 | TempNormal.Scale(-1);
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | TempNormal.Normalize();
|
---|
148 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
149 | cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
|
---|
150 | TempNormal.Scale(Restradius);
|
---|
151 | cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
|
---|
152 |
|
---|
153 | Center->AddVector(&TempNormal);
|
---|
154 | cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
|
---|
155 | GetSphere(&OtherCenter, a, b, c, RADIUS);
|
---|
156 | cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
|
---|
157 | cout << Verbose(3) << "End of GetCenterOfSphere.\n";
|
---|
158 | };
|
---|
159 |
|
---|
160 |
|
---|
161 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
162 | * \param *Center new center on return
|
---|
163 | * \param *a first point
|
---|
164 | * \param *b second point
|
---|
165 | * \param *c third point
|
---|
166 | */
|
---|
167 | void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c)
|
---|
168 | {
|
---|
169 | Vector helper;
|
---|
170 | double alpha, beta, gamma;
|
---|
171 | Vector SideA, SideB, SideC;
|
---|
172 | SideA.CopyVector(b);
|
---|
173 | SideA.SubtractVector(c);
|
---|
174 | SideB.CopyVector(c);
|
---|
175 | SideB.SubtractVector(a);
|
---|
176 | SideC.CopyVector(a);
|
---|
177 | SideC.SubtractVector(b);
|
---|
178 | alpha = M_PI - SideB.Angle(&SideC);
|
---|
179 | beta = M_PI - SideC.Angle(&SideA);
|
---|
180 | gamma = M_PI - SideA.Angle(&SideB);
|
---|
181 | //cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
|
---|
182 | if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
|
---|
183 | cerr << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
|
---|
184 |
|
---|
185 | Center->Zero();
|
---|
186 | helper.CopyVector(a);
|
---|
187 | helper.Scale(sin(2.*alpha));
|
---|
188 | Center->AddVector(&helper);
|
---|
189 | helper.CopyVector(b);
|
---|
190 | helper.Scale(sin(2.*beta));
|
---|
191 | Center->AddVector(&helper);
|
---|
192 | helper.CopyVector(c);
|
---|
193 | helper.Scale(sin(2.*gamma));
|
---|
194 | Center->AddVector(&helper);
|
---|
195 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
196 | };
|
---|
197 |
|
---|
198 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
199 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
200 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
201 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
202 | * \param CircleCenter Center of the parameter circle
|
---|
203 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
204 | * \param CircleRadius radius of the parameter circle
|
---|
205 | * \param NewSphereCenter new center of a circumcircle
|
---|
206 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
207 | * \param NormalVector normal vector
|
---|
208 | * \param SearchDirection search direction to make angle unique on return.
|
---|
209 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
210 | */
|
---|
211 | double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection)
|
---|
212 | {
|
---|
213 | Vector helper;
|
---|
214 | double radius, alpha;
|
---|
215 |
|
---|
216 | helper.CopyVector(&NewSphereCenter);
|
---|
217 | // test whether new center is on the parameter circle's plane
|
---|
218 | if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
219 | cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
220 | helper.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
221 | }
|
---|
222 | radius = helper.ScalarProduct(&helper);
|
---|
223 | // test whether the new center vector has length of CircleRadius
|
---|
224 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
225 | cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
226 | alpha = helper.Angle(&OldSphereCenter);
|
---|
227 | // make the angle unique by checking the halfplanes/search direction
|
---|
228 | if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
229 | alpha = 2.*M_PI - alpha;
|
---|
230 | //cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
|
---|
231 | radius = helper.Distance(&OldSphereCenter);
|
---|
232 | helper.ProjectOntoPlane(&NormalVector);
|
---|
233 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
234 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
235 | //cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
|
---|
236 | return alpha;
|
---|
237 | } else {
|
---|
238 | //cout << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
|
---|
239 | return 2.*M_PI;
|
---|
240 | }
|
---|
241 | };
|
---|
242 |
|
---|
243 | struct Intersection {
|
---|
244 | Vector x1;
|
---|
245 | Vector x2;
|
---|
246 | Vector x3;
|
---|
247 | Vector x4;
|
---|
248 | };
|
---|
249 |
|
---|
250 | /**
|
---|
251 | * Intersection calculation function.
|
---|
252 | *
|
---|
253 | * @param x to find the result for
|
---|
254 | * @param function parameter
|
---|
255 | */
|
---|
256 | double MinIntersectDistance(const gsl_vector * x, void *params)
|
---|
257 | {
|
---|
258 | double retval = 0;
|
---|
259 | struct Intersection *I = (struct Intersection *)params;
|
---|
260 | Vector intersection;
|
---|
261 | Vector SideA,SideB,HeightA, HeightB;
|
---|
262 | for (int i=0;i<NDIM;i++)
|
---|
263 | intersection.x[i] = gsl_vector_get(x, i);
|
---|
264 |
|
---|
265 | SideA.CopyVector(&(I->x1));
|
---|
266 | SideA.SubtractVector(&I->x2);
|
---|
267 | HeightA.CopyVector(&intersection);
|
---|
268 | HeightA.SubtractVector(&I->x1);
|
---|
269 | HeightA.ProjectOntoPlane(&SideA);
|
---|
270 |
|
---|
271 | SideB.CopyVector(&I->x3);
|
---|
272 | SideB.SubtractVector(&I->x4);
|
---|
273 | HeightB.CopyVector(&intersection);
|
---|
274 | HeightB.SubtractVector(&I->x3);
|
---|
275 | HeightB.ProjectOntoPlane(&SideB);
|
---|
276 |
|
---|
277 | retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
|
---|
278 | //cout << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
|
---|
279 |
|
---|
280 | return retval;
|
---|
281 | };
|
---|
282 |
|
---|
283 |
|
---|
284 | /**
|
---|
285 | * Calculates whether there is an intersection between two lines. The first line
|
---|
286 | * always goes through point 1 and point 2 and the second line is given by the
|
---|
287 | * connection between point 4 and point 5.
|
---|
288 | *
|
---|
289 | * @param point 1 of line 1
|
---|
290 | * @param point 2 of line 1
|
---|
291 | * @param point 1 of line 2
|
---|
292 | * @param point 2 of line 2
|
---|
293 | *
|
---|
294 | * @return true if there is an intersection between the given lines, false otherwise
|
---|
295 | */
|
---|
296 | bool existsIntersection(Vector point1, Vector point2, Vector point3, Vector point4)
|
---|
297 | {
|
---|
298 | bool result;
|
---|
299 |
|
---|
300 | struct Intersection par;
|
---|
301 | par.x1.CopyVector(&point1);
|
---|
302 | par.x2.CopyVector(&point2);
|
---|
303 | par.x3.CopyVector(&point3);
|
---|
304 | par.x4.CopyVector(&point4);
|
---|
305 |
|
---|
306 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
307 | gsl_multimin_fminimizer *s = NULL;
|
---|
308 | gsl_vector *ss, *x;
|
---|
309 | gsl_multimin_function minexFunction;
|
---|
310 |
|
---|
311 | size_t iter = 0;
|
---|
312 | int status;
|
---|
313 | double size;
|
---|
314 |
|
---|
315 | /* Starting point */
|
---|
316 | x = gsl_vector_alloc(NDIM);
|
---|
317 | gsl_vector_set(x, 0, point1.x[0]);
|
---|
318 | gsl_vector_set(x, 1, point1.x[1]);
|
---|
319 | gsl_vector_set(x, 2, point1.x[2]);
|
---|
320 |
|
---|
321 | /* Set initial step sizes to 1 */
|
---|
322 | ss = gsl_vector_alloc(NDIM);
|
---|
323 | gsl_vector_set_all(ss, 1.0);
|
---|
324 |
|
---|
325 | /* Initialize method and iterate */
|
---|
326 | minexFunction.n = NDIM;
|
---|
327 | minexFunction.f = &MinIntersectDistance;
|
---|
328 | minexFunction.params = (void *)∥
|
---|
329 |
|
---|
330 | s = gsl_multimin_fminimizer_alloc(T, NDIM);
|
---|
331 | gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
|
---|
332 |
|
---|
333 | do {
|
---|
334 | iter++;
|
---|
335 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
336 |
|
---|
337 | if (status) {
|
---|
338 | break;
|
---|
339 | }
|
---|
340 |
|
---|
341 | size = gsl_multimin_fminimizer_size(s);
|
---|
342 | status = gsl_multimin_test_size(size, 1e-2);
|
---|
343 |
|
---|
344 | if (status == GSL_SUCCESS) {
|
---|
345 | cout << Verbose(2) << "converged to minimum" << endl;
|
---|
346 | }
|
---|
347 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
348 |
|
---|
349 | // check whether intersection is in between or not
|
---|
350 | Vector intersection, SideA, SideB, HeightA, HeightB;
|
---|
351 | double t1, t2;
|
---|
352 | for (int i = 0; i < NDIM; i++) {
|
---|
353 | intersection.x[i] = gsl_vector_get(s->x, i);
|
---|
354 | }
|
---|
355 |
|
---|
356 | SideA.CopyVector(&par.x2);
|
---|
357 | SideA.SubtractVector(&par.x1);
|
---|
358 | HeightA.CopyVector(&intersection);
|
---|
359 | HeightA.SubtractVector(&par.x1);
|
---|
360 |
|
---|
361 | t1 = HeightA.ScalarProduct(&SideA)/SideA.ScalarProduct(&SideA);
|
---|
362 |
|
---|
363 | SideB.CopyVector(&par.x4);
|
---|
364 | SideB.SubtractVector(&par.x3);
|
---|
365 | HeightB.CopyVector(&intersection);
|
---|
366 | HeightB.SubtractVector(&par.x3);
|
---|
367 |
|
---|
368 | t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
|
---|
369 |
|
---|
370 | cout << Verbose(2) << "Intersection " << intersection << " is at "
|
---|
371 | << t1 << " for (" << point1 << "," << point2 << ") and at "
|
---|
372 | << t2 << " for (" << point3 << "," << point4 << "): ";
|
---|
373 |
|
---|
374 | if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
|
---|
375 | cout << "true intersection." << endl;
|
---|
376 | result = true;
|
---|
377 | } else {
|
---|
378 | cout << "intersection out of region of interest." << endl;
|
---|
379 | result = false;
|
---|
380 | }
|
---|
381 |
|
---|
382 | // free minimizer stuff
|
---|
383 | gsl_vector_free(x);
|
---|
384 | gsl_vector_free(ss);
|
---|
385 | gsl_multimin_fminimizer_free(s);
|
---|
386 |
|
---|
387 | return result;
|
---|
388 | };
|
---|
389 |
|
---|
390 | /** Gets the angle between a point and a reference relative to the provided center.
|
---|
391 | * We have two shanks point and reference between which the angle is calculated
|
---|
392 | * and by scalar product with OrthogonalVector we decide the interval.
|
---|
393 | * @param point to calculate the angle for
|
---|
394 | * @param reference to which to calculate the angle
|
---|
395 | * @param OrthogonalVector points in direction of [pi,2pi] interval
|
---|
396 | *
|
---|
397 | * @return angle between point and reference
|
---|
398 | */
|
---|
399 | double GetAngle(const Vector &point, const Vector &reference, const Vector OrthogonalVector)
|
---|
400 | {
|
---|
401 | if (reference.IsZero())
|
---|
402 | return M_PI;
|
---|
403 |
|
---|
404 | // calculate both angles and correct with in-plane vector
|
---|
405 | if (point.IsZero())
|
---|
406 | return M_PI;
|
---|
407 | double phi = point.Angle(&reference);
|
---|
408 | if (OrthogonalVector.ScalarProduct(&point) > 0) {
|
---|
409 | phi = 2.*M_PI - phi;
|
---|
410 | }
|
---|
411 |
|
---|
412 | cout << Verbose(4) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
|
---|
413 |
|
---|
414 | return phi;
|
---|
415 | }
|
---|
416 |
|
---|
417 |
|
---|
418 | /** Calculates the volume of a general tetraeder.
|
---|
419 | * \param *a first vector
|
---|
420 | * \param *a first vector
|
---|
421 | * \param *a first vector
|
---|
422 | * \param *a first vector
|
---|
423 | * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
|
---|
424 | */
|
---|
425 | double CalculateVolumeofGeneralTetraeder(Vector *a, Vector *b, Vector *c, Vector *d)
|
---|
426 | {
|
---|
427 | Vector Point, TetraederVector[3];
|
---|
428 | double volume;
|
---|
429 |
|
---|
430 | TetraederVector[0].CopyVector(a);
|
---|
431 | TetraederVector[1].CopyVector(b);
|
---|
432 | TetraederVector[2].CopyVector(c);
|
---|
433 | for (int j=0;j<3;j++)
|
---|
434 | TetraederVector[j].SubtractVector(d);
|
---|
435 | Point.CopyVector(&TetraederVector[0]);
|
---|
436 | Point.VectorProduct(&TetraederVector[1]);
|
---|
437 | volume = 1./6. * fabs(Point.ScalarProduct(&TetraederVector[2]));
|
---|
438 | return volume;
|
---|
439 | };
|
---|
440 |
|
---|
441 |
|
---|
442 | /** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
|
---|
443 | * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
|
---|
444 | * make it bigger (i.e. closing one (the baseline) and opening two new ones).
|
---|
445 | * \param TPS[3] nodes of the triangle
|
---|
446 | * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
|
---|
447 | */
|
---|
448 | bool CheckLineCriteriaForDegeneratedTriangle(class BoundaryPointSet *nodes[3])
|
---|
449 | {
|
---|
450 | bool result = false;
|
---|
451 | int counter = 0;
|
---|
452 |
|
---|
453 | // check all three points
|
---|
454 | for (int i=0;i<3;i++)
|
---|
455 | for (int j=i+1; j<3; j++) {
|
---|
456 | if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
|
---|
457 | LineMap::iterator FindLine;
|
---|
458 | pair<LineMap::iterator,LineMap::iterator> FindPair;
|
---|
459 | FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
|
---|
460 | for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
|
---|
461 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
462 | if (FindLine->second->triangles.size() < 2) {
|
---|
463 | counter++;
|
---|
464 | break; // increase counter only once per edge
|
---|
465 | }
|
---|
466 | }
|
---|
467 | } else { // no line
|
---|
468 | cout << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
|
---|
469 | result = true;
|
---|
470 | }
|
---|
471 | }
|
---|
472 | if ((!result) && (counter > 1)) {
|
---|
473 | cout << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
|
---|
474 | result = true;
|
---|
475 | }
|
---|
476 | return result;
|
---|
477 | };
|
---|
478 |
|
---|
479 |
|
---|
480 | /** Sort function for the candidate list.
|
---|
481 | */
|
---|
482 | bool SortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2)
|
---|
483 | {
|
---|
484 | Vector BaseLineVector, OrthogonalVector, helper;
|
---|
485 | if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
|
---|
486 | cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
|
---|
487 | //return false;
|
---|
488 | exit(1);
|
---|
489 | }
|
---|
490 | // create baseline vector
|
---|
491 | BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
|
---|
492 | BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
493 | BaseLineVector.Normalize();
|
---|
494 |
|
---|
495 | // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
|
---|
496 | helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
497 | helper.SubtractVector(candidate1->point->node);
|
---|
498 | OrthogonalVector.CopyVector(&helper);
|
---|
499 | helper.VectorProduct(&BaseLineVector);
|
---|
500 | OrthogonalVector.SubtractVector(&helper);
|
---|
501 | OrthogonalVector.Normalize();
|
---|
502 |
|
---|
503 | // calculate both angles and correct with in-plane vector
|
---|
504 | helper.CopyVector(candidate1->point->node);
|
---|
505 | helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
506 | double phi = BaseLineVector.Angle(&helper);
|
---|
507 | if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
508 | phi = 2.*M_PI - phi;
|
---|
509 | }
|
---|
510 | helper.CopyVector(candidate2->point->node);
|
---|
511 | helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
512 | double psi = BaseLineVector.Angle(&helper);
|
---|
513 | if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
514 | psi = 2.*M_PI - psi;
|
---|
515 | }
|
---|
516 |
|
---|
517 | cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
|
---|
518 | cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
|
---|
519 |
|
---|
520 | // return comparison
|
---|
521 | return phi < psi;
|
---|
522 | };
|
---|
523 |
|
---|
524 | /**
|
---|
525 | * Finds the point which is second closest to the provided one.
|
---|
526 | *
|
---|
527 | * @param Point to which to find the second closest other point
|
---|
528 | * @param linked cell structure
|
---|
529 | *
|
---|
530 | * @return point which is second closest to the provided one
|
---|
531 | */
|
---|
532 | TesselPoint* FindSecondClosestPoint(const Vector* Point, LinkedCell* LC)
|
---|
533 | {
|
---|
534 | LinkedNodes *List = NULL;
|
---|
535 | TesselPoint* closestPoint = NULL;
|
---|
536 | TesselPoint* secondClosestPoint = NULL;
|
---|
537 | double distance = 1e16;
|
---|
538 | double secondDistance = 1e16;
|
---|
539 | Vector helper;
|
---|
540 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
541 |
|
---|
542 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
543 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
544 | N[i] = LC->n[i];
|
---|
545 | cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
546 |
|
---|
547 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
548 | //cout << endl;
|
---|
549 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
550 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
551 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
552 | List = LC->GetCurrentCell();
|
---|
553 | //cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
554 | if (List != NULL) {
|
---|
555 | for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
556 | helper.CopyVector(Point);
|
---|
557 | helper.SubtractVector((*Runner)->node);
|
---|
558 | double currentNorm = helper. Norm();
|
---|
559 | if (currentNorm < distance) {
|
---|
560 | // remember second point
|
---|
561 | secondDistance = distance;
|
---|
562 | secondClosestPoint = closestPoint;
|
---|
563 | // mark down new closest point
|
---|
564 | distance = currentNorm;
|
---|
565 | closestPoint = (*Runner);
|
---|
566 | //cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
|
---|
567 | }
|
---|
568 | }
|
---|
569 | } else {
|
---|
570 | cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
571 | << LC->n[2] << " is invalid!" << endl;
|
---|
572 | }
|
---|
573 | }
|
---|
574 |
|
---|
575 | return secondClosestPoint;
|
---|
576 | };
|
---|
577 |
|
---|
578 | /**
|
---|
579 | * Finds the point which is closest to the provided one.
|
---|
580 | *
|
---|
581 | * @param Point to which to find the closest other point
|
---|
582 | * @param SecondPoint the second closest other point on return, NULL if none found
|
---|
583 | * @param linked cell structure
|
---|
584 | *
|
---|
585 | * @return point which is closest to the provided one, NULL if none found
|
---|
586 | */
|
---|
587 | TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, LinkedCell* LC)
|
---|
588 | {
|
---|
589 | LinkedNodes *List = NULL;
|
---|
590 | TesselPoint* closestPoint = NULL;
|
---|
591 | SecondPoint = NULL;
|
---|
592 | double distance = 1e16;
|
---|
593 | double secondDistance = 1e16;
|
---|
594 | Vector helper;
|
---|
595 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
596 |
|
---|
597 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
598 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
599 | N[i] = LC->n[i];
|
---|
600 | cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
601 |
|
---|
602 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
603 | //cout << endl;
|
---|
604 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
605 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
606 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
607 | List = LC->GetCurrentCell();
|
---|
608 | //cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
609 | if (List != NULL) {
|
---|
610 | for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
611 | helper.CopyVector(Point);
|
---|
612 | helper.SubtractVector((*Runner)->node);
|
---|
613 | double currentNorm = helper. Norm();
|
---|
614 | if (currentNorm < distance) {
|
---|
615 | secondDistance = distance;
|
---|
616 | SecondPoint = closestPoint;
|
---|
617 | distance = currentNorm;
|
---|
618 | closestPoint = (*Runner);
|
---|
619 | //cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
|
---|
620 | } else if (currentNorm < secondDistance) {
|
---|
621 | secondDistance = currentNorm;
|
---|
622 | SecondPoint = (*Runner);
|
---|
623 | //cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
|
---|
624 | }
|
---|
625 | }
|
---|
626 | } else {
|
---|
627 | cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
628 | << LC->n[2] << " is invalid!" << endl;
|
---|
629 | }
|
---|
630 | }
|
---|
631 |
|
---|
632 | return closestPoint;
|
---|
633 | };
|
---|
634 |
|
---|
635 | /** Returns the closest point on \a *Base with respect to \a *OtherBase.
|
---|
636 | * \param *out output stream for debugging
|
---|
637 | * \param *Base reference line
|
---|
638 | * \param *OtherBase other base line
|
---|
639 | * \return Vector on reference line that has closest distance
|
---|
640 | */
|
---|
641 | Vector * GetClosestPointBetweenLine(ofstream *out, class BoundaryLineSet *Base, class BoundaryLineSet *OtherBase)
|
---|
642 | {
|
---|
643 | // construct the plane of the two baselines (i.e. take both their directional vectors)
|
---|
644 | Vector Normal;
|
---|
645 | Vector Baseline, OtherBaseline;
|
---|
646 | Baseline.CopyVector(Base->endpoints[1]->node->node);
|
---|
647 | Baseline.SubtractVector(Base->endpoints[0]->node->node);
|
---|
648 | OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
|
---|
649 | OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
|
---|
650 | Normal.CopyVector(&Baseline);
|
---|
651 | Normal.VectorProduct(&OtherBaseline);
|
---|
652 | Normal.Normalize();
|
---|
653 | *out << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
|
---|
654 |
|
---|
655 | // project one offset point of OtherBase onto this plane (and add plane offset vector)
|
---|
656 | Vector NewOffset;
|
---|
657 | NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
|
---|
658 | NewOffset.SubtractVector(Base->endpoints[0]->node->node);
|
---|
659 | NewOffset.ProjectOntoPlane(&Normal);
|
---|
660 | NewOffset.AddVector(Base->endpoints[0]->node->node);
|
---|
661 | Vector NewDirection;
|
---|
662 | NewDirection.CopyVector(&NewOffset);
|
---|
663 | NewDirection.AddVector(&OtherBaseline);
|
---|
664 |
|
---|
665 | // calculate the intersection between this projected baseline and Base
|
---|
666 | Vector *Intersection = new Vector;
|
---|
667 | Intersection->GetIntersectionOfTwoLinesOnPlane(out, Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
|
---|
668 | Normal.CopyVector(Intersection);
|
---|
669 | Normal.SubtractVector(Base->endpoints[0]->node->node);
|
---|
670 | *out << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
|
---|
671 |
|
---|
672 | return Intersection;
|
---|
673 | };
|
---|
674 |
|
---|
675 |
|
---|
676 | /** Creates the objects in a VRML file.
|
---|
677 | * \param *out output stream for debugging
|
---|
678 | * \param *vrmlfile output stream for tecplot data
|
---|
679 | * \param *Tess Tesselation structure with constructed triangles
|
---|
680 | * \param *mol molecule structure with atom positions
|
---|
681 | */
|
---|
682 | void WriteVrmlFile(ofstream *out, ofstream *vrmlfile, class Tesselation *Tess, PointCloud *cloud)
|
---|
683 | {
|
---|
684 | TesselPoint *Walker = NULL;
|
---|
685 | int i;
|
---|
686 | Vector *center = cloud->GetCenter(out);
|
---|
687 | if (vrmlfile != NULL) {
|
---|
688 | //cout << Verbose(1) << "Writing Raster3D file ... ";
|
---|
689 | *vrmlfile << "#VRML V2.0 utf8" << endl;
|
---|
690 | *vrmlfile << "#Created by molecuilder" << endl;
|
---|
691 | *vrmlfile << "#All atoms as spheres" << endl;
|
---|
692 | cloud->GoToFirst();
|
---|
693 | while (!cloud->IsEnd()) {
|
---|
694 | Walker = cloud->GetPoint();
|
---|
695 | *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
|
---|
696 | for (i=0;i<NDIM;i++)
|
---|
697 | *vrmlfile << Walker->node->x[i]-center->x[i] << " ";
|
---|
698 | *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
699 | cloud->GoToNext();
|
---|
700 | }
|
---|
701 |
|
---|
702 | *vrmlfile << "# All tesselation triangles" << endl;
|
---|
703 | for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
704 | *vrmlfile << "1" << endl << " "; // 1 is triangle type
|
---|
705 | for (i=0;i<3;i++) { // print each node
|
---|
706 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
707 | *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
|
---|
708 | *vrmlfile << "\t";
|
---|
709 | }
|
---|
710 | *vrmlfile << "1. 0. 0." << endl; // red as colour
|
---|
711 | *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
712 | }
|
---|
713 | } else {
|
---|
714 | cerr << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;
|
---|
715 | }
|
---|
716 | delete(center);
|
---|
717 | };
|
---|
718 |
|
---|
719 | /** Writes additionally the current sphere (i.e. the last triangle to file).
|
---|
720 | * \param *out output stream for debugging
|
---|
721 | * \param *rasterfile output stream for tecplot data
|
---|
722 | * \param *Tess Tesselation structure with constructed triangles
|
---|
723 | * \param *mol molecule structure with atom positions
|
---|
724 | */
|
---|
725 | void IncludeSphereinRaster3D(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, PointCloud *cloud)
|
---|
726 | {
|
---|
727 | Vector helper;
|
---|
728 | // include the current position of the virtual sphere in the temporary raster3d file
|
---|
729 | Vector *center = cloud->GetCenter(out);
|
---|
730 | // make the circumsphere's center absolute again
|
---|
731 | helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node);
|
---|
732 | helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node);
|
---|
733 | helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node);
|
---|
734 | helper.Scale(1./3.);
|
---|
735 | helper.SubtractVector(center);
|
---|
736 | // and add to file plus translucency object
|
---|
737 | *rasterfile << "# current virtual sphere\n";
|
---|
738 | *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
|
---|
739 | *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n";
|
---|
740 | *rasterfile << "9\n terminating special property\n";
|
---|
741 | delete(center);
|
---|
742 | };
|
---|
743 |
|
---|
744 | /** Creates the objects in a raster3d file (renderable with a header.r3d).
|
---|
745 | * \param *out output stream for debugging
|
---|
746 | * \param *rasterfile output stream for tecplot data
|
---|
747 | * \param *Tess Tesselation structure with constructed triangles
|
---|
748 | * \param *mol molecule structure with atom positions
|
---|
749 | */
|
---|
750 | void WriteRaster3dFile(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, PointCloud *cloud)
|
---|
751 | {
|
---|
752 | TesselPoint *Walker = NULL;
|
---|
753 | int i;
|
---|
754 | Vector *center = cloud->GetCenter(out);
|
---|
755 | if (rasterfile != NULL) {
|
---|
756 | //cout << Verbose(1) << "Writing Raster3D file ... ";
|
---|
757 | *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
|
---|
758 | *rasterfile << "@header.r3d" << endl;
|
---|
759 | *rasterfile << "# All atoms as spheres" << endl;
|
---|
760 | cloud->GoToFirst();
|
---|
761 | while (!cloud->IsEnd()) {
|
---|
762 | Walker = cloud->GetPoint();
|
---|
763 | *rasterfile << "2" << endl << " "; // 2 is sphere type
|
---|
764 | for (i=0;i<NDIM;i++)
|
---|
765 | *rasterfile << Walker->node->x[i]-center->x[i] << " ";
|
---|
766 | *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
767 | cloud->GoToNext();
|
---|
768 | }
|
---|
769 |
|
---|
770 | *rasterfile << "# All tesselation triangles" << endl;
|
---|
771 | *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
|
---|
772 | for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
773 | *rasterfile << "1" << endl << " "; // 1 is triangle type
|
---|
774 | for (i=0;i<3;i++) { // print each node
|
---|
775 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
776 | *rasterfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
|
---|
777 | *rasterfile << "\t";
|
---|
778 | }
|
---|
779 | *rasterfile << "1. 0. 0." << endl; // red as colour
|
---|
780 | //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
781 | }
|
---|
782 | *rasterfile << "9\n# terminating special property\n";
|
---|
783 | } else {
|
---|
784 | cerr << "ERROR: Given rasterfile is " << rasterfile << "." << endl;
|
---|
785 | }
|
---|
786 | IncludeSphereinRaster3D(out, rasterfile, Tess, cloud);
|
---|
787 | delete(center);
|
---|
788 | };
|
---|
789 |
|
---|
790 | /** This function creates the tecplot file, displaying the tesselation of the hull.
|
---|
791 | * \param *out output stream for debugging
|
---|
792 | * \param *tecplot output stream for tecplot data
|
---|
793 | * \param N arbitrary number to differentiate various zones in the tecplot format
|
---|
794 | */
|
---|
795 | void WriteTecplotFile(ofstream *out, ofstream *tecplot, class Tesselation *TesselStruct, PointCloud *cloud, int N)
|
---|
796 | {
|
---|
797 | if ((tecplot != NULL) && (TesselStruct != NULL)) {
|
---|
798 | // write header
|
---|
799 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
800 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
|
---|
801 | *tecplot << "ZONE T=\"" << N << "-";
|
---|
802 | for (int i=0;i<3;i++)
|
---|
803 | *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name;
|
---|
804 | *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
805 | int i=0;
|
---|
806 | for (cloud->GoToFirst(); !cloud->IsEnd(); cloud->GoToNext(), i++);
|
---|
807 | int *LookupList = new int[i];
|
---|
808 | for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++)
|
---|
809 | LookupList[i] = -1;
|
---|
810 |
|
---|
811 | // print atom coordinates
|
---|
812 | *out << Verbose(2) << "The following triangles were created:";
|
---|
813 | int Counter = 1;
|
---|
814 | TesselPoint *Walker = NULL;
|
---|
815 | for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
|
---|
816 | Walker = target->second->node;
|
---|
817 | LookupList[Walker->nr] = Counter++;
|
---|
818 | *tecplot << Walker->node->x[0] << " " << Walker->node->x[1] << " " << Walker->node->x[2] << " " << target->second->value << endl;
|
---|
819 | }
|
---|
820 | *tecplot << endl;
|
---|
821 | // print connectivity
|
---|
822 | for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
|
---|
823 | *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
|
---|
824 | *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
825 | }
|
---|
826 | delete[] (LookupList);
|
---|
827 | *out << endl;
|
---|
828 | }
|
---|
829 | };
|
---|