[357fba] | 1 | /*
|
---|
| 2 | * TesselationHelpers.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Aug 3, 2009
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[f66195] | 8 | #include <fstream>
|
---|
| 9 |
|
---|
[f67b6e] | 10 | #include "info.hpp"
|
---|
[f66195] | 11 | #include "linkedcell.hpp"
|
---|
[e138de] | 12 | #include "log.hpp"
|
---|
[f66195] | 13 | #include "tesselation.hpp"
|
---|
[357fba] | 14 | #include "tesselationhelpers.hpp"
|
---|
[f66195] | 15 | #include "vector.hpp"
|
---|
[0a4f7f] | 16 | #include "vector_ops.hpp"
|
---|
[f66195] | 17 | #include "verbose.hpp"
|
---|
[d4c9ae] | 18 | #include "Plane.hpp"
|
---|
[357fba] | 19 |
|
---|
[f67b6e] | 20 | double DetGet(gsl_matrix * const A, const int inPlace)
|
---|
| 21 | {
|
---|
| 22 | Info FunctionInfo(__func__);
|
---|
[357fba] | 23 | /*
|
---|
| 24 | inPlace = 1 => A is replaced with the LU decomposed copy.
|
---|
| 25 | inPlace = 0 => A is retained, and a copy is used for LU.
|
---|
| 26 | */
|
---|
| 27 |
|
---|
| 28 | double det;
|
---|
| 29 | int signum;
|
---|
| 30 | gsl_permutation *p = gsl_permutation_alloc(A->size1);
|
---|
[24a5e0] | 31 | gsl_matrix *tmpA=0;
|
---|
[357fba] | 32 |
|
---|
| 33 | if (inPlace)
|
---|
| 34 | tmpA = A;
|
---|
| 35 | else {
|
---|
| 36 | gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
|
---|
| 37 | gsl_matrix_memcpy(tmpA , A);
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 |
|
---|
| 41 | gsl_linalg_LU_decomp(tmpA , p , &signum);
|
---|
| 42 | det = gsl_linalg_LU_det(tmpA , signum);
|
---|
| 43 | gsl_permutation_free(p);
|
---|
| 44 | if (! inPlace)
|
---|
| 45 | gsl_matrix_free(tmpA);
|
---|
| 46 |
|
---|
| 47 | return det;
|
---|
| 48 | };
|
---|
| 49 |
|
---|
[c0f6c6] | 50 | void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
|
---|
[357fba] | 51 | {
|
---|
[f67b6e] | 52 | Info FunctionInfo(__func__);
|
---|
[357fba] | 53 | gsl_matrix *A = gsl_matrix_calloc(3,3);
|
---|
| 54 | double m11, m12, m13, m14;
|
---|
| 55 |
|
---|
| 56 | for(int i=0;i<3;i++) {
|
---|
[0a4f7f] | 57 | gsl_matrix_set(A, i, 0, a[i]);
|
---|
| 58 | gsl_matrix_set(A, i, 1, b[i]);
|
---|
| 59 | gsl_matrix_set(A, i, 2, c[i]);
|
---|
[357fba] | 60 | }
|
---|
[f1cccd] | 61 | m11 = DetGet(A, 1);
|
---|
[357fba] | 62 |
|
---|
| 63 | for(int i=0;i<3;i++) {
|
---|
[0a4f7f] | 64 | gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
|
---|
| 65 | gsl_matrix_set(A, i, 1, b[i]);
|
---|
| 66 | gsl_matrix_set(A, i, 2, c[i]);
|
---|
[357fba] | 67 | }
|
---|
[f1cccd] | 68 | m12 = DetGet(A, 1);
|
---|
[357fba] | 69 |
|
---|
| 70 | for(int i=0;i<3;i++) {
|
---|
[0a4f7f] | 71 | gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
|
---|
| 72 | gsl_matrix_set(A, i, 1, a[i]);
|
---|
| 73 | gsl_matrix_set(A, i, 2, c[i]);
|
---|
[357fba] | 74 | }
|
---|
[f1cccd] | 75 | m13 = DetGet(A, 1);
|
---|
[357fba] | 76 |
|
---|
| 77 | for(int i=0;i<3;i++) {
|
---|
[0a4f7f] | 78 | gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
|
---|
| 79 | gsl_matrix_set(A, i, 1, a[i]);
|
---|
| 80 | gsl_matrix_set(A, i, 2, b[i]);
|
---|
[357fba] | 81 | }
|
---|
[f1cccd] | 82 | m14 = DetGet(A, 1);
|
---|
[357fba] | 83 |
|
---|
| 84 | if (fabs(m11) < MYEPSILON)
|
---|
[58ed4a] | 85 | DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl);
|
---|
[357fba] | 86 |
|
---|
[0a4f7f] | 87 | center->at(0) = 0.5 * m12/ m11;
|
---|
| 88 | center->at(1) = -0.5 * m13/ m11;
|
---|
| 89 | center->at(2) = 0.5 * m14/ m11;
|
---|
[357fba] | 90 |
|
---|
[1513a74] | 91 | if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
|
---|
| 92 | DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS." << endl);
|
---|
[357fba] | 93 |
|
---|
| 94 | gsl_matrix_free(A);
|
---|
| 95 | };
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | /**
|
---|
| 100 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
| 101 | * @param Center this vector will be used for return
|
---|
| 102 | * @param a vector first point of triangle
|
---|
| 103 | * @param b vector second point of triangle
|
---|
| 104 | * @param c vector third point of triangle
|
---|
[c0f6c6] | 105 | * @param *Umkreismittelpunkt new center point of circumference
|
---|
[357fba] | 106 | * @param Direction vector indicates up/down
|
---|
[c0f6c6] | 107 | * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
|
---|
[357fba] | 108 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
[c0f6c6] | 109 | * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
[357fba] | 110 | * @param alpha double angle at a
|
---|
| 111 | * @param beta double, angle at b
|
---|
| 112 | * @param gamma, double, angle at c
|
---|
| 113 | * @param Radius, double
|
---|
| 114 | * @param Umkreisradius double radius of circumscribing circle
|
---|
| 115 | */
|
---|
[c0f6c6] | 116 | void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
|
---|
| 117 | const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
|
---|
[357fba] | 118 | {
|
---|
[f67b6e] | 119 | Info FunctionInfo(__func__);
|
---|
[357fba] | 120 | Vector TempNormal, helper;
|
---|
| 121 | double Restradius;
|
---|
| 122 | Vector OtherCenter;
|
---|
| 123 | Center->Zero();
|
---|
[273382] | 124 | helper = sin(2.*alpha) * a;
|
---|
| 125 | (*Center) += helper;
|
---|
| 126 | helper = sin(2.*beta) * b;
|
---|
| 127 | (*Center) += helper;
|
---|
| 128 | helper = sin(2.*gamma) * c;
|
---|
| 129 | (*Center) += helper;
|
---|
[357fba] | 130 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
| 131 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
[273382] | 132 | (*NewUmkreismittelpunkt) = (*Center);
|
---|
[a67d19] | 133 | DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n");
|
---|
[357fba] | 134 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
[a67d19] | 135 | DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n");
|
---|
[357fba] | 136 |
|
---|
[273382] | 137 | TempNormal = a - b;
|
---|
| 138 | helper = a - c;
|
---|
| 139 | TempNormal.VectorProduct(helper);
|
---|
[357fba] | 140 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
| 141 | {
|
---|
[273382] | 142 | if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
|
---|
[357fba] | 143 | {
|
---|
[273382] | 144 | TempNormal *= -1;
|
---|
[357fba] | 145 | }
|
---|
| 146 | }
|
---|
| 147 | else
|
---|
| 148 | {
|
---|
[273382] | 149 | if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
|
---|
[357fba] | 150 | {
|
---|
[273382] | 151 | TempNormal *= -1;
|
---|
[357fba] | 152 | }
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | TempNormal.Normalize();
|
---|
| 156 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
[a67d19] | 157 | DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n");
|
---|
[357fba] | 158 | TempNormal.Scale(Restradius);
|
---|
[a67d19] | 159 | DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n");
|
---|
[273382] | 160 | (*Center) += TempNormal;
|
---|
[a67d19] | 161 | DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n");
|
---|
[f1cccd] | 162 | GetSphere(&OtherCenter, a, b, c, RADIUS);
|
---|
[a67d19] | 163 | DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n");
|
---|
[357fba] | 164 | };
|
---|
| 165 |
|
---|
| 166 |
|
---|
| 167 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
| 168 | * \param *Center new center on return
|
---|
| 169 | * \param *a first point
|
---|
| 170 | * \param *b second point
|
---|
| 171 | * \param *c third point
|
---|
| 172 | */
|
---|
[c0f6c6] | 173 | void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
|
---|
[357fba] | 174 | {
|
---|
[f67b6e] | 175 | Info FunctionInfo(__func__);
|
---|
[357fba] | 176 | Vector helper;
|
---|
| 177 | double alpha, beta, gamma;
|
---|
[273382] | 178 | Vector SideA = b - c;
|
---|
| 179 | Vector SideB = c - a;
|
---|
| 180 | Vector SideC = a - b;
|
---|
| 181 | alpha = M_PI - SideB.Angle(SideC);
|
---|
| 182 | beta = M_PI - SideC.Angle(SideA);
|
---|
| 183 | gamma = M_PI - SideA.Angle(SideB);
|
---|
[f67b6e] | 184 | //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
|
---|
[e359a8] | 185 | if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
|
---|
[299554] | 186 | DoeLog(2) && (eLog()<< Verbose(2) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl);
|
---|
[e359a8] | 187 | }
|
---|
[357fba] | 188 |
|
---|
| 189 | Center->Zero();
|
---|
[273382] | 190 | helper = sin(2.*alpha) * a;
|
---|
| 191 | (*Center) += helper;
|
---|
| 192 | helper = sin(2.*beta) * b;
|
---|
| 193 | (*Center) += helper;
|
---|
| 194 | helper = sin(2.*gamma) * c;
|
---|
| 195 | (*Center) += helper;
|
---|
[357fba] | 196 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
| 197 | };
|
---|
| 198 |
|
---|
| 199 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
| 200 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
| 201 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
| 202 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
| 203 | * \param CircleCenter Center of the parameter circle
|
---|
| 204 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
| 205 | * \param CircleRadius radius of the parameter circle
|
---|
| 206 | * \param NewSphereCenter new center of a circumcircle
|
---|
| 207 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
| 208 | * \param NormalVector normal vector
|
---|
| 209 | * \param SearchDirection search direction to make angle unique on return.
|
---|
| 210 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
| 211 | */
|
---|
[c0f6c6] | 212 | double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
|
---|
[357fba] | 213 | {
|
---|
[f67b6e] | 214 | Info FunctionInfo(__func__);
|
---|
[357fba] | 215 | Vector helper;
|
---|
| 216 | double radius, alpha;
|
---|
[273382] | 217 |
|
---|
| 218 | Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
|
---|
| 219 | Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
|
---|
| 220 | helper = RelativeNewSphereCenter;
|
---|
[357fba] | 221 | // test whether new center is on the parameter circle's plane
|
---|
[273382] | 222 | if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
|
---|
[8cbb97] | 223 | DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!" << endl);
|
---|
[273382] | 224 | helper.ProjectOntoPlane(CirclePlaneNormal);
|
---|
[357fba] | 225 | }
|
---|
[b998c3] | 226 | radius = helper.NormSquared();
|
---|
[357fba] | 227 | // test whether the new center vector has length of CircleRadius
|
---|
| 228 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
[58ed4a] | 229 | DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
|
---|
[273382] | 230 | alpha = helper.Angle(RelativeOldSphereCenter);
|
---|
[357fba] | 231 | // make the angle unique by checking the halfplanes/search direction
|
---|
[273382] | 232 | if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
[357fba] | 233 | alpha = 2.*M_PI - alpha;
|
---|
[a67d19] | 234 | DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl);
|
---|
[1513a74] | 235 | radius = helper.distance(RelativeOldSphereCenter);
|
---|
[273382] | 236 | helper.ProjectOntoPlane(NormalVector);
|
---|
[357fba] | 237 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
| 238 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
[a67d19] | 239 | DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl);
|
---|
[357fba] | 240 | return alpha;
|
---|
| 241 | } else {
|
---|
[a67d19] | 242 | DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl);
|
---|
[357fba] | 243 | return 2.*M_PI;
|
---|
| 244 | }
|
---|
| 245 | };
|
---|
| 246 |
|
---|
| 247 | struct Intersection {
|
---|
| 248 | Vector x1;
|
---|
| 249 | Vector x2;
|
---|
| 250 | Vector x3;
|
---|
| 251 | Vector x4;
|
---|
| 252 | };
|
---|
| 253 |
|
---|
| 254 | /**
|
---|
| 255 | * Intersection calculation function.
|
---|
| 256 | *
|
---|
| 257 | * @param x to find the result for
|
---|
| 258 | * @param function parameter
|
---|
| 259 | */
|
---|
| 260 | double MinIntersectDistance(const gsl_vector * x, void *params)
|
---|
| 261 | {
|
---|
[f67b6e] | 262 | Info FunctionInfo(__func__);
|
---|
[357fba] | 263 | double retval = 0;
|
---|
| 264 | struct Intersection *I = (struct Intersection *)params;
|
---|
| 265 | Vector intersection;
|
---|
| 266 | for (int i=0;i<NDIM;i++)
|
---|
[0a4f7f] | 267 | intersection[i] = gsl_vector_get(x, i);
|
---|
[357fba] | 268 |
|
---|
[273382] | 269 | Vector SideA = I->x1 -I->x2 ;
|
---|
| 270 | Vector HeightA = intersection - I->x1;
|
---|
| 271 | HeightA.ProjectOntoPlane(SideA);
|
---|
[357fba] | 272 |
|
---|
[273382] | 273 | Vector SideB = I->x3 - I->x4;
|
---|
| 274 | Vector HeightB = intersection - I->x3;
|
---|
| 275 | HeightB.ProjectOntoPlane(SideB);
|
---|
[357fba] | 276 |
|
---|
[273382] | 277 | retval = HeightA.ScalarProduct(HeightA) + HeightB.ScalarProduct(HeightB);
|
---|
[f67b6e] | 278 | //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
|
---|
[357fba] | 279 |
|
---|
| 280 | return retval;
|
---|
| 281 | };
|
---|
| 282 |
|
---|
| 283 |
|
---|
| 284 | /**
|
---|
| 285 | * Calculates whether there is an intersection between two lines. The first line
|
---|
| 286 | * always goes through point 1 and point 2 and the second line is given by the
|
---|
| 287 | * connection between point 4 and point 5.
|
---|
| 288 | *
|
---|
| 289 | * @param point 1 of line 1
|
---|
| 290 | * @param point 2 of line 1
|
---|
| 291 | * @param point 1 of line 2
|
---|
| 292 | * @param point 2 of line 2
|
---|
| 293 | *
|
---|
| 294 | * @return true if there is an intersection between the given lines, false otherwise
|
---|
| 295 | */
|
---|
[c0f6c6] | 296 | bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
|
---|
[357fba] | 297 | {
|
---|
[f67b6e] | 298 | Info FunctionInfo(__func__);
|
---|
[357fba] | 299 | bool result;
|
---|
| 300 |
|
---|
| 301 | struct Intersection par;
|
---|
[273382] | 302 | par.x1 = point1;
|
---|
| 303 | par.x2 = point2;
|
---|
| 304 | par.x3 = point3;
|
---|
| 305 | par.x4 = point4;
|
---|
[357fba] | 306 |
|
---|
| 307 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 308 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 309 | gsl_vector *ss, *x;
|
---|
[f1cccd] | 310 | gsl_multimin_function minexFunction;
|
---|
[357fba] | 311 |
|
---|
| 312 | size_t iter = 0;
|
---|
| 313 | int status;
|
---|
| 314 | double size;
|
---|
| 315 |
|
---|
| 316 | /* Starting point */
|
---|
| 317 | x = gsl_vector_alloc(NDIM);
|
---|
[0a4f7f] | 318 | gsl_vector_set(x, 0, point1[0]);
|
---|
| 319 | gsl_vector_set(x, 1, point1[1]);
|
---|
| 320 | gsl_vector_set(x, 2, point1[2]);
|
---|
[357fba] | 321 |
|
---|
| 322 | /* Set initial step sizes to 1 */
|
---|
| 323 | ss = gsl_vector_alloc(NDIM);
|
---|
| 324 | gsl_vector_set_all(ss, 1.0);
|
---|
| 325 |
|
---|
| 326 | /* Initialize method and iterate */
|
---|
[f1cccd] | 327 | minexFunction.n = NDIM;
|
---|
| 328 | minexFunction.f = &MinIntersectDistance;
|
---|
| 329 | minexFunction.params = (void *)∥
|
---|
[357fba] | 330 |
|
---|
| 331 | s = gsl_multimin_fminimizer_alloc(T, NDIM);
|
---|
[f1cccd] | 332 | gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
|
---|
[357fba] | 333 |
|
---|
| 334 | do {
|
---|
| 335 | iter++;
|
---|
| 336 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 337 |
|
---|
| 338 | if (status) {
|
---|
| 339 | break;
|
---|
| 340 | }
|
---|
| 341 |
|
---|
| 342 | size = gsl_multimin_fminimizer_size(s);
|
---|
| 343 | status = gsl_multimin_test_size(size, 1e-2);
|
---|
| 344 |
|
---|
| 345 | if (status == GSL_SUCCESS) {
|
---|
[a67d19] | 346 | DoLog(1) && (Log() << Verbose(1) << "converged to minimum" << endl);
|
---|
[357fba] | 347 | }
|
---|
| 348 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
| 349 |
|
---|
| 350 | // check whether intersection is in between or not
|
---|
[273382] | 351 | Vector intersection;
|
---|
[357fba] | 352 | double t1, t2;
|
---|
| 353 | for (int i = 0; i < NDIM; i++) {
|
---|
[0a4f7f] | 354 | intersection[i] = gsl_vector_get(s->x, i);
|
---|
[357fba] | 355 | }
|
---|
| 356 |
|
---|
[273382] | 357 | Vector SideA = par.x2 - par.x1;
|
---|
| 358 | Vector HeightA = intersection - par.x1;
|
---|
[357fba] | 359 |
|
---|
[273382] | 360 | t1 = HeightA.ScalarProduct(SideA)/SideA.ScalarProduct(SideA);
|
---|
[357fba] | 361 |
|
---|
[273382] | 362 | Vector SideB = par.x4 - par.x3;
|
---|
| 363 | Vector HeightB = intersection - par.x3;
|
---|
[357fba] | 364 |
|
---|
[273382] | 365 | t2 = HeightB.ScalarProduct(SideB)/SideB.ScalarProduct(SideB);
|
---|
[357fba] | 366 |
|
---|
[f67b6e] | 367 | Log() << Verbose(1) << "Intersection " << intersection << " is at "
|
---|
[357fba] | 368 | << t1 << " for (" << point1 << "," << point2 << ") and at "
|
---|
| 369 | << t2 << " for (" << point3 << "," << point4 << "): ";
|
---|
| 370 |
|
---|
| 371 | if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
|
---|
[a67d19] | 372 | DoLog(1) && (Log() << Verbose(1) << "true intersection." << endl);
|
---|
[357fba] | 373 | result = true;
|
---|
| 374 | } else {
|
---|
[a67d19] | 375 | DoLog(1) && (Log() << Verbose(1) << "intersection out of region of interest." << endl);
|
---|
[357fba] | 376 | result = false;
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | // free minimizer stuff
|
---|
| 380 | gsl_vector_free(x);
|
---|
| 381 | gsl_vector_free(ss);
|
---|
| 382 | gsl_multimin_fminimizer_free(s);
|
---|
| 383 |
|
---|
| 384 | return result;
|
---|
[91e7e4a] | 385 | };
|
---|
| 386 |
|
---|
[57066a] | 387 | /** Gets the angle between a point and a reference relative to the provided center.
|
---|
| 388 | * We have two shanks point and reference between which the angle is calculated
|
---|
| 389 | * and by scalar product with OrthogonalVector we decide the interval.
|
---|
| 390 | * @param point to calculate the angle for
|
---|
| 391 | * @param reference to which to calculate the angle
|
---|
| 392 | * @param OrthogonalVector points in direction of [pi,2pi] interval
|
---|
| 393 | *
|
---|
| 394 | * @return angle between point and reference
|
---|
| 395 | */
|
---|
[c0f6c6] | 396 | double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
|
---|
[57066a] | 397 | {
|
---|
[f67b6e] | 398 | Info FunctionInfo(__func__);
|
---|
[57066a] | 399 | if (reference.IsZero())
|
---|
| 400 | return M_PI;
|
---|
| 401 |
|
---|
| 402 | // calculate both angles and correct with in-plane vector
|
---|
| 403 | if (point.IsZero())
|
---|
| 404 | return M_PI;
|
---|
[273382] | 405 | double phi = point.Angle(reference);
|
---|
| 406 | if (OrthogonalVector.ScalarProduct(point) > 0) {
|
---|
[57066a] | 407 | phi = 2.*M_PI - phi;
|
---|
| 408 | }
|
---|
| 409 |
|
---|
[a67d19] | 410 | DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl);
|
---|
[57066a] | 411 |
|
---|
| 412 | return phi;
|
---|
| 413 | }
|
---|
| 414 |
|
---|
[91e7e4a] | 415 |
|
---|
| 416 | /** Calculates the volume of a general tetraeder.
|
---|
| 417 | * \param *a first vector
|
---|
| 418 | * \param *a first vector
|
---|
| 419 | * \param *a first vector
|
---|
| 420 | * \param *a first vector
|
---|
| 421 | * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
|
---|
| 422 | */
|
---|
[c0f6c6] | 423 | double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
|
---|
[91e7e4a] | 424 | {
|
---|
[f67b6e] | 425 | Info FunctionInfo(__func__);
|
---|
[91e7e4a] | 426 | Vector Point, TetraederVector[3];
|
---|
| 427 | double volume;
|
---|
| 428 |
|
---|
[1bd79e] | 429 | TetraederVector[0] = a;
|
---|
| 430 | TetraederVector[1] = b;
|
---|
| 431 | TetraederVector[2] = c;
|
---|
[91e7e4a] | 432 | for (int j=0;j<3;j++)
|
---|
[273382] | 433 | TetraederVector[j].SubtractVector(d);
|
---|
[1bd79e] | 434 | Point = TetraederVector[0];
|
---|
[273382] | 435 | Point.VectorProduct(TetraederVector[1]);
|
---|
| 436 | volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
|
---|
[91e7e4a] | 437 | return volume;
|
---|
| 438 | };
|
---|
[357fba] | 439 |
|
---|
[57066a] | 440 |
|
---|
| 441 | /** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
|
---|
| 442 | * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
|
---|
| 443 | * make it bigger (i.e. closing one (the baseline) and opening two new ones).
|
---|
| 444 | * \param TPS[3] nodes of the triangle
|
---|
| 445 | * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
|
---|
| 446 | */
|
---|
[c0f6c6] | 447 | bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
|
---|
[57066a] | 448 | {
|
---|
[f67b6e] | 449 | Info FunctionInfo(__func__);
|
---|
[57066a] | 450 | bool result = false;
|
---|
| 451 | int counter = 0;
|
---|
| 452 |
|
---|
| 453 | // check all three points
|
---|
| 454 | for (int i=0;i<3;i++)
|
---|
| 455 | for (int j=i+1; j<3; j++) {
|
---|
[f1ef60a] | 456 | if (nodes[i] == NULL) {
|
---|
[a67d19] | 457 | DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl);
|
---|
[f1ef60a] | 458 | result = true;
|
---|
| 459 | } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
|
---|
[776b64] | 460 | LineMap::const_iterator FindLine;
|
---|
| 461 | pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
|
---|
[57066a] | 462 | FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
|
---|
| 463 | for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
|
---|
| 464 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
| 465 | if (FindLine->second->triangles.size() < 2) {
|
---|
| 466 | counter++;
|
---|
| 467 | break; // increase counter only once per edge
|
---|
| 468 | }
|
---|
| 469 | }
|
---|
| 470 | } else { // no line
|
---|
[a67d19] | 471 | DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl);
|
---|
[57066a] | 472 | result = true;
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 | if ((!result) && (counter > 1)) {
|
---|
[a67d19] | 476 | DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl);
|
---|
[57066a] | 477 | result = true;
|
---|
| 478 | }
|
---|
| 479 | return result;
|
---|
| 480 | };
|
---|
| 481 |
|
---|
| 482 |
|
---|
[f67b6e] | 483 | ///** Sort function for the candidate list.
|
---|
| 484 | // */
|
---|
| 485 | //bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
|
---|
| 486 | //{
|
---|
| 487 | // Info FunctionInfo(__func__);
|
---|
| 488 | // Vector BaseLineVector, OrthogonalVector, helper;
|
---|
| 489 | // if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
|
---|
[58ed4a] | 490 | // DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl);
|
---|
[f67b6e] | 491 | // //return false;
|
---|
| 492 | // exit(1);
|
---|
| 493 | // }
|
---|
| 494 | // // create baseline vector
|
---|
| 495 | // BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
|
---|
| 496 | // BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 497 | // BaseLineVector.Normalize();
|
---|
| 498 | //
|
---|
| 499 | // // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
|
---|
| 500 | // helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 501 | // helper.SubtractVector(candidate1->point->node);
|
---|
| 502 | // OrthogonalVector.CopyVector(&helper);
|
---|
| 503 | // helper.VectorProduct(&BaseLineVector);
|
---|
| 504 | // OrthogonalVector.SubtractVector(&helper);
|
---|
| 505 | // OrthogonalVector.Normalize();
|
---|
| 506 | //
|
---|
| 507 | // // calculate both angles and correct with in-plane vector
|
---|
| 508 | // helper.CopyVector(candidate1->point->node);
|
---|
| 509 | // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 510 | // double phi = BaseLineVector.Angle(&helper);
|
---|
| 511 | // if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 512 | // phi = 2.*M_PI - phi;
|
---|
| 513 | // }
|
---|
| 514 | // helper.CopyVector(candidate2->point->node);
|
---|
| 515 | // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 516 | // double psi = BaseLineVector.Angle(&helper);
|
---|
| 517 | // if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 518 | // psi = 2.*M_PI - psi;
|
---|
| 519 | // }
|
---|
| 520 | //
|
---|
| 521 | // Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
|
---|
| 522 | // Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
|
---|
| 523 | //
|
---|
| 524 | // // return comparison
|
---|
| 525 | // return phi < psi;
|
---|
| 526 | //};
|
---|
[57066a] | 527 |
|
---|
| 528 | /**
|
---|
| 529 | * Finds the point which is second closest to the provided one.
|
---|
| 530 | *
|
---|
| 531 | * @param Point to which to find the second closest other point
|
---|
| 532 | * @param linked cell structure
|
---|
| 533 | *
|
---|
| 534 | * @return point which is second closest to the provided one
|
---|
| 535 | */
|
---|
[71b20e] | 536 | TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC)
|
---|
[57066a] | 537 | {
|
---|
[f67b6e] | 538 | Info FunctionInfo(__func__);
|
---|
[57066a] | 539 | TesselPoint* closestPoint = NULL;
|
---|
| 540 | TesselPoint* secondClosestPoint = NULL;
|
---|
| 541 | double distance = 1e16;
|
---|
| 542 | double secondDistance = 1e16;
|
---|
| 543 | Vector helper;
|
---|
| 544 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 545 |
|
---|
| 546 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 547 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 548 | N[i] = LC->n[i];
|
---|
[a67d19] | 549 | DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
|
---|
[57066a] | 550 |
|
---|
| 551 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
[f67b6e] | 552 | //Log() << Verbose(1) << endl;
|
---|
[57066a] | 553 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 554 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 555 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[734816] | 556 | const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
|
---|
[f67b6e] | 557 | //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
[57066a] | 558 | if (List != NULL) {
|
---|
[734816] | 559 | for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[273382] | 560 | helper = (*Point) - (*(*Runner)->node);
|
---|
[57066a] | 561 | double currentNorm = helper. Norm();
|
---|
| 562 | if (currentNorm < distance) {
|
---|
| 563 | // remember second point
|
---|
| 564 | secondDistance = distance;
|
---|
| 565 | secondClosestPoint = closestPoint;
|
---|
| 566 | // mark down new closest point
|
---|
| 567 | distance = currentNorm;
|
---|
| 568 | closestPoint = (*Runner);
|
---|
[e138de] | 569 | //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
|
---|
[57066a] | 570 | }
|
---|
| 571 | }
|
---|
| 572 | } else {
|
---|
[717e0c] | 573 | eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
[57066a] | 574 | << LC->n[2] << " is invalid!" << endl;
|
---|
| 575 | }
|
---|
| 576 | }
|
---|
| 577 |
|
---|
| 578 | return secondClosestPoint;
|
---|
| 579 | };
|
---|
| 580 |
|
---|
| 581 | /**
|
---|
| 582 | * Finds the point which is closest to the provided one.
|
---|
| 583 | *
|
---|
| 584 | * @param Point to which to find the closest other point
|
---|
| 585 | * @param SecondPoint the second closest other point on return, NULL if none found
|
---|
| 586 | * @param linked cell structure
|
---|
| 587 | *
|
---|
| 588 | * @return point which is closest to the provided one, NULL if none found
|
---|
| 589 | */
|
---|
[71b20e] | 590 | TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
|
---|
[57066a] | 591 | {
|
---|
[f67b6e] | 592 | Info FunctionInfo(__func__);
|
---|
[57066a] | 593 | TesselPoint* closestPoint = NULL;
|
---|
| 594 | SecondPoint = NULL;
|
---|
| 595 | double distance = 1e16;
|
---|
| 596 | double secondDistance = 1e16;
|
---|
| 597 | Vector helper;
|
---|
| 598 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 599 |
|
---|
| 600 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 601 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 602 | N[i] = LC->n[i];
|
---|
[a67d19] | 603 | DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
|
---|
[57066a] | 604 |
|
---|
| 605 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
[f67b6e] | 606 | //Log() << Verbose(1) << endl;
|
---|
[57066a] | 607 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 608 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 609 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[734816] | 610 | const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
|
---|
[f67b6e] | 611 | //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
[57066a] | 612 | if (List != NULL) {
|
---|
[734816] | 613 | for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[273382] | 614 | helper = (*Point) - (*(*Runner)->node);
|
---|
[71b20e] | 615 | double currentNorm = helper.NormSquared();
|
---|
[57066a] | 616 | if (currentNorm < distance) {
|
---|
| 617 | secondDistance = distance;
|
---|
| 618 | SecondPoint = closestPoint;
|
---|
| 619 | distance = currentNorm;
|
---|
| 620 | closestPoint = (*Runner);
|
---|
[f67b6e] | 621 | //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
|
---|
[57066a] | 622 | } else if (currentNorm < secondDistance) {
|
---|
| 623 | secondDistance = currentNorm;
|
---|
| 624 | SecondPoint = (*Runner);
|
---|
[f67b6e] | 625 | //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
|
---|
[57066a] | 626 | }
|
---|
| 627 | }
|
---|
| 628 | } else {
|
---|
[717e0c] | 629 | eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
[57066a] | 630 | << LC->n[2] << " is invalid!" << endl;
|
---|
| 631 | }
|
---|
| 632 | }
|
---|
[a2028e] | 633 | // output
|
---|
| 634 | if (closestPoint != NULL) {
|
---|
[a67d19] | 635 | DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint);
|
---|
[a2028e] | 636 | if (SecondPoint != NULL)
|
---|
[a67d19] | 637 | DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint);
|
---|
| 638 | DoLog(0) && (Log() << Verbose(0) << "." << endl);
|
---|
[a2028e] | 639 | }
|
---|
[57066a] | 640 | return closestPoint;
|
---|
| 641 | };
|
---|
| 642 |
|
---|
| 643 | /** Returns the closest point on \a *Base with respect to \a *OtherBase.
|
---|
| 644 | * \param *out output stream for debugging
|
---|
| 645 | * \param *Base reference line
|
---|
| 646 | * \param *OtherBase other base line
|
---|
| 647 | * \return Vector on reference line that has closest distance
|
---|
| 648 | */
|
---|
[e138de] | 649 | Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
|
---|
[57066a] | 650 | {
|
---|
[f67b6e] | 651 | Info FunctionInfo(__func__);
|
---|
[57066a] | 652 | // construct the plane of the two baselines (i.e. take both their directional vectors)
|
---|
[273382] | 653 | Vector Baseline = (*Base->endpoints[1]->node->node) - (*Base->endpoints[0]->node->node);
|
---|
| 654 | Vector OtherBaseline = (*OtherBase->endpoints[1]->node->node) - (*OtherBase->endpoints[0]->node->node);
|
---|
| 655 | Vector Normal = Baseline;
|
---|
| 656 | Normal.VectorProduct(OtherBaseline);
|
---|
[57066a] | 657 | Normal.Normalize();
|
---|
[a67d19] | 658 | DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl);
|
---|
[57066a] | 659 |
|
---|
| 660 | // project one offset point of OtherBase onto this plane (and add plane offset vector)
|
---|
[273382] | 661 | Vector NewOffset = (*OtherBase->endpoints[0]->node->node) - (*Base->endpoints[0]->node->node);
|
---|
| 662 | NewOffset.ProjectOntoPlane(Normal);
|
---|
| 663 | NewOffset += (*Base->endpoints[0]->node->node);
|
---|
| 664 | Vector NewDirection = NewOffset + OtherBaseline;
|
---|
[57066a] | 665 |
|
---|
| 666 | // calculate the intersection between this projected baseline and Base
|
---|
| 667 | Vector *Intersection = new Vector;
|
---|
[0a4f7f] | 668 | *Intersection = GetIntersectionOfTwoLinesOnPlane(*(Base->endpoints[0]->node->node),
|
---|
| 669 | *(Base->endpoints[1]->node->node),
|
---|
| 670 | NewOffset, NewDirection);
|
---|
[273382] | 671 | Normal = (*Intersection) - (*Base->endpoints[0]->node->node);
|
---|
[8cbb97] | 672 | DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << "." << endl);
|
---|
[57066a] | 673 |
|
---|
| 674 | return Intersection;
|
---|
| 675 | };
|
---|
| 676 |
|
---|
[c4d4df] | 677 | /** Returns the distance to the plane defined by \a *triangle
|
---|
| 678 | * \param *out output stream for debugging
|
---|
| 679 | * \param *x Vector to calculate distance to
|
---|
| 680 | * \param *triangle triangle defining plane
|
---|
| 681 | * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
|
---|
| 682 | */
|
---|
[e138de] | 683 | double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
|
---|
[c4d4df] | 684 | {
|
---|
[f67b6e] | 685 | Info FunctionInfo(__func__);
|
---|
[c4d4df] | 686 | double distance = 0.;
|
---|
| 687 | if (x == NULL) {
|
---|
| 688 | return -1;
|
---|
| 689 | }
|
---|
[d4c9ae] | 690 | distance = x->DistanceToSpace(triangle->getPlane());
|
---|
[c4d4df] | 691 | return distance;
|
---|
| 692 | };
|
---|
[57066a] | 693 |
|
---|
| 694 | /** Creates the objects in a VRML file.
|
---|
| 695 | * \param *out output stream for debugging
|
---|
| 696 | * \param *vrmlfile output stream for tecplot data
|
---|
| 697 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 698 | * \param *mol molecule structure with atom positions
|
---|
| 699 | */
|
---|
[e138de] | 700 | void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
|
---|
[57066a] | 701 | {
|
---|
[f67b6e] | 702 | Info FunctionInfo(__func__);
|
---|
[57066a] | 703 | TesselPoint *Walker = NULL;
|
---|
| 704 | int i;
|
---|
[e138de] | 705 | Vector *center = cloud->GetCenter();
|
---|
[57066a] | 706 | if (vrmlfile != NULL) {
|
---|
[e138de] | 707 | //Log() << Verbose(1) << "Writing Raster3D file ... ";
|
---|
[57066a] | 708 | *vrmlfile << "#VRML V2.0 utf8" << endl;
|
---|
| 709 | *vrmlfile << "#Created by molecuilder" << endl;
|
---|
| 710 | *vrmlfile << "#All atoms as spheres" << endl;
|
---|
| 711 | cloud->GoToFirst();
|
---|
| 712 | while (!cloud->IsEnd()) {
|
---|
| 713 | Walker = cloud->GetPoint();
|
---|
| 714 | *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
|
---|
| 715 | for (i=0;i<NDIM;i++)
|
---|
[0a4f7f] | 716 | *vrmlfile << Walker->node->at(i)-center->at(i) << " ";
|
---|
[57066a] | 717 | *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
| 718 | cloud->GoToNext();
|
---|
| 719 | }
|
---|
| 720 |
|
---|
| 721 | *vrmlfile << "# All tesselation triangles" << endl;
|
---|
[776b64] | 722 | for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[57066a] | 723 | *vrmlfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 724 | for (i=0;i<3;i++) { // print each node
|
---|
| 725 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
[0a4f7f] | 726 | *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j) << " ";
|
---|
[57066a] | 727 | *vrmlfile << "\t";
|
---|
| 728 | }
|
---|
| 729 | *vrmlfile << "1. 0. 0." << endl; // red as colour
|
---|
| 730 | *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 731 | }
|
---|
| 732 | } else {
|
---|
[58ed4a] | 733 | DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl);
|
---|
[57066a] | 734 | }
|
---|
| 735 | delete(center);
|
---|
| 736 | };
|
---|
| 737 |
|
---|
| 738 | /** Writes additionally the current sphere (i.e. the last triangle to file).
|
---|
| 739 | * \param *out output stream for debugging
|
---|
| 740 | * \param *rasterfile output stream for tecplot data
|
---|
| 741 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 742 | * \param *mol molecule structure with atom positions
|
---|
| 743 | */
|
---|
[e138de] | 744 | void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
|
---|
[57066a] | 745 | {
|
---|
[f67b6e] | 746 | Info FunctionInfo(__func__);
|
---|
[57066a] | 747 | Vector helper;
|
---|
[6a7f78c] | 748 |
|
---|
| 749 | if (Tess->LastTriangle != NULL) {
|
---|
| 750 | // include the current position of the virtual sphere in the temporary raster3d file
|
---|
| 751 | Vector *center = cloud->GetCenter();
|
---|
| 752 | // make the circumsphere's center absolute again
|
---|
[273382] | 753 | Vector helper = (1./3.) * ((*Tess->LastTriangle->endpoints[0]->node->node) +
|
---|
| 754 | (*Tess->LastTriangle->endpoints[1]->node->node) +
|
---|
| 755 | (*Tess->LastTriangle->endpoints[2]->node->node));
|
---|
| 756 | helper -= (*center);
|
---|
[6a7f78c] | 757 | // and add to file plus translucency object
|
---|
| 758 | *rasterfile << "# current virtual sphere\n";
|
---|
| 759 | *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
|
---|
[0a4f7f] | 760 | *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
|
---|
[6a7f78c] | 761 | *rasterfile << "9\n terminating special property\n";
|
---|
| 762 | delete(center);
|
---|
| 763 | }
|
---|
[57066a] | 764 | };
|
---|
| 765 |
|
---|
| 766 | /** Creates the objects in a raster3d file (renderable with a header.r3d).
|
---|
| 767 | * \param *out output stream for debugging
|
---|
| 768 | * \param *rasterfile output stream for tecplot data
|
---|
| 769 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 770 | * \param *mol molecule structure with atom positions
|
---|
| 771 | */
|
---|
[e138de] | 772 | void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
|
---|
[57066a] | 773 | {
|
---|
[f67b6e] | 774 | Info FunctionInfo(__func__);
|
---|
[57066a] | 775 | TesselPoint *Walker = NULL;
|
---|
| 776 | int i;
|
---|
[fc9992] | 777 | Vector *center = cloud->GetCenter();
|
---|
[57066a] | 778 | if (rasterfile != NULL) {
|
---|
[e138de] | 779 | //Log() << Verbose(1) << "Writing Raster3D file ... ";
|
---|
[57066a] | 780 | *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
|
---|
| 781 | *rasterfile << "@header.r3d" << endl;
|
---|
| 782 | *rasterfile << "# All atoms as spheres" << endl;
|
---|
| 783 | cloud->GoToFirst();
|
---|
| 784 | while (!cloud->IsEnd()) {
|
---|
| 785 | Walker = cloud->GetPoint();
|
---|
| 786 | *rasterfile << "2" << endl << " "; // 2 is sphere type
|
---|
[15b670] | 787 | for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
|
---|
| 788 | const double tmp = Walker->node->at(j)-center->at(j);
|
---|
| 789 | *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
|
---|
| 790 | }
|
---|
[57066a] | 791 | *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
| 792 | cloud->GoToNext();
|
---|
| 793 | }
|
---|
| 794 |
|
---|
| 795 | *rasterfile << "# All tesselation triangles" << endl;
|
---|
| 796 | *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
|
---|
[776b64] | 797 | for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[57066a] | 798 | *rasterfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 799 | for (i=0;i<3;i++) { // print each node
|
---|
[15b670] | 800 | for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
|
---|
| 801 | const double tmp = TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j);
|
---|
| 802 | *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
|
---|
| 803 | }
|
---|
[57066a] | 804 | *rasterfile << "\t";
|
---|
| 805 | }
|
---|
| 806 | *rasterfile << "1. 0. 0." << endl; // red as colour
|
---|
| 807 | //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 808 | }
|
---|
| 809 | *rasterfile << "9\n# terminating special property\n";
|
---|
| 810 | } else {
|
---|
[58ed4a] | 811 | DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl);
|
---|
[57066a] | 812 | }
|
---|
[e138de] | 813 | IncludeSphereinRaster3D(rasterfile, Tess, cloud);
|
---|
[57066a] | 814 | delete(center);
|
---|
| 815 | };
|
---|
| 816 |
|
---|
| 817 | /** This function creates the tecplot file, displaying the tesselation of the hull.
|
---|
| 818 | * \param *out output stream for debugging
|
---|
| 819 | * \param *tecplot output stream for tecplot data
|
---|
| 820 | * \param N arbitrary number to differentiate various zones in the tecplot format
|
---|
| 821 | */
|
---|
[e138de] | 822 | void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
|
---|
[57066a] | 823 | {
|
---|
[f67b6e] | 824 | Info FunctionInfo(__func__);
|
---|
[57066a] | 825 | if ((tecplot != NULL) && (TesselStruct != NULL)) {
|
---|
| 826 | // write header
|
---|
| 827 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
| 828 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
|
---|
[6a7f78c] | 829 | *tecplot << "ZONE T=\"";
|
---|
| 830 | if (N < 0) {
|
---|
| 831 | *tecplot << cloud->GetName();
|
---|
| 832 | } else {
|
---|
| 833 | *tecplot << N << "-";
|
---|
[b60a29] | 834 | if (TesselStruct->LastTriangle != NULL) {
|
---|
| 835 | for (int i=0;i<3;i++)
|
---|
[68f03d] | 836 | *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
|
---|
[b60a29] | 837 | } else {
|
---|
| 838 | *tecplot << "none";
|
---|
| 839 | }
|
---|
[6a7f78c] | 840 | }
|
---|
[57066a] | 841 | *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
[15b670] | 842 | const int MaxId=cloud->GetMaxId();
|
---|
| 843 | int *LookupList = new int[MaxId];
|
---|
| 844 | for (int i=0; i< MaxId ; i++){
|
---|
[57066a] | 845 | LookupList[i] = -1;
|
---|
[c72112] | 846 | }
|
---|
[57066a] | 847 |
|
---|
| 848 | // print atom coordinates
|
---|
| 849 | int Counter = 1;
|
---|
| 850 | TesselPoint *Walker = NULL;
|
---|
[c72112] | 851 | for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
|
---|
[57066a] | 852 | Walker = target->second->node;
|
---|
| 853 | LookupList[Walker->nr] = Counter++;
|
---|
[15b670] | 854 | for (int i=0;i<NDIM;i++) {
|
---|
| 855 | const double tmp = Walker->node->at(i);
|
---|
| 856 | *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
|
---|
| 857 | }
|
---|
| 858 | *tecplot << target->second->value << endl;
|
---|
[57066a] | 859 | }
|
---|
| 860 | *tecplot << endl;
|
---|
| 861 | // print connectivity
|
---|
[a67d19] | 862 | DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl);
|
---|
[776b64] | 863 | for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
|
---|
[68f03d] | 864 | DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName() << endl);
|
---|
[57066a] | 865 | *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
| 866 | }
|
---|
| 867 | delete[] (LookupList);
|
---|
| 868 | }
|
---|
| 869 | };
|
---|
[7dea7c] | 870 |
|
---|
| 871 | /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
|
---|
| 872 | * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
|
---|
| 873 | * \param *out output stream for debugging
|
---|
| 874 | * \param *TesselStruct pointer to Tesselation structure
|
---|
| 875 | */
|
---|
[e138de] | 876 | void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
|
---|
[7dea7c] | 877 | {
|
---|
[f67b6e] | 878 | Info FunctionInfo(__func__);
|
---|
[7dea7c] | 879 | class BoundaryPointSet *point = NULL;
|
---|
| 880 | class BoundaryLineSet *line = NULL;
|
---|
| 881 |
|
---|
| 882 | // calculate remaining concavity
|
---|
[776b64] | 883 | for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
|
---|
[7dea7c] | 884 | point = PointRunner->second;
|
---|
[a67d19] | 885 | DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
|
---|
[7dea7c] | 886 | point->value = 0;
|
---|
| 887 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
|
---|
| 888 | line = LineRunner->second;
|
---|
[f67b6e] | 889 | //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
|
---|
[e138de] | 890 | if (!line->CheckConvexityCriterion())
|
---|
[7dea7c] | 891 | point->value += 1;
|
---|
| 892 | }
|
---|
| 893 | }
|
---|
| 894 | };
|
---|
| 895 |
|
---|
| 896 |
|
---|
| 897 | /** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
|
---|
| 898 | * \param *out output stream for debugging
|
---|
| 899 | * \param *TesselStruct
|
---|
| 900 | * \return true - all have exactly two triangles, false - some not, list is printed to screen
|
---|
| 901 | */
|
---|
[e138de] | 902 | bool CheckListOfBaselines(const Tesselation * const TesselStruct)
|
---|
[7dea7c] | 903 | {
|
---|
[f67b6e] | 904 | Info FunctionInfo(__func__);
|
---|
[776b64] | 905 | LineMap::const_iterator testline;
|
---|
[7dea7c] | 906 | bool result = false;
|
---|
| 907 | int counter = 0;
|
---|
| 908 |
|
---|
[a67d19] | 909 | DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl);
|
---|
[7dea7c] | 910 | for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
|
---|
| 911 | if (testline->second->triangles.size() != 2) {
|
---|
[a67d19] | 912 | DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl);
|
---|
[7dea7c] | 913 | counter++;
|
---|
| 914 | }
|
---|
| 915 | }
|
---|
| 916 | if (counter == 0) {
|
---|
[a67d19] | 917 | DoLog(1) && (Log() << Verbose(1) << "None." << endl);
|
---|
[7dea7c] | 918 | result = true;
|
---|
| 919 | }
|
---|
| 920 | return result;
|
---|
| 921 | }
|
---|
| 922 |
|
---|
[262bae] | 923 | /** Counts the number of triangle pairs that contain the given polygon.
|
---|
| 924 | * \param *P polygon with endpoints to look for
|
---|
| 925 | * \param *T set of triangles to create pairs from containing \a *P
|
---|
| 926 | */
|
---|
| 927 | int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
|
---|
| 928 | {
|
---|
| 929 | Info FunctionInfo(__func__);
|
---|
| 930 | // check number of endpoints in *P
|
---|
| 931 | if (P->endpoints.size() != 4) {
|
---|
[58ed4a] | 932 | DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl);
|
---|
[262bae] | 933 | return 0;
|
---|
| 934 | }
|
---|
| 935 |
|
---|
| 936 | // check number of triangles in *T
|
---|
| 937 | if (T->size() < 2) {
|
---|
[58ed4a] | 938 | DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl);
|
---|
[262bae] | 939 | return 0;
|
---|
| 940 | }
|
---|
| 941 |
|
---|
[a67d19] | 942 | DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl);
|
---|
[262bae] | 943 | // create each pair, get the endpoints and check whether *P is contained.
|
---|
| 944 | int counter = 0;
|
---|
| 945 | PointSet Trianglenodes;
|
---|
| 946 | class BoundaryPolygonSet PairTrianglenodes;
|
---|
| 947 | for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
|
---|
| 948 | for (int i=0;i<3;i++)
|
---|
| 949 | Trianglenodes.insert((*Walker)->endpoints[i]);
|
---|
| 950 |
|
---|
| 951 | for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
|
---|
| 952 | if (Walker != PairWalker) { // skip first
|
---|
| 953 | PairTrianglenodes.endpoints = Trianglenodes;
|
---|
| 954 | for (int i=0;i<3;i++)
|
---|
| 955 | PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
|
---|
[856098] | 956 | const int size = PairTrianglenodes.endpoints.size();
|
---|
| 957 | if (size == 4) {
|
---|
[a67d19] | 958 | DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl);
|
---|
[856098] | 959 | // now check
|
---|
| 960 | if (PairTrianglenodes.ContainsPresentTupel(P)) {
|
---|
| 961 | counter++;
|
---|
[a67d19] | 962 | DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl);
|
---|
[856098] | 963 | } else {
|
---|
[a67d19] | 964 | DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl);
|
---|
[856098] | 965 | }
|
---|
[262bae] | 966 | } else {
|
---|
[a67d19] | 967 | DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl);
|
---|
[262bae] | 968 | }
|
---|
| 969 | }
|
---|
| 970 | }
|
---|
[856098] | 971 | Trianglenodes.clear();
|
---|
[262bae] | 972 | }
|
---|
| 973 | return counter;
|
---|
| 974 | };
|
---|
| 975 |
|
---|
| 976 | /** Checks whether two give polygons have two or more points in common.
|
---|
| 977 | * \param *P1 first polygon
|
---|
| 978 | * \param *P2 second polygon
|
---|
| 979 | * \return true - are connected, false = are note
|
---|
| 980 | */
|
---|
| 981 | bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
|
---|
| 982 | {
|
---|
| 983 | Info FunctionInfo(__func__);
|
---|
| 984 | int counter = 0;
|
---|
| 985 | for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
|
---|
| 986 | if (P2->ContainsBoundaryPoint((*Runner))) {
|
---|
| 987 | counter++;
|
---|
[a67d19] | 988 | DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl);
|
---|
[262bae] | 989 | return true;
|
---|
| 990 | }
|
---|
| 991 | }
|
---|
| 992 | return false;
|
---|
| 993 | };
|
---|
| 994 |
|
---|
| 995 | /** Combines second into the first and deletes the second.
|
---|
| 996 | * \param *P1 first polygon, contains all nodes on return
|
---|
| 997 | * \param *&P2 second polygon, is deleted.
|
---|
| 998 | */
|
---|
| 999 | void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
|
---|
| 1000 | {
|
---|
| 1001 | Info FunctionInfo(__func__);
|
---|
[856098] | 1002 | pair <PointSet::iterator, bool> Tester;
|
---|
| 1003 | for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
|
---|
| 1004 | Tester = P1->endpoints.insert((*Runner));
|
---|
| 1005 | if (Tester.second)
|
---|
[a67d19] | 1006 | DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl);
|
---|
[262bae] | 1007 | }
|
---|
| 1008 | P2->endpoints.clear();
|
---|
| 1009 | delete(P2);
|
---|
| 1010 | };
|
---|
| 1011 |
|
---|