source: src/tesselation.cpp@ 54a746

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 54a746 was 54a746, checked in by Frederik Heber <heber@…>, 16 years ago

Incorporation of Unit test on class Vector.

  • new file leastsquaremin.[ch]pp has least square minimisation which is otherwise unclean between classes molecules and Vector

Unit test (later tests rely on good results of earlier ones)

changes to class Vector:

  • Vector::IsNull() -> IsZero()
  • new function Vector::IsOne() similar to IsZero()
  • BUGFIX: Vector::IsNULL() (thx to unit test :)
  • Tesselation::getAngle() changed due to above rename
  • Property mode set to 100644
File size: 126.0 KB
Line 
1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include "tesselation.hpp"
9
10// ======================================== Points on Boundary =================================
11
12/** Constructor of BoundaryPointSet.
13 */
14BoundaryPointSet::BoundaryPointSet()
15{
16 LinesCount = 0;
17 Nr = -1;
18};
19
20/** Constructor of BoundaryPointSet with Tesselpoint.
21 * \param *Walker TesselPoint this boundary point represents
22 */
23BoundaryPointSet::BoundaryPointSet(TesselPoint *Walker)
24{
25 node = Walker;
26 LinesCount = 0;
27 Nr = Walker->nr;
28};
29
30/** Destructor of BoundaryPointSet.
31 * Sets node to NULL to avoid removing the original, represented TesselPoint.
32 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
33 */
34BoundaryPointSet::~BoundaryPointSet()
35{
36 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
37 if (!lines.empty())
38 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
39 node = NULL;
40};
41
42/** Add a line to the LineMap of this point.
43 * \param *line line to add
44 */
45void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
46{
47 cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
48 << endl;
49 if (line->endpoints[0] == this)
50 {
51 lines.insert(LinePair(line->endpoints[1]->Nr, line));
52 }
53 else
54 {
55 lines.insert(LinePair(line->endpoints[0]->Nr, line));
56 }
57 LinesCount++;
58};
59
60/** output operator for BoundaryPointSet.
61 * \param &ost output stream
62 * \param &a boundary point
63 */
64ostream & operator <<(ostream &ost, BoundaryPointSet &a)
65{
66 ost << "[" << a.Nr << "|" << a.node->Name << "]";
67 return ost;
68}
69;
70
71// ======================================== Lines on Boundary =================================
72
73/** Constructor of BoundaryLineSet.
74 */
75BoundaryLineSet::BoundaryLineSet()
76{
77 for (int i = 0; i < 2; i++)
78 endpoints[i] = NULL;
79 Nr = -1;
80};
81
82/** Constructor of BoundaryLineSet with two endpoints.
83 * Adds line automatically to each endpoints' LineMap
84 * \param *Point[2] array of two boundary points
85 * \param number number of the list
86 */
87BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
88{
89 // set number
90 Nr = number;
91 // set endpoints in ascending order
92 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
93 // add this line to the hash maps of both endpoints
94 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
95 Point[1]->AddLine(this); //
96 // clear triangles list
97 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
98};
99
100/** Destructor for BoundaryLineSet.
101 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
102 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
103 */
104BoundaryLineSet::~BoundaryLineSet()
105{
106 int Numbers[2];
107
108 // get other endpoint number of finding copies of same line
109 if (endpoints[1] != NULL)
110 Numbers[0] = endpoints[1]->Nr;
111 else
112 Numbers[0] = -1;
113 if (endpoints[0] != NULL)
114 Numbers[1] = endpoints[0]->Nr;
115 else
116 Numbers[1] = -1;
117
118 for (int i = 0; i < 2; i++) {
119 if (endpoints[i] != NULL) {
120 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
121 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
122 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
123 if ((*Runner).second == this) {
124 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
125 endpoints[i]->lines.erase(Runner);
126 break;
127 }
128 } else { // there's just a single line left
129 if (endpoints[i]->lines.erase(Nr))
130 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
131 }
132 if (endpoints[i]->lines.empty()) {
133 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
134 if (endpoints[i] != NULL) {
135 delete(endpoints[i]);
136 endpoints[i] = NULL;
137 }
138 }
139 }
140 }
141 if (!triangles.empty())
142 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
143};
144
145/** Add triangle to TriangleMap of this boundary line.
146 * \param *triangle to add
147 */
148void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
149{
150 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "."
151 << endl;
152 triangles.insert(TrianglePair(triangle->Nr, triangle));
153};
154
155/** Checks whether we have a common endpoint with given \a *line.
156 * \param *line other line to test
157 * \return true - common endpoint present, false - not connected
158 */
159bool BoundaryLineSet::IsConnectedTo(class BoundaryLineSet *line)
160{
161 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
162 return true;
163 else
164 return false;
165};
166
167/** Checks whether the adjacent triangles of a baseline are convex or not.
168 * We sum the two angles of each normal vector with a ficticious normnal vector from this baselinbe pointing outwards.
169 * If greater/equal M_PI than we are convex.
170 * \param *out output stream for debugging
171 * \return true - triangles are convex, false - concave or less than two triangles connected
172 */
173bool BoundaryLineSet::CheckConvexityCriterion(ofstream *out)
174{
175 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
176 // get the two triangles
177 if (triangles.size() != 2) {
178 *out << Verbose(1) << "ERROR: Baseline " << *this << " is connect to less than two triangles, Tesselation incomplete!" << endl;
179 return false;
180 }
181 // check normal vectors
182 // have a normal vector on the base line pointing outwards
183 *out << Verbose(3) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
184 BaseLineCenter.CopyVector(endpoints[0]->node->node);
185 BaseLineCenter.AddVector(endpoints[1]->node->node);
186 BaseLineCenter.Scale(1./2.);
187 BaseLine.CopyVector(endpoints[0]->node->node);
188 BaseLine.SubtractVector(endpoints[1]->node->node);
189 *out << Verbose(3) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
190
191 BaseLineNormal.Zero();
192 NormalCheck.Zero();
193 double sign = -1.;
194 int i=0;
195 class BoundaryPointSet *node = NULL;
196 for(TriangleMap::iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
197 *out << Verbose(3) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
198 NormalCheck.AddVector(&runner->second->NormalVector);
199 NormalCheck.Scale(sign);
200 sign = -sign;
201 BaseLineNormal.SubtractVector(&runner->second->NormalVector); // we subtract as BaseLineNormal has to point inward in direction of [pi,2pi]
202 node = runner->second->GetThirdEndpoint(this);
203 if (node != NULL) {
204 *out << Verbose(3) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
205 helper[i].CopyVector(node->node->node);
206 helper[i].SubtractVector(&BaseLineCenter);
207 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
208 *out << Verbose(4) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
209 i++;
210 } else {
211 *out << Verbose(2) << "WARNING: I cannot find third node in triangle, something's wrong." << endl;
212 return true;
213 }
214 }
215 *out << Verbose(3) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
216 if (NormalCheck.NormSquared() < MYEPSILON) {
217 *out << Verbose(3) << "Normalvectors of both triangles are the same: convex." << endl;
218 return true;
219 }
220 double angle = getAngle(helper[0], helper[1], BaseLineNormal);
221 if ((angle - M_PI) > -MYEPSILON)
222 return true;
223 else
224 return false;
225}
226
227/** Checks whether point is any of the two endpoints this line contains.
228 * \param *point point to test
229 * \return true - point is of the line, false - is not
230 */
231bool BoundaryLineSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
232{
233 for(int i=0;i<2;i++)
234 if (point == endpoints[i])
235 return true;
236 return false;
237};
238
239/** Returns other endpoint of the line.
240 * \param *point other endpoint
241 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
242 */
243class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(class BoundaryPointSet *point)
244{
245 if (endpoints[0] == point)
246 return endpoints[1];
247 else if (endpoints[1] == point)
248 return endpoints[0];
249 else
250 return NULL;
251};
252
253/** output operator for BoundaryLineSet.
254 * \param &ost output stream
255 * \param &a boundary line
256 */
257ostream & operator <<(ostream &ost, BoundaryLineSet &a)
258{
259 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
260 return ost;
261};
262
263// ======================================== Triangles on Boundary =================================
264
265/** Constructor for BoundaryTriangleSet.
266 */
267BoundaryTriangleSet::BoundaryTriangleSet()
268{
269 for (int i = 0; i < 3; i++)
270 {
271 endpoints[i] = NULL;
272 lines[i] = NULL;
273 }
274 Nr = -1;
275};
276
277/** Constructor for BoundaryTriangleSet with three lines.
278 * \param *line[3] lines that make up the triangle
279 * \param number number of triangle
280 */
281BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
282{
283 // set number
284 Nr = number;
285 // set lines
286 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
287 for (int i = 0; i < 3; i++)
288 {
289 lines[i] = line[i];
290 lines[i]->AddTriangle(this);
291 }
292 // get ascending order of endpoints
293 map<int, class BoundaryPointSet *> OrderMap;
294 for (int i = 0; i < 3; i++)
295 // for all three lines
296 for (int j = 0; j < 2; j++)
297 { // for both endpoints
298 OrderMap.insert(pair<int, class BoundaryPointSet *> (
299 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
300 // and we don't care whether insertion fails
301 }
302 // set endpoints
303 int Counter = 0;
304 cout << Verbose(6) << " with end points ";
305 for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
306 != OrderMap.end(); runner++)
307 {
308 endpoints[Counter] = runner->second;
309 cout << " " << *endpoints[Counter];
310 Counter++;
311 }
312 if (Counter < 3)
313 {
314 cerr << "ERROR! We have a triangle with only two distinct endpoints!"
315 << endl;
316 //exit(1);
317 }
318 cout << "." << endl;
319};
320
321/** Destructor of BoundaryTriangleSet.
322 * Removes itself from each of its lines' LineMap and removes them if necessary.
323 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
324 */
325BoundaryTriangleSet::~BoundaryTriangleSet()
326{
327 for (int i = 0; i < 3; i++) {
328 if (lines[i] != NULL) {
329 if (lines[i]->triangles.erase(Nr))
330 cout << Verbose(5) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
331 if (lines[i]->triangles.empty()) {
332 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
333 delete (lines[i]);
334 lines[i] = NULL;
335 }
336 }
337 }
338 cout << Verbose(5) << "Erasing triangle Nr." << Nr << " itself." << endl;
339};
340
341/** Calculates the normal vector for this triangle.
342 * Is made unique by comparison with \a OtherVector to point in the other direction.
343 * \param &OtherVector direction vector to make normal vector unique.
344 */
345void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
346{
347 // get normal vector
348 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
349
350 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
351 if (NormalVector.Projection(&OtherVector) > 0)
352 NormalVector.Scale(-1.);
353};
354
355/** Finds the point on the triangle \a *BTS the line defined by \a *MolCenter and \a *x crosses through.
356 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
357 * This we test if it's really on the plane and whether it's inside the triangle on the plane or not.
358 * The latter is done as follows: if it's really outside, then for any endpoint of the triangle and it's opposite
359 * base line, the intersection between the line from endpoint to intersection and the base line will have a Vector::NormSquared()
360 * smaller than the first line.
361 * \param *out output stream for debugging
362 * \param *MolCenter offset vector of line
363 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
364 * \param *Intersection intersection on plane on return
365 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
366 */
367bool BoundaryTriangleSet::GetIntersectionInsideTriangle(ofstream *out, Vector *MolCenter, Vector *x, Vector *Intersection)
368{
369 Vector CrossPoint;
370 Vector helper;
371
372 if (!Intersection->GetIntersectionWithPlane(out, &NormalVector, endpoints[0]->node->node, MolCenter, x)) {
373 *out << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;
374 return false;
375 }
376
377 // Calculate cross point between one baseline and the line from the third endpoint to intersection
378 int i=0;
379 do {
380 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(out, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {
381 helper.CopyVector(endpoints[(i+1)%3]->node->node);
382 helper.SubtractVector(endpoints[i%3]->node->node);
383 } else
384 i++;
385 if (i>2)
386 break;
387 } while (CrossPoint.NormSquared() < MYEPSILON);
388 if (i==3) {
389 *out << Verbose(1) << "ERROR: Could not find any cross points, something's utterly wrong here!" << endl;
390 exit(255);
391 }
392 CrossPoint.SubtractVector(endpoints[i%3]->node->node);
393
394 // check whether intersection is inside or not by comparing length of intersection and length of cross point
395 if ((CrossPoint.NormSquared() - helper.NormSquared()) > -MYEPSILON) { // inside
396 return true;
397 } else { // outside!
398 Intersection->Zero();
399 return false;
400 }
401};
402
403/** Checks whether lines is any of the three boundary lines this triangle contains.
404 * \param *line line to test
405 * \return true - line is of the triangle, false - is not
406 */
407bool BoundaryTriangleSet::ContainsBoundaryLine(class BoundaryLineSet *line)
408{
409 for(int i=0;i<3;i++)
410 if (line == lines[i])
411 return true;
412 return false;
413};
414
415/** Checks whether point is any of the three endpoints this triangle contains.
416 * \param *point point to test
417 * \return true - point is of the triangle, false - is not
418 */
419bool BoundaryTriangleSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
420{
421 for(int i=0;i<3;i++)
422 if (point == endpoints[i])
423 return true;
424 return false;
425};
426
427/** Checks whether three given \a *Points coincide with triangle's endpoints.
428 * \param *Points[3] pointer to BoundaryPointSet
429 * \return true - is the very triangle, false - is not
430 */
431bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3])
432{
433 return (((endpoints[0] == Points[0])
434 || (endpoints[0] == Points[1])
435 || (endpoints[0] == Points[2])
436 ) && (
437 (endpoints[1] == Points[0])
438 || (endpoints[1] == Points[1])
439 || (endpoints[1] == Points[2])
440 ) && (
441 (endpoints[2] == Points[0])
442 || (endpoints[2] == Points[1])
443 || (endpoints[2] == Points[2])
444
445 ));
446};
447
448/** Returns the endpoint which is not contained in the given \a *line.
449 * \param *line baseline defining two endpoints
450 * \return pointer third endpoint or NULL if line does not belong to triangle.
451 */
452class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(class BoundaryLineSet *line)
453{
454 // sanity check
455 if (!ContainsBoundaryLine(line))
456 return NULL;
457 for(int i=0;i<3;i++)
458 if (!line->ContainsBoundaryPoint(endpoints[i]))
459 return endpoints[i];
460 // actually, that' impossible :)
461 return NULL;
462};
463
464/** Calculates the center point of the triangle.
465 * Is third of the sum of all endpoints.
466 * \param *center central point on return.
467 */
468void BoundaryTriangleSet::GetCenter(Vector *center)
469{
470 center->Zero();
471 for(int i=0;i<3;i++)
472 center->AddVector(endpoints[i]->node->node);
473 center->Scale(1./3.);
474}
475
476/** output operator for BoundaryTriangleSet.
477 * \param &ost output stream
478 * \param &a boundary triangle
479 */
480ostream &operator <<(ostream &ost, BoundaryTriangleSet &a)
481{
482 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
483 << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
484 return ost;
485};
486
487// =========================================================== class TESSELPOINT ===========================================
488
489/** Constructor of class TesselPoint.
490 */
491TesselPoint::TesselPoint()
492{
493 node = NULL;
494 nr = -1;
495 Name = NULL;
496};
497
498/** Destructor for class TesselPoint.
499 */
500TesselPoint::~TesselPoint()
501{
502 Free((void **)&Name, "TesselPoint::~TesselPoint: *Name");
503};
504
505/** Prints LCNode to screen.
506 */
507ostream & operator << (ostream &ost, const TesselPoint &a)
508{
509 ost << "[" << (a.Name) << "|" << &a << "]";
510 return ost;
511};
512
513/** Prints LCNode to screen.
514 */
515ostream & TesselPoint::operator << (ostream &ost)
516{
517 ost << "[" << (Name) << "|" << this << "]";
518 return ost;
519};
520
521
522// =========================================================== class POINTCLOUD ============================================
523
524/** Constructor of class PointCloud.
525 */
526PointCloud::PointCloud()
527{
528
529};
530
531/** Destructor for class PointCloud.
532 */
533PointCloud::~PointCloud()
534{
535
536};
537
538// ============================ CandidateForTesselation =============================
539
540/** Constructor of class CandidateForTesselation.
541 */
542CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) {
543 point = candidate;
544 BaseLine = line;
545 OptCenter.CopyVector(&OptCandidateCenter);
546 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
547};
548
549/** Destructor for class CandidateForTesselation.
550 */
551CandidateForTesselation::~CandidateForTesselation() {
552 point = NULL;
553 BaseLine = NULL;
554};
555
556// =========================================================== class TESSELATION ===========================================
557
558/** Constructor of class Tesselation.
559 */
560Tesselation::Tesselation()
561{
562 PointsOnBoundaryCount = 0;
563 LinesOnBoundaryCount = 0;
564 TrianglesOnBoundaryCount = 0;
565 InternalPointer = PointsOnBoundary.begin();
566}
567;
568
569/** Destructor of class Tesselation.
570 * We have to free all points, lines and triangles.
571 */
572Tesselation::~Tesselation()
573{
574 cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
575 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
576 if (runner->second != NULL) {
577 delete (runner->second);
578 runner->second = NULL;
579 } else
580 cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl;
581 }
582}
583;
584
585/** PointCloud implementation of GetCenter
586 * Uses PointsOnBoundary and STL stuff.
587 */
588Vector * Tesselation::GetCenter(ofstream *out)
589{
590 Vector *Center = new Vector(0.,0.,0.);
591 int num=0;
592 for (GoToFirst(); (!IsEnd()); GoToNext()) {
593 Center->AddVector(GetPoint()->node);
594 num++;
595 }
596 Center->Scale(1./num);
597 return Center;
598};
599
600/** PointCloud implementation of GoPoint
601 * Uses PointsOnBoundary and STL stuff.
602 */
603TesselPoint * Tesselation::GetPoint()
604{
605 return (InternalPointer->second->node);
606};
607
608/** PointCloud implementation of GetTerminalPoint.
609 * Uses PointsOnBoundary and STL stuff.
610 */
611TesselPoint * Tesselation::GetTerminalPoint()
612{
613 PointMap::iterator Runner = PointsOnBoundary.end();
614 Runner--;
615 return (Runner->second->node);
616};
617
618/** PointCloud implementation of GoToNext.
619 * Uses PointsOnBoundary and STL stuff.
620 */
621void Tesselation::GoToNext()
622{
623 if (InternalPointer != PointsOnBoundary.end())
624 InternalPointer++;
625};
626
627/** PointCloud implementation of GoToPrevious.
628 * Uses PointsOnBoundary and STL stuff.
629 */
630void Tesselation::GoToPrevious()
631{
632 if (InternalPointer != PointsOnBoundary.begin())
633 InternalPointer--;
634};
635
636/** PointCloud implementation of GoToFirst.
637 * Uses PointsOnBoundary and STL stuff.
638 */
639void Tesselation::GoToFirst()
640{
641 InternalPointer = PointsOnBoundary.begin();
642};
643
644/** PointCloud implementation of GoToLast.
645 * Uses PointsOnBoundary and STL stuff.
646 */
647void Tesselation::GoToLast()
648{
649 InternalPointer = PointsOnBoundary.end();
650 InternalPointer--;
651};
652
653/** PointCloud implementation of IsEmpty.
654 * Uses PointsOnBoundary and STL stuff.
655 */
656bool Tesselation::IsEmpty()
657{
658 return (PointsOnBoundary.empty());
659};
660
661/** PointCloud implementation of IsLast.
662 * Uses PointsOnBoundary and STL stuff.
663 */
664bool Tesselation::IsEnd()
665{
666 return (InternalPointer == PointsOnBoundary.end());
667};
668
669
670/** Gueses first starting triangle of the convex envelope.
671 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
672 * \param *out output stream for debugging
673 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
674 */
675void
676Tesselation::GuessStartingTriangle(ofstream *out)
677{
678 // 4b. create a starting triangle
679 // 4b1. create all distances
680 DistanceMultiMap DistanceMMap;
681 double distance, tmp;
682 Vector PlaneVector, TrialVector;
683 PointMap::iterator A, B, C; // three nodes of the first triangle
684 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
685
686 // with A chosen, take each pair B,C and sort
687 if (A != PointsOnBoundary.end())
688 {
689 B = A;
690 B++;
691 for (; B != PointsOnBoundary.end(); B++)
692 {
693 C = B;
694 C++;
695 for (; C != PointsOnBoundary.end(); C++)
696 {
697 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
698 distance = tmp * tmp;
699 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
700 distance += tmp * tmp;
701 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
702 distance += tmp * tmp;
703 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
704 }
705 }
706 }
707 // // listing distances
708 // *out << Verbose(1) << "Listing DistanceMMap:";
709 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
710 // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
711 // }
712 // *out << endl;
713 // 4b2. pick three baselines forming a triangle
714 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
715 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
716 for (; baseline != DistanceMMap.end(); baseline++)
717 {
718 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
719 // 2. next, we have to check whether all points reside on only one side of the triangle
720 // 3. construct plane vector
721 PlaneVector.MakeNormalVector(A->second->node->node,
722 baseline->second.first->second->node->node,
723 baseline->second.second->second->node->node);
724 *out << Verbose(2) << "Plane vector of candidate triangle is ";
725 PlaneVector.Output(out);
726 *out << endl;
727 // 4. loop over all points
728 double sign = 0.;
729 PointMap::iterator checker = PointsOnBoundary.begin();
730 for (; checker != PointsOnBoundary.end(); checker++)
731 {
732 // (neglecting A,B,C)
733 if ((checker == A) || (checker == baseline->second.first) || (checker
734 == baseline->second.second))
735 continue;
736 // 4a. project onto plane vector
737 TrialVector.CopyVector(checker->second->node->node);
738 TrialVector.SubtractVector(A->second->node->node);
739 distance = TrialVector.Projection(&PlaneVector);
740 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
741 continue;
742 *out << Verbose(3) << "Projection of " << checker->second->node->Name
743 << " yields distance of " << distance << "." << endl;
744 tmp = distance / fabs(distance);
745 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
746 if ((sign != 0) && (tmp != sign))
747 {
748 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
749 *out << Verbose(2) << "Current candidates: "
750 << A->second->node->Name << ","
751 << baseline->second.first->second->node->Name << ","
752 << baseline->second.second->second->node->Name << " leaves "
753 << checker->second->node->Name << " outside the convex hull."
754 << endl;
755 break;
756 }
757 else
758 { // note the sign for later
759 *out << Verbose(2) << "Current candidates: "
760 << A->second->node->Name << ","
761 << baseline->second.first->second->node->Name << ","
762 << baseline->second.second->second->node->Name << " leave "
763 << checker->second->node->Name << " inside the convex hull."
764 << endl;
765 sign = tmp;
766 }
767 // 4d. Check whether the point is inside the triangle (check distance to each node
768 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
769 int innerpoint = 0;
770 if ((tmp < A->second->node->node->DistanceSquared(
771 baseline->second.first->second->node->node)) && (tmp
772 < A->second->node->node->DistanceSquared(
773 baseline->second.second->second->node->node)))
774 innerpoint++;
775 tmp = checker->second->node->node->DistanceSquared(
776 baseline->second.first->second->node->node);
777 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(
778 A->second->node->node)) && (tmp
779 < baseline->second.first->second->node->node->DistanceSquared(
780 baseline->second.second->second->node->node)))
781 innerpoint++;
782 tmp = checker->second->node->node->DistanceSquared(
783 baseline->second.second->second->node->node);
784 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(
785 baseline->second.first->second->node->node)) && (tmp
786 < baseline->second.second->second->node->node->DistanceSquared(
787 A->second->node->node)))
788 innerpoint++;
789 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
790 if (innerpoint == 3)
791 break;
792 }
793 // 5. come this far, all on same side? Then break 1. loop and construct triangle
794 if (checker == PointsOnBoundary.end())
795 {
796 *out << "Looks like we have a candidate!" << endl;
797 break;
798 }
799 }
800 if (baseline != DistanceMMap.end())
801 {
802 BPS[0] = baseline->second.first->second;
803 BPS[1] = baseline->second.second->second;
804 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
805 BPS[0] = A->second;
806 BPS[1] = baseline->second.second->second;
807 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
808 BPS[0] = baseline->second.first->second;
809 BPS[1] = A->second;
810 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
811
812 // 4b3. insert created triangle
813 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
814 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
815 TrianglesOnBoundaryCount++;
816 for (int i = 0; i < NDIM; i++)
817 {
818 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
819 LinesOnBoundaryCount++;
820 }
821
822 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
823 }
824 else
825 {
826 *out << Verbose(1) << "No starting triangle found." << endl;
827 exit(255);
828 }
829}
830;
831
832/** Tesselates the convex envelope of a cluster from a single starting triangle.
833 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
834 * 2 triangles. Hence, we go through all current lines:
835 * -# if the lines contains to only one triangle
836 * -# We search all points in the boundary
837 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
838 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
839 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
840 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
841 * \param *out output stream for debugging
842 * \param *configuration for IsAngstroem
843 * \param *cloud cluster of points
844 */
845void Tesselation::TesselateOnBoundary(ofstream *out, PointCloud *cloud)
846{
847 bool flag;
848 PointMap::iterator winner;
849 class BoundaryPointSet *peak = NULL;
850 double SmallestAngle, TempAngle;
851 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
852 LineMap::iterator LineChecker[2];
853
854 Center = cloud->GetCenter(out);
855 // create a first tesselation with the given BoundaryPoints
856 do {
857 flag = false;
858 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
859 if (baseline->second->triangles.size() == 1) {
860 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
861 SmallestAngle = M_PI;
862
863 // get peak point with respect to this base line's only triangle
864 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
865 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
866 for (int i = 0; i < 3; i++)
867 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
868 peak = BTS->endpoints[i];
869 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
870
871 // prepare some auxiliary vectors
872 Vector BaseLineCenter, BaseLine;
873 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
874 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
875 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
876 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
877 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
878
879 // offset to center of triangle
880 CenterVector.Zero();
881 for (int i = 0; i < 3; i++)
882 CenterVector.AddVector(BTS->endpoints[i]->node->node);
883 CenterVector.Scale(1. / 3.);
884 *out << Verbose(4) << "CenterVector of base triangle is " << CenterVector << endl;
885
886 // normal vector of triangle
887 NormalVector.CopyVector(Center);
888 NormalVector.SubtractVector(&CenterVector);
889 BTS->GetNormalVector(NormalVector);
890 NormalVector.CopyVector(&BTS->NormalVector);
891 *out << Verbose(4) << "NormalVector of base triangle is " << NormalVector << endl;
892
893 // vector in propagation direction (out of triangle)
894 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
895 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
896 TempVector.CopyVector(&CenterVector);
897 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
898 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
899 if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
900 PropagationVector.Scale(-1.);
901 *out << Verbose(4) << "PropagationVector of base triangle is " << PropagationVector << endl;
902 winner = PointsOnBoundary.end();
903
904 // loop over all points and calculate angle between normal vector of new and present triangle
905 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
906 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
907 *out << Verbose(3) << "Target point is " << *(target->second) << ":" << endl;
908
909 // first check direction, so that triangles don't intersect
910 VirtualNormalVector.CopyVector(target->second->node->node);
911 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
912 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
913 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
914 *out << Verbose(4) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
915 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees)
916 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
917 continue;
918 } else
919 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
920
921 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
922 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
923 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
924 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
925 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
926 continue;
927 }
928 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
929 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
930 continue;
931 }
932
933 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
934 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
935 *out << Verbose(4) << "Current target is peak!" << endl;
936 continue;
937 }
938
939 // check for linear dependence
940 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
941 TempVector.SubtractVector(target->second->node->node);
942 helper.CopyVector(baseline->second->endpoints[1]->node->node);
943 helper.SubtractVector(target->second->node->node);
944 helper.ProjectOntoPlane(&TempVector);
945 if (fabs(helper.NormSquared()) < MYEPSILON) {
946 *out << Verbose(4) << "Chosen set of vectors is linear dependent." << endl;
947 continue;
948 }
949
950 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
951 flag = true;
952 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
953 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
954 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
955 TempVector.AddVector(target->second->node->node);
956 TempVector.Scale(1./3.);
957 TempVector.SubtractVector(Center);
958 // make it always point outward
959 if (VirtualNormalVector.Projection(&TempVector) < 0)
960 VirtualNormalVector.Scale(-1.);
961 // calculate angle
962 TempAngle = NormalVector.Angle(&VirtualNormalVector);
963 *out << Verbose(4) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
964 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
965 SmallestAngle = TempAngle;
966 winner = target;
967 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
968 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
969 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
970 helper.CopyVector(target->second->node->node);
971 helper.SubtractVector(&BaseLineCenter);
972 helper.ProjectOntoPlane(&BaseLine);
973 // ...the one with the smaller angle is the better candidate
974 TempVector.CopyVector(target->second->node->node);
975 TempVector.SubtractVector(&BaseLineCenter);
976 TempVector.ProjectOntoPlane(&VirtualNormalVector);
977 TempAngle = TempVector.Angle(&helper);
978 TempVector.CopyVector(winner->second->node->node);
979 TempVector.SubtractVector(&BaseLineCenter);
980 TempVector.ProjectOntoPlane(&VirtualNormalVector);
981 if (TempAngle < TempVector.Angle(&helper)) {
982 TempAngle = NormalVector.Angle(&VirtualNormalVector);
983 SmallestAngle = TempAngle;
984 winner = target;
985 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
986 } else
987 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
988 } else
989 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
990 }
991 } // end of loop over all boundary points
992
993 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
994 if (winner != PointsOnBoundary.end()) {
995 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
996 // create the lins of not yet present
997 BLS[0] = baseline->second;
998 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
999 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1000 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1001 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1002 BPS[0] = baseline->second->endpoints[0];
1003 BPS[1] = winner->second;
1004 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1005 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1006 LinesOnBoundaryCount++;
1007 } else
1008 BLS[1] = LineChecker[0]->second;
1009 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1010 BPS[0] = baseline->second->endpoints[1];
1011 BPS[1] = winner->second;
1012 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1013 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1014 LinesOnBoundaryCount++;
1015 } else
1016 BLS[2] = LineChecker[1]->second;
1017 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1018 BTS->GetCenter(&helper);
1019 helper.SubtractVector(Center);
1020 helper.Scale(-1);
1021 BTS->GetNormalVector(helper);
1022 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1023 TrianglesOnBoundaryCount++;
1024 } else {
1025 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
1026 }
1027
1028 // 5d. If the set of lines is not yet empty, go to 5. and continue
1029 } else
1030 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
1031 } while (flag);
1032
1033 // exit
1034 delete(Center);
1035};
1036
1037/** Inserts all points outside of the tesselated surface into it by adding new triangles.
1038 * \param *out output stream for debugging
1039 * \param *cloud cluster of points
1040 * \param *LC LinkedCell structure to find nearest point quickly
1041 * \return true - all straddling points insert, false - something went wrong
1042 */
1043bool Tesselation::InsertStraddlingPoints(ofstream *out, PointCloud *cloud, LinkedCell *LC)
1044{
1045 Vector Intersection, Normal;
1046 TesselPoint *Walker = NULL;
1047 Vector *Center = cloud->GetCenter(out);
1048 list<BoundaryTriangleSet*> *triangles = NULL;
1049
1050 *out << Verbose(1) << "Begin of InsertStraddlingPoints" << endl;
1051
1052 cloud->GoToFirst();
1053 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
1054 LinkedCell BoundaryPoints(this, 5.);
1055 Walker = cloud->GetPoint();
1056 *out << Verbose(2) << "Current point is " << *Walker << "." << endl;
1057 // get the next triangle
1058 triangles = FindClosestTrianglesToPoint(out, Walker->node, &BoundaryPoints);
1059 if (triangles == NULL) {
1060 *out << Verbose(1) << "No triangles found, probably a tesselation point itself." << endl;
1061 cloud->GoToNext();
1062 continue;
1063 } else {
1064 BTS = triangles->front();
1065 }
1066 *out << Verbose(2) << "Closest triangle is " << *BTS << "." << endl;
1067 // get the intersection point
1068 if (BTS->GetIntersectionInsideTriangle(out, Center, Walker->node, &Intersection)) {
1069 *out << Verbose(2) << "We have an intersection at " << Intersection << "." << endl;
1070 // we have the intersection, check whether in- or outside of boundary
1071 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1072 // inside, next!
1073 *out << Verbose(2) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
1074 } else {
1075 // outside!
1076 *out << Verbose(2) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
1077 class BoundaryLineSet *OldLines[3], *NewLines[3];
1078 class BoundaryPointSet *OldPoints[3], *NewPoint;
1079 // store the three old lines and old points
1080 for (int i=0;i<3;i++) {
1081 OldLines[i] = BTS->lines[i];
1082 OldPoints[i] = BTS->endpoints[i];
1083 }
1084 Normal.CopyVector(&BTS->NormalVector);
1085 // add Walker to boundary points
1086 *out << Verbose(2) << "Adding " << *Walker << " to BoundaryPoints." << endl;
1087 if (AddBoundaryPoint(Walker,0))
1088 NewPoint = BPS[0];
1089 else
1090 continue;
1091 // remove triangle
1092 *out << Verbose(2) << "Erasing triangle " << *BTS << "." << endl;
1093 TrianglesOnBoundary.erase(BTS->Nr);
1094 delete(BTS);
1095 // create three new boundary lines
1096 for (int i=0;i<3;i++) {
1097 BPS[0] = NewPoint;
1098 BPS[1] = OldPoints[i];
1099 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1100 *out << Verbose(3) << "Creating new line " << *NewLines[i] << "." << endl;
1101 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1102 LinesOnBoundaryCount++;
1103 }
1104 // create three new triangle with new point
1105 for (int i=0;i<3;i++) { // find all baselines
1106 BLS[0] = OldLines[i];
1107 int n = 1;
1108 for (int j=0;j<3;j++) {
1109 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1110 if (n>2) {
1111 *out << Verbose(1) << "ERROR: " << BLS[0] << " connects to all of the new lines?!" << endl;
1112 return false;
1113 } else
1114 BLS[n++] = NewLines[j];
1115 }
1116 }
1117 // create the triangle
1118 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1119 Normal.Scale(-1.);
1120 BTS->GetNormalVector(Normal);
1121 Normal.Scale(-1.);
1122 *out << Verbose(2) << "Created new triangle " << *BTS << "." << endl;
1123 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1124 TrianglesOnBoundaryCount++;
1125 }
1126 }
1127 } else { // something is wrong with FindClosestTriangleToPoint!
1128 *out << Verbose(1) << "ERROR: The closest triangle did not produce an intersection!" << endl;
1129 return false;
1130 }
1131 cloud->GoToNext();
1132 }
1133
1134 // exit
1135 delete(Center);
1136 *out << Verbose(1) << "End of InsertStraddlingPoints" << endl;
1137 return true;
1138};
1139
1140/** Adds a point to the tesselation::PointsOnBoundary list.
1141 * \param *Walker point to add
1142 * \param n TesselStruct::BPS index to put pointer into
1143 * \return true - new point was added, false - point already present
1144 */
1145bool
1146Tesselation::AddBoundaryPoint(TesselPoint *Walker, int n)
1147{
1148 PointTestPair InsertUnique;
1149 BPS[n] = new class BoundaryPointSet(Walker);
1150 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1151 if (InsertUnique.second) { // if new point was not present before, increase counter
1152 PointsOnBoundaryCount++;
1153 return true;
1154 } else {
1155 delete(BPS[n]);
1156 BPS[n] = InsertUnique.first->second;
1157 return false;
1158 }
1159}
1160;
1161
1162/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1163 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1164 * @param Candidate point to add
1165 * @param n index for this point in Tesselation::TPS array
1166 */
1167void
1168Tesselation::AddTesselationPoint(TesselPoint* Candidate, int n)
1169{
1170 PointTestPair InsertUnique;
1171 TPS[n] = new class BoundaryPointSet(Candidate);
1172 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1173 if (InsertUnique.second) { // if new point was not present before, increase counter
1174 PointsOnBoundaryCount++;
1175 } else {
1176 delete TPS[n];
1177 cout << Verbose(3) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
1178 TPS[n] = (InsertUnique.first)->second;
1179 }
1180}
1181;
1182
1183/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1184 * If successful it raises the line count and inserts the new line into the BLS,
1185 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1186 * @param *a first endpoint
1187 * @param *b second endpoint
1188 * @param n index of Tesselation::BLS giving the line with both endpoints
1189 */
1190void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) {
1191 bool insertNewLine = true;
1192
1193 if (a->lines.find(b->node->nr) != a->lines.end()) {
1194 LineMap::iterator FindLine;
1195 pair<LineMap::iterator,LineMap::iterator> FindPair;
1196 FindPair = a->lines.equal_range(b->node->nr);
1197
1198 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
1199 // If there is a line with less than two attached triangles, we don't need a new line.
1200 if (FindLine->second->triangles.size() < 2) {
1201 insertNewLine = false;
1202 cout << Verbose(3) << "Using existing line " << *FindLine->second << endl;
1203
1204 BPS[0] = FindLine->second->endpoints[0];
1205 BPS[1] = FindLine->second->endpoints[1];
1206 BLS[n] = FindLine->second;
1207
1208 break;
1209 }
1210 }
1211 }
1212
1213 if (insertNewLine) {
1214 AlwaysAddTesselationTriangleLine(a, b, n);
1215 }
1216}
1217;
1218
1219/**
1220 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1221 * Raises the line count and inserts the new line into the BLS.
1222 *
1223 * @param *a first endpoint
1224 * @param *b second endpoint
1225 * @param n index of Tesselation::BLS giving the line with both endpoints
1226 */
1227void Tesselation::AlwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n)
1228{
1229 cout << Verbose(3) << "Adding line between " << *(a->node) << " and " << *(b->node) << "." << endl;
1230 BPS[0] = a;
1231 BPS[1] = b;
1232 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1233 // add line to global map
1234 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1235 // increase counter
1236 LinesOnBoundaryCount++;
1237};
1238
1239/** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
1240 * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
1241 */
1242void Tesselation::AddTesselationTriangle()
1243{
1244 cout << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1245
1246 // add triangle to global map
1247 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1248 TrianglesOnBoundaryCount++;
1249
1250 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1251};
1252
1253/** Removes a triangle from the tesselation.
1254 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1255 * Removes itself from memory.
1256 * \param *triangle to remove
1257 */
1258void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1259{
1260 if (triangle == NULL)
1261 return;
1262 for (int i = 0; i < 3; i++) {
1263 if (triangle->lines[i] != NULL) {
1264 cout << Verbose(5) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1265 triangle->lines[i]->triangles.erase(triangle->Nr);
1266 if (triangle->lines[i]->triangles.empty()) {
1267 cout << Verbose(5) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1268 RemoveTesselationLine(triangle->lines[i]);
1269 triangle->lines[i] = NULL;
1270 } else
1271 cout << Verbose(5) << *triangle->lines[i] << " is still attached to another triangle." << endl;
1272 } else
1273 cerr << "ERROR: This line " << i << " has already been free'd." << endl;
1274 }
1275
1276 if (TrianglesOnBoundary.erase(triangle->Nr))
1277 cout << Verbose(5) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1278 delete(triangle);
1279};
1280
1281/** Removes a line from the tesselation.
1282 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1283 * \param *line line to remove
1284 */
1285void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1286{
1287 int Numbers[2];
1288
1289 if (line == NULL)
1290 return;
1291 // get other endpoint number of finding copies of same line
1292 if (line->endpoints[1] != NULL)
1293 Numbers[0] = line->endpoints[1]->Nr;
1294 else
1295 Numbers[0] = -1;
1296 if (line->endpoints[0] != NULL)
1297 Numbers[1] = line->endpoints[0]->Nr;
1298 else
1299 Numbers[1] = -1;
1300
1301 for (int i = 0; i < 2; i++) {
1302 if (line->endpoints[i] != NULL) {
1303 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1304 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1305 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1306 if ((*Runner).second == line) {
1307 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1308 line->endpoints[i]->lines.erase(Runner);
1309 break;
1310 }
1311 } else { // there's just a single line left
1312 if (line->endpoints[i]->lines.erase(line->Nr))
1313 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1314 }
1315 if (line->endpoints[i]->lines.empty()) {
1316 cout << Verbose(5) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1317 RemoveTesselationPoint(line->endpoints[i]);
1318 line->endpoints[i] = NULL;
1319 } else
1320 cout << Verbose(5) << *line->endpoints[i] << " has still lines it's attached to." << endl;
1321 } else
1322 cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl;
1323 }
1324 if (!line->triangles.empty())
1325 cerr << "WARNING: Memory Leak! I " << *line << " am still connected to some triangles." << endl;
1326
1327 if (LinesOnBoundary.erase(line->Nr))
1328 cout << Verbose(5) << "Removing line Nr. " << line->Nr << "." << endl;
1329 delete(line);
1330};
1331
1332/** Removes a point from the tesselation.
1333 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
1334 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
1335 * \param *point point to remove
1336 */
1337void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
1338{
1339 if (point == NULL)
1340 return;
1341 if (PointsOnBoundary.erase(point->Nr))
1342 cout << Verbose(5) << "Removing point Nr. " << point->Nr << "." << endl;
1343 delete(point);
1344};
1345
1346/** Checks whether the triangle consisting of the three points is already present.
1347 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1348 * lines. If any of the three edges already has two triangles attached, false is
1349 * returned.
1350 * \param *out output stream for debugging
1351 * \param *Candidates endpoints of the triangle candidate
1352 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1353 * triangles exist which is the maximum for three points
1354 */
1355int Tesselation::CheckPresenceOfTriangle(ofstream *out, TesselPoint *Candidates[3]) {
1356 int adjacentTriangleCount = 0;
1357 class BoundaryPointSet *Points[3];
1358
1359 *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
1360 // builds a triangle point set (Points) of the end points
1361 for (int i = 0; i < 3; i++) {
1362 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1363 if (FindPoint != PointsOnBoundary.end()) {
1364 Points[i] = FindPoint->second;
1365 } else {
1366 Points[i] = NULL;
1367 }
1368 }
1369
1370 // checks lines between the points in the Points for their adjacent triangles
1371 for (int i = 0; i < 3; i++) {
1372 if (Points[i] != NULL) {
1373 for (int j = i; j < 3; j++) {
1374 if (Points[j] != NULL) {
1375 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1376 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1377 TriangleMap *triangles = &FindLine->second->triangles;
1378 *out << Verbose(3) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
1379 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1380 if (FindTriangle->second->IsPresentTupel(Points)) {
1381 adjacentTriangleCount++;
1382 }
1383 }
1384 *out << Verbose(3) << "end." << endl;
1385 }
1386 // Only one of the triangle lines must be considered for the triangle count.
1387 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1388 return adjacentTriangleCount;
1389 }
1390 }
1391 }
1392 }
1393
1394 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1395 *out << Verbose(2) << "End of CheckPresenceOfTriangle" << endl;
1396 return adjacentTriangleCount;
1397};
1398
1399
1400/** Finds the starting triangle for find_non_convex_border().
1401 * Looks at the outermost point per axis, then Find_second_point_for_Tesselation()
1402 * for the second and Find_next_suitable_point_via_Angle_of_Sphere() for the third
1403 * point are called.
1404 * \param *out output stream for debugging
1405 * \param RADIUS radius of virtual rolling sphere
1406 * \param *LC LinkedCell structure with neighbouring TesselPoint's
1407 */
1408void Tesselation::Find_starting_triangle(ofstream *out, const double RADIUS, LinkedCell *LC)
1409{
1410 cout << Verbose(1) << "Begin of Find_starting_triangle\n";
1411 int i = 0;
1412 LinkedNodes *List = NULL;
1413 TesselPoint* FirstPoint = NULL;
1414 TesselPoint* SecondPoint = NULL;
1415 TesselPoint* MaxPoint[NDIM];
1416 double max_coordinate[NDIM];
1417 Vector Oben;
1418 Vector helper;
1419 Vector Chord;
1420 Vector SearchDirection;
1421
1422 Oben.Zero();
1423
1424 for (i = 0; i < 3; i++) {
1425 MaxPoint[i] = NULL;
1426 max_coordinate[i] = -1;
1427 }
1428
1429 // 1. searching topmost point with respect to each axis
1430 for (int i=0;i<NDIM;i++) { // each axis
1431 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
1432 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
1433 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
1434 List = LC->GetCurrentCell();
1435 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
1436 if (List != NULL) {
1437 for (LinkedNodes::iterator Runner = List->begin();Runner != List->end();Runner++) {
1438 if ((*Runner)->node->x[i] > max_coordinate[i]) {
1439 cout << Verbose(2) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
1440 max_coordinate[i] = (*Runner)->node->x[i];
1441 MaxPoint[i] = (*Runner);
1442 }
1443 }
1444 } else {
1445 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
1446 }
1447 }
1448 }
1449
1450 cout << Verbose(2) << "Found maximum coordinates: ";
1451 for (int i=0;i<NDIM;i++)
1452 cout << i << ": " << *MaxPoint[i] << "\t";
1453 cout << endl;
1454
1455 BTS = NULL;
1456 CandidateList *Opt_Candidates = new CandidateList();
1457 for (int k=0;k<NDIM;k++) {
1458 Oben.x[k] = 1.;
1459 FirstPoint = MaxPoint[k];
1460 cout << Verbose(1) << "Coordinates of start node at " << *FirstPoint->node << "." << endl;
1461
1462 double ShortestAngle;
1463 TesselPoint* Opt_Candidate = NULL;
1464 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1465
1466 Find_second_point_for_Tesselation(FirstPoint, NULL, Oben, Opt_Candidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
1467 SecondPoint = Opt_Candidate;
1468 if (SecondPoint == NULL) // have we found a second point?
1469 continue;
1470 else
1471 cout << Verbose(1) << "Found second point is at " << *SecondPoint->node << ".\n";
1472
1473 helper.CopyVector(FirstPoint->node);
1474 helper.SubtractVector(SecondPoint->node);
1475 helper.Normalize();
1476 Oben.ProjectOntoPlane(&helper);
1477 Oben.Normalize();
1478 helper.VectorProduct(&Oben);
1479 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1480
1481 Chord.CopyVector(FirstPoint->node); // bring into calling function
1482 Chord.SubtractVector(SecondPoint->node);
1483 double radius = Chord.ScalarProduct(&Chord);
1484 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
1485 helper.CopyVector(&Oben);
1486 helper.Scale(CircleRadius);
1487 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
1488
1489 // look in one direction of baseline for initial candidate
1490 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
1491
1492 // adding point 1 and point 2 and add the line between them
1493 AddTesselationPoint(FirstPoint, 0);
1494 AddTesselationPoint(SecondPoint, 1);
1495 AddTesselationLine(TPS[0], TPS[1], 0);
1496
1497 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
1498 Find_third_point_for_Tesselation(
1499 Oben, SearchDirection, helper, BLS[0], NULL, *&Opt_Candidates, &ShortestAngle, RADIUS, LC
1500 );
1501 cout << Verbose(1) << "List of third Points is ";
1502 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1503 cout << " " << *(*it)->point;
1504 }
1505 cout << endl;
1506
1507 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1508 // add third triangle point
1509 AddTesselationPoint((*it)->point, 2);
1510 // add the second and third line
1511 AddTesselationLine(TPS[1], TPS[2], 1);
1512 AddTesselationLine(TPS[0], TPS[2], 2);
1513 // ... and triangles to the Maps of the Tesselation class
1514 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1515 AddTesselationTriangle();
1516 // ... and calculate its normal vector (with correct orientation)
1517 (*it)->OptCenter.Scale(-1.);
1518 cout << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
1519 BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
1520 cout << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
1521 << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
1522
1523 // if we do not reach the end with the next step of iteration, we need to setup a new first line
1524 if (it != Opt_Candidates->end()--) {
1525 FirstPoint = (*it)->BaseLine->endpoints[0]->node;
1526 SecondPoint = (*it)->point;
1527 // adding point 1 and point 2 and the line between them
1528 AddTesselationPoint(FirstPoint, 0);
1529 AddTesselationPoint(SecondPoint, 1);
1530 AddTesselationLine(TPS[0], TPS[1], 0);
1531 }
1532 cout << Verbose(2) << "Projection is " << BTS->NormalVector.Projection(&Oben) << "." << endl;
1533 }
1534 if (BTS != NULL) // we have created one starting triangle
1535 break;
1536 else {
1537 // remove all candidates from the list and then the list itself
1538 class CandidateForTesselation *remover = NULL;
1539 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1540 remover = *it;
1541 delete(remover);
1542 }
1543 Opt_Candidates->clear();
1544 }
1545 }
1546
1547 // remove all candidates from the list and then the list itself
1548 class CandidateForTesselation *remover = NULL;
1549 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1550 remover = *it;
1551 delete(remover);
1552 }
1553 delete(Opt_Candidates);
1554 cout << Verbose(1) << "End of Find_starting_triangle\n";
1555};
1556
1557
1558/** This function finds a triangle to a line, adjacent to an existing one.
1559 * @param out output stream for debugging
1560 * @param Line current baseline to search from
1561 * @param T current triangle which \a Line is edge of
1562 * @param RADIUS radius of the rolling ball
1563 * @param N number of found triangles
1564 * @param *LC LinkedCell structure with neighbouring points
1565 */
1566bool Tesselation::Find_next_suitable_triangle(ofstream *out, BoundaryLineSet &Line, BoundaryTriangleSet &T, const double& RADIUS, int N, LinkedCell *LC)
1567{
1568 cout << Verbose(0) << "Begin of Find_next_suitable_triangle\n";
1569 bool result = true;
1570 CandidateList *Opt_Candidates = new CandidateList();
1571
1572 Vector CircleCenter;
1573 Vector CirclePlaneNormal;
1574 Vector OldSphereCenter;
1575 Vector SearchDirection;
1576 Vector helper;
1577 TesselPoint *ThirdNode = NULL;
1578 LineMap::iterator testline;
1579 double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1580 double radius, CircleRadius;
1581
1582 cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
1583 for (int i=0;i<3;i++)
1584 if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
1585 ThirdNode = T.endpoints[i]->node;
1586
1587 // construct center of circle
1588 CircleCenter.CopyVector(Line.endpoints[0]->node->node);
1589 CircleCenter.AddVector(Line.endpoints[1]->node->node);
1590 CircleCenter.Scale(0.5);
1591
1592 // construct normal vector of circle
1593 CirclePlaneNormal.CopyVector(Line.endpoints[0]->node->node);
1594 CirclePlaneNormal.SubtractVector(Line.endpoints[1]->node->node);
1595
1596 // calculate squared radius of circle
1597 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1598 if (radius/4. < RADIUS*RADIUS) {
1599 CircleRadius = RADIUS*RADIUS - radius/4.;
1600 CirclePlaneNormal.Normalize();
1601 cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
1602
1603 // construct old center
1604 GetCenterofCircumcircle(&OldSphereCenter, T.endpoints[0]->node->node, T.endpoints[1]->node->node, T.endpoints[2]->node->node);
1605 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
1606 radius = Line.endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1607 helper.Scale(sqrt(RADIUS*RADIUS - radius));
1608 OldSphereCenter.AddVector(&helper);
1609 OldSphereCenter.SubtractVector(&CircleCenter);
1610 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
1611
1612 // construct SearchDirection
1613 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
1614 helper.CopyVector(Line.endpoints[0]->node->node);
1615 helper.SubtractVector(ThirdNode->node);
1616 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1617 SearchDirection.Scale(-1.);
1618 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1619 SearchDirection.Normalize();
1620 cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
1621 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1622 // rotated the wrong way!
1623 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
1624 }
1625
1626 // add third point
1627 Find_third_point_for_Tesselation(
1628 T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, Opt_Candidates,
1629 &ShortestAngle, RADIUS, LC
1630 );
1631
1632 } else {
1633 cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
1634 }
1635
1636 if (Opt_Candidates->begin() == Opt_Candidates->end()) {
1637 cerr << "WARNING: Could not find a suitable candidate." << endl;
1638 return false;
1639 }
1640 cout << Verbose(1) << "Third Points are ";
1641 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1642 cout << " " << *(*it)->point;
1643 }
1644 cout << endl;
1645
1646 BoundaryLineSet *BaseRay = &Line;
1647 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1648 cout << Verbose(1) << " Third point candidate is " << *(*it)->point
1649 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
1650 cout << Verbose(1) << " Baseline is " << *BaseRay << endl;
1651
1652 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
1653 TesselPoint *PointCandidates[3];
1654 PointCandidates[0] = (*it)->point;
1655 PointCandidates[1] = BaseRay->endpoints[0]->node;
1656 PointCandidates[2] = BaseRay->endpoints[1]->node;
1657 int existentTrianglesCount = CheckPresenceOfTriangle(out, PointCandidates);
1658
1659 BTS = NULL;
1660 // If there is no triangle, add it regularly.
1661 if (existentTrianglesCount == 0) {
1662 AddTesselationPoint((*it)->point, 0);
1663 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1664 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
1665
1666 if (CheckLineCriteriaforDegeneratedTriangle(TPS)) {
1667 AddTesselationLine(TPS[0], TPS[1], 0);
1668 AddTesselationLine(TPS[0], TPS[2], 1);
1669 AddTesselationLine(TPS[1], TPS[2], 2);
1670
1671 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1672 AddTesselationTriangle();
1673 (*it)->OptCenter.Scale(-1.);
1674 BTS->GetNormalVector((*it)->OptCenter);
1675 (*it)->OptCenter.Scale(-1.);
1676
1677 cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1678 << " for this triangle ... " << endl;
1679 //cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << *BaseRay << "." << endl;
1680 } else {
1681 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1682 cout << *(*it)->point << ", ";
1683 cout << *BaseRay->endpoints[0]->node << " and ";
1684 cout << *BaseRay->endpoints[1]->node << " ";
1685 cout << "exists and is not added, as it does not seem helpful!" << endl;
1686 result = false;
1687 }
1688 } else if (existentTrianglesCount == 1) { // If there is a planar region within the structure, we need this triangle a second time.
1689 AddTesselationPoint((*it)->point, 0);
1690 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1691 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
1692
1693 // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
1694 // i.e. at least one of the three lines must be present with TriangleCount <= 1
1695 if (CheckLineCriteriaforDegeneratedTriangle(TPS)) {
1696 AddTesselationLine(TPS[0], TPS[1], 0);
1697 AddTesselationLine(TPS[0], TPS[2], 1);
1698 AddTesselationLine(TPS[1], TPS[2], 2);
1699
1700 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1701 AddTesselationTriangle(); // add to global map
1702
1703 (*it)->OtherOptCenter.Scale(-1.);
1704 BTS->GetNormalVector((*it)->OtherOptCenter);
1705 (*it)->OtherOptCenter.Scale(-1.);
1706
1707 cout << "--> WARNING: Special new triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1708 << " for this triangle ... " << endl;
1709 cout << Verbose(1) << "We have "<< BaseRay->triangles.size() << " for line " << BaseRay << "." << endl;
1710 } else {
1711 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1712 cout << *(*it)->point << ", ";
1713 cout << *BaseRay->endpoints[0]->node << " and ";
1714 cout << *BaseRay->endpoints[1]->node << " ";
1715 cout << "exists and is not added, as it does not seem helpful!" << endl;
1716 result = false;
1717 }
1718 } else {
1719 cout << Verbose(1) << "This triangle consisting of ";
1720 cout << *(*it)->point << ", ";
1721 cout << *BaseRay->endpoints[0]->node << " and ";
1722 cout << *BaseRay->endpoints[1]->node << " ";
1723 cout << "is invalid!" << endl;
1724 result = false;
1725 }
1726
1727 // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
1728 BaseRay = BLS[0];
1729 }
1730
1731 // remove all candidates from the list and then the list itself
1732 class CandidateForTesselation *remover = NULL;
1733 for (CandidateList::iterator it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
1734 remover = *it;
1735 delete(remover);
1736 }
1737 delete(Opt_Candidates);
1738 cout << Verbose(0) << "End of Find_next_suitable_triangle\n";
1739 return result;
1740};
1741
1742/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
1743 * We look whether the closest point on \a *Base with respect to the other baseline is outside
1744 * of the segment formed by both endpoints (concave) or not (convex).
1745 * \param *out output stream for debugging
1746 * \param *Base line to be flipped
1747 * \return NULL - concave, otherwise endpoint that makes it concave
1748 */
1749class BoundaryPointSet *Tesselation::IsConvexRectangle(ofstream *out, class BoundaryLineSet *Base)
1750{
1751 class BoundaryPointSet *Spot = NULL;
1752 class BoundaryLineSet *OtherBase;
1753 Vector *ClosestPoint[2];
1754
1755 int m=0;
1756 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1757 for (int j=0;j<3;j++) // all of their endpoints and baselines
1758 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1759 BPS[m++] = runner->second->endpoints[j];
1760 OtherBase = new class BoundaryLineSet(BPS,-1);
1761
1762 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1763 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
1764
1765 // get the closest point on each line to the other line
1766 ClosestPoint[0] = GetClosestPointBetweenLine(out, Base, OtherBase);
1767 ClosestPoint[1] = GetClosestPointBetweenLine(out, OtherBase, Base);
1768
1769 // delete the temporary other base line
1770 delete(OtherBase);
1771
1772 // get the distance vector from Base line to OtherBase line
1773 Vector DistanceToIntersection, BaseLine;
1774 BaseLine.CopyVector(Base->endpoints[1]->node->node);
1775 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
1776 DistanceToIntersection.CopyVector(ClosestPoint[0]);
1777 DistanceToIntersection.SubtractVector(Base->endpoints[0]->node->node);
1778 Spot = Base->endpoints[1];
1779 if (BaseLine.ScalarProduct(&DistanceToIntersection) < -MYEPSILON) {
1780 DistanceToIntersection.CopyVector(ClosestPoint[0]);
1781 DistanceToIntersection.SubtractVector(Base->endpoints[1]->node->node);
1782 Spot = Base->endpoints[0];
1783 if (BaseLine.ScalarProduct(&DistanceToIntersection) < -MYEPSILON) {
1784 *out << Verbose(3) << "ERROR: Something's very wrong here, both SKPs return negative?!" << endl;
1785 return NULL;
1786 }
1787 }
1788 if ((BaseLine.NormSquared() - DistanceToIntersection.NormSquared()) < -MYEPSILON) { // distance is smaller: concave
1789 *out << Verbose(3) << "INFO: Rectangle of triangles of base line " << *Base << " is concave: Base line squared length " << BaseLine.NormSquared() << " against Distance to intersection squared " << DistanceToIntersection.NormSquared() << "." << endl;
1790 return Spot;
1791 } else { // base line is longer: convex
1792 *out << Verbose(3) << "INFO: Rectangle of triangles of base line " << *Base << " is concave." << endl;
1793 return NULL;
1794 }
1795
1796};
1797
1798
1799/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
1800 * \param *out output stream for debugging
1801 * \param *Base line to be flipped
1802 * \return true - line was changed, false - same line as before
1803 */
1804bool Tesselation::PickFarthestofTwoBaselines(ofstream *out, class BoundaryLineSet *Base)
1805{
1806 class BoundaryLineSet *OtherBase;
1807 Vector *ClosestPoint[2];
1808
1809 int m=0;
1810 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1811 for (int j=0;j<3;j++) // all of their endpoints and baselines
1812 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1813 BPS[m++] = runner->second->endpoints[j];
1814 OtherBase = new class BoundaryLineSet(BPS,-1);
1815
1816 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1817 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
1818
1819 // get the closest point on each line to the other line
1820 ClosestPoint[0] = GetClosestPointBetweenLine(out, Base, OtherBase);
1821 ClosestPoint[1] = GetClosestPointBetweenLine(out, OtherBase, Base);
1822
1823 // get the distance vector from Base line to OtherBase line
1824 Vector Distance;
1825 Distance.CopyVector(ClosestPoint[1]);
1826 Distance.SubtractVector(ClosestPoint[0]);
1827
1828 // delete the temporary other base line
1829 delete(OtherBase);
1830
1831 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
1832 *out << Verbose(3) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
1833 return false;
1834 } else { // check for sign against BaseLineNormal
1835 Vector BaseLineNormal;
1836 BaseLineNormal.Zero();
1837 if (Base->triangles.size() < 2) {
1838 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1839 return false;
1840 }
1841 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1842 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1843 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1844 }
1845 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
1846
1847 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
1848 *out << Verbose(2) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
1849 FlipBaseline(out, Base);
1850 return true;
1851 } else { // Base higher than OtherBase -> do nothing
1852 *out << Verbose(2) << "REJECT: Base line is higher: Nothing to do." << endl;
1853 return false;
1854 }
1855 }
1856};
1857
1858/** Returns the closest point on \a *Base with respect to \a *OtherBase.
1859 * \param *out output stream for debugging
1860 * \param *Base reference line
1861 * \param *OtherBase other base line
1862 * \return Vector on reference line that has closest distance
1863 */
1864Vector * GetClosestPointBetweenLine(ofstream *out, class BoundaryLineSet *Base, class BoundaryLineSet *OtherBase)
1865{
1866 // construct the plane of the two baselines (i.e. take both their directional vectors)
1867 Vector Normal;
1868 Vector OtherBaseline;
1869 Normal.CopyVector(Base->endpoints[1]->node->node);
1870 Normal.SubtractVector(Base->endpoints[0]->node->node);
1871 OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
1872 OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
1873 Normal.VectorProduct(&OtherBaseline);
1874 Normal.Normalize();
1875
1876 // project one offset point of OtherBase onto this plane
1877 Vector NewOffset;
1878 NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
1879 NewOffset.ProjectOntoPlane(&Normal);
1880 Vector NewDirection;
1881 NewDirection.CopyVector(OtherBase->endpoints[1]->node->node);
1882 NewDirection.ProjectOntoPlane(&Normal);
1883
1884 // calculate the intersection between this projected baseline and Base
1885 Vector *Intersection = new Vector;
1886 Intersection->GetIntersectionOfTwoLinesOnPlane(out, Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
1887
1888 return Intersection;
1889};
1890
1891/** For a given baseline and its two connected triangles, flips the baseline.
1892 * I.e. we create the new baseline between the other two endpoints of these four
1893 * endpoints and reconstruct the two triangles accordingly.
1894 * \param *out output stream for debugging
1895 * \param *Base line to be flipped
1896 * \return true - flipping successful, false - something went awry
1897 */
1898bool Tesselation::FlipBaseline(ofstream *out, class BoundaryLineSet *Base)
1899{
1900 class BoundaryLineSet *OldLines[4], *NewLine;
1901 class BoundaryPointSet *OldPoints[2];
1902 Vector BaseLineNormal;
1903 int OldTriangleNrs[2], OldBaseLineNr;
1904 int i,m;
1905
1906 *out << Verbose(1) << "Begin of FlipBaseline" << endl;
1907
1908 // calculate NormalVector for later use
1909 BaseLineNormal.Zero();
1910 if (Base->triangles.size() < 2) {
1911 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1912 return false;
1913 }
1914 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1915 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1916 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1917 }
1918 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
1919
1920 // get the two triangles
1921 // gather four endpoints and four lines
1922 for (int j=0;j<4;j++)
1923 OldLines[j] = NULL;
1924 for (int j=0;j<2;j++)
1925 OldPoints[j] = NULL;
1926 i=0;
1927 m=0;
1928 *out << Verbose(3) << "The four old lines are: ";
1929 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1930 for (int j=0;j<3;j++) // all of their endpoints and baselines
1931 if (runner->second->lines[j] != Base) { // pick not the central baseline
1932 OldLines[i++] = runner->second->lines[j];
1933 *out << *runner->second->lines[j] << "\t";
1934 }
1935 *out << endl;
1936 *out << Verbose(3) << "The two old points are: ";
1937 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1938 for (int j=0;j<3;j++) // all of their endpoints and baselines
1939 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
1940 OldPoints[m++] = runner->second->endpoints[j];
1941 *out << *runner->second->endpoints[j] << "\t";
1942 }
1943 *out << endl;
1944
1945 // check whether everything is in place to create new lines and triangles
1946 if (i<4) {
1947 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
1948 return false;
1949 }
1950 for (int j=0;j<4;j++)
1951 if (OldLines[j] == NULL) {
1952 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
1953 return false;
1954 }
1955 for (int j=0;j<2;j++)
1956 if (OldPoints[j] == NULL) {
1957 *out << Verbose(1) << "ERROR: We have not gathered enough endpoints!" << endl;
1958 return false;
1959 }
1960
1961 // remove triangles and baseline removes itself
1962 *out << Verbose(3) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
1963 OldBaseLineNr = Base->Nr;
1964 m=0;
1965 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1966 *out << Verbose(3) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
1967 OldTriangleNrs[m++] = runner->second->Nr;
1968 RemoveTesselationTriangle(runner->second);
1969 }
1970
1971 // construct new baseline (with same number as old one)
1972 BPS[0] = OldPoints[0];
1973 BPS[1] = OldPoints[1];
1974 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
1975 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
1976 *out << Verbose(3) << "INFO: Created new baseline " << *NewLine << "." << endl;
1977
1978 // construct new triangles with flipped baseline
1979 i=-1;
1980 if (OldLines[0]->IsConnectedTo(OldLines[2]))
1981 i=2;
1982 if (OldLines[0]->IsConnectedTo(OldLines[3]))
1983 i=3;
1984 if (i!=-1) {
1985 BLS[0] = OldLines[0];
1986 BLS[1] = OldLines[i];
1987 BLS[2] = NewLine;
1988 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
1989 BTS->GetNormalVector(BaseLineNormal);
1990 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[0], BTS));
1991 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
1992
1993 BLS[0] = (i==2 ? OldLines[3] : OldLines[2]);
1994 BLS[1] = OldLines[1];
1995 BLS[2] = NewLine;
1996 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
1997 BTS->GetNormalVector(BaseLineNormal);
1998 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[1], BTS));
1999 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2000 } else {
2001 *out << Verbose(1) << "The four old lines do not connect, something's utterly wrong here!" << endl;
2002 return false;
2003 }
2004
2005 *out << Verbose(1) << "End of FlipBaseline" << endl;
2006 return true;
2007};
2008
2009
2010/** Finds the second point of starting triangle.
2011 * \param *a first node
2012 * \param *Candidate pointer to candidate node on return
2013 * \param Oben vector indicating the outside
2014 * \param Opt_Candidate reference to recommended candidate on return
2015 * \param Storage[3] array storing angles and other candidate information
2016 * \param RADIUS radius of virtual sphere
2017 * \param *LC LinkedCell structure with neighbouring points
2018 */
2019void Tesselation::Find_second_point_for_Tesselation(TesselPoint* a, TesselPoint* Candidate, Vector Oben, TesselPoint*& Opt_Candidate, double Storage[3], double RADIUS, LinkedCell *LC)
2020{
2021 cout << Verbose(2) << "Begin of Find_second_point_for_Tesselation" << endl;
2022 Vector AngleCheck;
2023 double norm = -1., angle;
2024 LinkedNodes *List = NULL;
2025 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2026
2027 if (LC->SetIndexToNode(a)) { // get cell for the starting point
2028 for(int i=0;i<NDIM;i++) // store indices of this cell
2029 N[i] = LC->n[i];
2030 } else {
2031 cerr << "ERROR: Point " << *a << " is not found in cell " << LC->index << "." << endl;
2032 return;
2033 }
2034 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2035 cout << Verbose(3) << "LC Intervals from [";
2036 for (int i=0;i<NDIM;i++) {
2037 cout << " " << N[i] << "<->" << LC->N[i];
2038 }
2039 cout << "] :";
2040 for (int i=0;i<NDIM;i++) {
2041 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2042 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2043 cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2044 }
2045 cout << endl;
2046
2047
2048 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2049 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2050 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2051 List = LC->GetCurrentCell();
2052 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2053 if (List != NULL) {
2054 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2055 Candidate = (*Runner);
2056 // check if we only have one unique point yet ...
2057 if (a != Candidate) {
2058 // Calculate center of the circle with radius RADIUS through points a and Candidate
2059 Vector OrthogonalizedOben, a_Candidate, Center;
2060 double distance, scaleFactor;
2061
2062 OrthogonalizedOben.CopyVector(&Oben);
2063 a_Candidate.CopyVector(a->node);
2064 a_Candidate.SubtractVector(Candidate->node);
2065 OrthogonalizedOben.ProjectOntoPlane(&a_Candidate);
2066 OrthogonalizedOben.Normalize();
2067 distance = 0.5 * a_Candidate.Norm();
2068 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2069 OrthogonalizedOben.Scale(scaleFactor);
2070
2071 Center.CopyVector(Candidate->node);
2072 Center.AddVector(a->node);
2073 Center.Scale(0.5);
2074 Center.AddVector(&OrthogonalizedOben);
2075
2076 AngleCheck.CopyVector(&Center);
2077 AngleCheck.SubtractVector(a->node);
2078 norm = a_Candidate.Norm();
2079 // second point shall have smallest angle with respect to Oben vector
2080 if (norm < RADIUS*2.) {
2081 angle = AngleCheck.Angle(&Oben);
2082 if (angle < Storage[0]) {
2083 //cout << Verbose(3) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2084 cout << Verbose(3) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
2085 Opt_Candidate = Candidate;
2086 Storage[0] = angle;
2087 //cout << Verbose(3) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2088 } else {
2089 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *Opt_Candidate << endl;
2090 }
2091 } else {
2092 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
2093 }
2094 } else {
2095 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
2096 }
2097 }
2098 } else {
2099 cout << Verbose(3) << "Linked cell list is empty." << endl;
2100 }
2101 }
2102 cout << Verbose(2) << "End of Find_second_point_for_Tesselation" << endl;
2103};
2104
2105
2106/** This recursive function finds a third point, to form a triangle with two given ones.
2107 * Note that this function is for the starting triangle.
2108 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2109 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2110 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2111 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2112 * us the "null" on this circle, the new center of the candidate point will be some way along this
2113 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2114 * by the normal vector of the base triangle that always points outwards by construction.
2115 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2116 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2117 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2118 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2119 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2120 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2121 * both.
2122 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2123 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2124 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2125 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2126 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2127 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
2128 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa Find_starting_triangle())
2129 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2130 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2131 * @param BaseLine BoundaryLineSet with the current base line
2132 * @param ThirdNode third point to avoid in search
2133 * @param candidates list of equally good candidates to return
2134 * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
2135 * @param RADIUS radius of sphere
2136 * @param *LC LinkedCell structure with neighbouring points
2137 */
2138void Tesselation::Find_third_point_for_Tesselation(Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter, class BoundaryLineSet *BaseLine, class TesselPoint *ThirdNode, CandidateList* &candidates, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
2139{
2140 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2141 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2142 Vector SphereCenter;
2143 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2144 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2145 Vector NewNormalVector; // normal vector of the Candidate's triangle
2146 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2147 LinkedNodes *List = NULL;
2148 double CircleRadius; // radius of this circle
2149 double radius;
2150 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2151 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2152 TesselPoint *Candidate = NULL;
2153 CandidateForTesselation *optCandidate = NULL;
2154
2155 cout << Verbose(1) << "Begin of Find_third_point_for_Tesselation" << endl;
2156
2157 //cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2158
2159 // construct center of circle
2160 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2161 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
2162 CircleCenter.Scale(0.5);
2163
2164 // construct normal vector of circle
2165 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2166 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
2167
2168 // calculate squared radius TesselPoint *ThirdNode,f circle
2169 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2170 if (radius/4. < RADIUS*RADIUS) {
2171 CircleRadius = RADIUS*RADIUS - radius/4.;
2172 CirclePlaneNormal.Normalize();
2173 //cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2174
2175 // test whether old center is on the band's plane
2176 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2177 cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2178 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2179 }
2180 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2181 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2182
2183 // check SearchDirection
2184 //cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2185 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2186 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2187 }
2188
2189 // get cell for the starting point
2190 if (LC->SetIndexToVector(&CircleCenter)) {
2191 for(int i=0;i<NDIM;i++) // store indices of this cell
2192 N[i] = LC->n[i];
2193 //cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2194 } else {
2195 cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2196 return;
2197 }
2198 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2199 //cout << Verbose(2) << "LC Intervals:";
2200 for (int i=0;i<NDIM;i++) {
2201 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2202 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2203 //cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2204 }
2205 //cout << endl;
2206 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2207 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2208 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2209 List = LC->GetCurrentCell();
2210 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2211 if (List != NULL) {
2212 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2213 Candidate = (*Runner);
2214
2215 // check for three unique points
2216 //cout << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->node << "." << endl;
2217 if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
2218
2219 // construct both new centers
2220 GetCenterofCircumcircle(&NewSphereCenter, BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node);
2221 OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2222
2223 if ((NewNormalVector.MakeNormalVector(BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node))
2224 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
2225 ) {
2226 helper.CopyVector(&NewNormalVector);
2227 //cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2228 radius = BaseLine->endpoints[0]->node->node->DistanceSquared(&NewSphereCenter);
2229 if (radius < RADIUS*RADIUS) {
2230 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2231 //cout << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
2232 NewSphereCenter.AddVector(&helper);
2233 NewSphereCenter.SubtractVector(&CircleCenter);
2234 //cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2235
2236 // OtherNewSphereCenter is created by the same vector just in the other direction
2237 helper.Scale(-1.);
2238 OtherNewSphereCenter.AddVector(&helper);
2239 OtherNewSphereCenter.SubtractVector(&CircleCenter);
2240 //cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2241
2242 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2243 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2244 alpha = min(alpha, Otheralpha);
2245 // if there is a better candidate, drop the current list and add the new candidate
2246 // otherwise ignore the new candidate and keep the list
2247 if (*ShortestAngle > (alpha - HULLEPSILON)) {
2248 optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
2249 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2250 optCandidate->OptCenter.CopyVector(&NewSphereCenter);
2251 optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
2252 } else {
2253 optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
2254 optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
2255 }
2256 // if there is an equal candidate, add it to the list without clearing the list
2257 if ((*ShortestAngle - HULLEPSILON) < alpha) {
2258 candidates->push_back(optCandidate);
2259 cout << Verbose(2) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
2260 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2261 } else {
2262 // remove all candidates from the list and then the list itself
2263 class CandidateForTesselation *remover = NULL;
2264 for (CandidateList::iterator it = candidates->begin(); it != candidates->end(); ++it) {
2265 remover = *it;
2266 delete(remover);
2267 }
2268 candidates->clear();
2269 candidates->push_back(optCandidate);
2270 cout << Verbose(2) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
2271 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2272 }
2273 *ShortestAngle = alpha;
2274 //cout << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
2275 } else {
2276 if ((optCandidate != NULL) && (optCandidate->point != NULL)) {
2277 //cout << Verbose(2) << "REJECT: Old candidate " << *(optCandidate->point) << " with " << *ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
2278 } else {
2279 //cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2280 }
2281 }
2282
2283 } else {
2284 //cout << Verbose(2) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
2285 }
2286 } else {
2287 //cout << Verbose(2) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2288 }
2289 } else {
2290 if (ThirdNode != NULL) {
2291 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
2292 } else {
2293 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
2294 }
2295 }
2296 }
2297 }
2298 }
2299 } else {
2300 cerr << Verbose(2) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2301 }
2302 } else {
2303 if (ThirdNode != NULL)
2304 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
2305 else
2306 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
2307 }
2308
2309 //cout << Verbose(2) << "INFO: Sorting candidate list ..." << endl;
2310 if (candidates->size() > 1) {
2311 candidates->unique();
2312 candidates->sort(sortCandidates);
2313 }
2314
2315 cout << Verbose(1) << "End of Find_third_point_for_Tesselation" << endl;
2316};
2317
2318/** Finds the endpoint two lines are sharing.
2319 * \param *line1 first line
2320 * \param *line2 second line
2321 * \return point which is shared or NULL if none
2322 */
2323class BoundaryPointSet *Tesselation::GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
2324{
2325 class BoundaryLineSet * lines[2] =
2326 { line1, line2 };
2327 class BoundaryPointSet *node = NULL;
2328 map<int, class BoundaryPointSet *> OrderMap;
2329 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
2330 for (int i = 0; i < 2; i++)
2331 // for both lines
2332 for (int j = 0; j < 2; j++)
2333 { // for both endpoints
2334 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
2335 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
2336 if (!OrderTest.second)
2337 { // if insertion fails, we have common endpoint
2338 node = OrderTest.first->second;
2339 cout << Verbose(5) << "Common endpoint of lines " << *line1
2340 << " and " << *line2 << " is: " << *node << "." << endl;
2341 j = 2;
2342 i = 2;
2343 break;
2344 }
2345 }
2346 return node;
2347};
2348
2349/** Finds the triangle that is closest to a given Vector \a *x.
2350 * \param *out output stream for debugging
2351 * \param *x Vector to look from
2352 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case.
2353 */
2354list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2355{
2356 TesselPoint *trianglePoints[3];
2357 TesselPoint *SecondPoint = NULL;
2358
2359 if (LinesOnBoundary.empty()) {
2360 *out << Verbose(0) << "Error: There is no tesselation structure to compare the point with, please create one first.";
2361 return NULL;
2362 }
2363
2364 trianglePoints[0] = findClosestPoint(x, SecondPoint, LC);
2365
2366 // check whether closest point is "too close" :), then it's inside
2367 if (trianglePoints[0] == NULL) {
2368 *out << Verbose(1) << "Is the only point, no one else is closeby." << endl;
2369 return NULL;
2370 }
2371 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) {
2372 *out << Verbose(1) << "Point is right on a tesselation point, no nearest triangle." << endl;
2373 return NULL;
2374 }
2375 list<TesselPoint*> *connectedPoints = getCircleOfConnectedPoints(out, trianglePoints[0]);
2376 list<TesselPoint*> *connectedClosestPoints = getNeighboursonCircleofConnectedPoints(out, connectedPoints, trianglePoints[0], x);
2377 delete(connectedPoints);
2378 trianglePoints[1] = connectedClosestPoints->front();
2379 trianglePoints[2] = connectedClosestPoints->back();
2380 for (int i=0;i<3;i++) {
2381 if (trianglePoints[i] == NULL) {
2382 *out << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl;
2383 }
2384 //*out << Verbose(1) << "List of possible points:" << endl;
2385 //*out << Verbose(2) << *trianglePoints[i] << endl;
2386 }
2387
2388 list<BoundaryTriangleSet*> *triangles = FindTriangles(trianglePoints);
2389
2390 delete(connectedClosestPoints);
2391
2392 if (triangles->empty()) {
2393 *out << Verbose(0) << "Error: There is no nearest triangle. Please check the tesselation structure.";
2394 return NULL;
2395 } else
2396 return triangles;
2397};
2398
2399/** Finds closest triangle to a point.
2400 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
2401 * \param *out output stream for debugging
2402 * \param *x Vector to look from
2403 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
2404 */
2405class BoundaryTriangleSet * Tesselation::FindClosestTriangleToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2406{
2407 class BoundaryTriangleSet *result = NULL;
2408 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(out, x, LC);
2409
2410 if (triangles == NULL)
2411 return NULL;
2412
2413 if (x->ScalarProduct(&triangles->front()->NormalVector) < 0)
2414 result = triangles->back();
2415 else
2416 result = triangles->front();
2417
2418 delete(triangles);
2419 return result;
2420};
2421
2422/** Checks whether the provided Vector is within the tesselation structure.
2423 *
2424 * @param point of which to check the position
2425 * @param *LC LinkedCell structure
2426 *
2427 * @return true if the point is inside the tesselation structure, false otherwise
2428 */
2429bool Tesselation::IsInnerPoint(ofstream *out, Vector Point, LinkedCell* LC)
2430{
2431 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, &Point, LC);
2432 if (result == NULL)
2433 return true;
2434 if (Point.ScalarProduct(&result->NormalVector) < 0)
2435 return true;
2436 else
2437 return false;
2438}
2439
2440/** Checks whether the provided TesselPoint is within the tesselation structure.
2441 *
2442 * @param *Point of which to check the position
2443 * @param *LC Linked Cell structure
2444 *
2445 * @return true if the point is inside the tesselation structure, false otherwise
2446 */
2447bool Tesselation::IsInnerPoint(ofstream *out, TesselPoint *Point, LinkedCell* LC)
2448{
2449 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, Point->node, LC);
2450 if (result == NULL)
2451 return true;
2452 if (Point->node->ScalarProduct(&result->NormalVector) < 0)
2453 return true;
2454 else
2455 return false;
2456}
2457
2458/** Gets all points connected to the provided point by triangulation lines.
2459 *
2460 * @param *Point of which get all connected points
2461 *
2462 * @return list of the all points linked to the provided one
2463 */
2464list<TesselPoint*> * Tesselation::getCircleOfConnectedPoints(ofstream *out, TesselPoint* Point)
2465{
2466 list<TesselPoint*> *connectedPoints = new list<TesselPoint*>;
2467 class BoundaryPointSet *ReferencePoint = NULL;
2468 TesselPoint* current;
2469 bool takePoint = false;
2470
2471 // find the respective boundary point
2472 PointMap::iterator PointRunner = PointsOnBoundary.find(Point->nr);
2473 if (PointRunner != PointsOnBoundary.end()) {
2474 ReferencePoint = PointRunner->second;
2475 } else {
2476 *out << Verbose(2) << "getCircleOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
2477 ReferencePoint = NULL;
2478 }
2479
2480 // little trick so that we look just through lines connect to the BoundaryPoint
2481 // OR fall-back to look through all lines if there is no such BoundaryPoint
2482 LineMap *Lines = &LinesOnBoundary;
2483 if (ReferencePoint != NULL)
2484 Lines = &(ReferencePoint->lines);
2485 LineMap::iterator findLines = Lines->begin();
2486 while (findLines != Lines->end()) {
2487 takePoint = false;
2488
2489 if (findLines->second->endpoints[0]->Nr == Point->nr) {
2490 takePoint = true;
2491 current = findLines->second->endpoints[1]->node;
2492 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
2493 takePoint = true;
2494 current = findLines->second->endpoints[0]->node;
2495 }
2496
2497 if (takePoint) {
2498 *out << Verbose(3) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is taken into the circle." << endl;
2499 connectedPoints->push_back(current);
2500 }
2501
2502 findLines++;
2503 }
2504
2505 if (connectedPoints->size() == 0) { // if have not found any points
2506 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2507 return NULL;
2508 }
2509 return connectedPoints;
2510}
2511
2512/** Gets the two neighbouring points with respect to a reference line to the provided point.
2513 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2514 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2515 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2516 * triangle we are looking for.
2517 *
2518 * @param *out output stream for debugging
2519 * @param *connectedPoints list of connected points to the central \a *Point
2520 * @param *Point of which get all connected points
2521 * @param *Reference Vector to be checked whether it is an inner point
2522 *
2523 * @return list of the two points linked to the provided one and closest to the point to be checked,
2524 */
2525list<TesselPoint*> * Tesselation::getNeighboursonCircleofConnectedPoints(ofstream *out, list<TesselPoint*> *connectedPoints, TesselPoint* Point, Vector* Reference)
2526{
2527 map<double, TesselPoint*> anglesOfPoints;
2528 map<double, TesselPoint*>::iterator runner;
2529 ;
2530 Vector center, PlaneNormal, OrthogonalVector, helper, AngleZero;
2531
2532 if (connectedPoints->size() == 0) { // if have not found any points
2533 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2534 return NULL;
2535 }
2536
2537 // calculate central point
2538 for (list<TesselPoint*>::iterator TesselRunner = connectedPoints->begin(); TesselRunner != connectedPoints->end(); TesselRunner++)
2539 center.AddVector((*TesselRunner)->node);
2540 //*out << "Summed vectors " << center << "; number of points " << connectedPoints.size()
2541 // << "; scale factor " << 1.0/connectedPoints.size();
2542 center.Scale(1.0/connectedPoints->size());
2543 *out << Verbose(4) << "INFO: Calculated center of all circle points is " << center << "." << endl;
2544
2545 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
2546 PlaneNormal.CopyVector(Point->node);
2547 PlaneNormal.SubtractVector(&center);
2548 PlaneNormal.Normalize();
2549 *out << Verbose(4) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
2550
2551 // construct one orthogonal vector
2552 AngleZero.CopyVector(Reference);
2553 AngleZero.SubtractVector(Point->node);
2554 AngleZero.ProjectOntoPlane(&PlaneNormal);
2555 *out << Verbose(4) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
2556 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
2557 *out << Verbose(4) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
2558
2559 // go through all connected points and calculate angle
2560 for (list<TesselPoint*>::iterator listRunner = connectedPoints->begin(); listRunner != connectedPoints->end(); listRunner++) {
2561 helper.CopyVector((*listRunner)->node);
2562 helper.SubtractVector(Point->node);
2563 helper.ProjectOntoPlane(&PlaneNormal);
2564 double angle = getAngle(helper, AngleZero, OrthogonalVector);
2565 *out << Verbose(2) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
2566 anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
2567 }
2568
2569 list<TesselPoint*> *result = new list<TesselPoint*>;
2570 runner = anglesOfPoints.begin();
2571 result->push_back(runner->second);
2572 runner = anglesOfPoints.end();
2573 runner--;
2574 result->push_back(runner->second);
2575
2576 *out << Verbose(2) << "List of closest points has " << result->size() << " elements, which are "
2577 << *(result->front()) << " and " << *(result->back()) << endl;
2578
2579 return result;
2580}
2581
2582/** Removes a boundary point from the envelope while keeping it closed.
2583 * We create new triangles and remove the old ones connected to the point.
2584 * \param *out output stream for debugging
2585 * \param *point point to be removed
2586 * \return volume added to the volume inside the tesselated surface by the removal
2587 */
2588double Tesselation::RemovePointFromTesselatedSurface(ofstream *out, class BoundaryPointSet *point) {
2589 class BoundaryLineSet *line = NULL;
2590 class BoundaryTriangleSet *triangle = NULL;
2591 Vector OldPoint, TetraederVector[3];
2592 double volume = 0;
2593 int *numbers = NULL;
2594 int count = 0;
2595 int i;
2596
2597 // copy old location for the volume
2598 OldPoint.CopyVector(point->node->node);
2599
2600 // get list of connected points
2601 if (point->lines.empty()) {
2602 *out << Verbose(1) << "ERROR: Cannot remove the point " << *point << ", it's connected to no lines!" << endl;
2603 return 0.;
2604 }
2605 list<TesselPoint*> *CircleofPoints = getCircleOfConnectedPoints(out, point->node);
2606
2607 // remove all triangles
2608 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
2609 count+=LineRunner->second->triangles.size();
2610 numbers = new int[count];
2611 i=0;
2612 for (LineMap::iterator LineRunner = point->lines.begin(); (point != NULL) && (LineRunner != point->lines.end()); LineRunner++) {
2613 line = LineRunner->second;
2614 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
2615 triangle = TriangleRunner->second;
2616 *out << Verbose(2) << "Erasing triangle " << *triangle << "." << endl;
2617 numbers[i++] = triangle->Nr;
2618 RemoveTesselationTriangle(triangle);
2619 triangle = NULL;
2620 }
2621 }
2622 *out << Verbose(1) << i << " triangles were removed." << endl;
2623
2624 // re-create all triangles by going through connected points list
2625 list<TesselPoint*>::iterator CircleRunner = CircleofPoints->begin();
2626 list<TesselPoint*>::iterator OtherCircleRunner = CircleofPoints->begin();
2627 class TesselPoint *CentralNode = *CircleRunner;
2628 // advance two with CircleRunner and one with OtherCircleRunner
2629 CircleRunner++;
2630 CircleRunner++;
2631 OtherCircleRunner++;
2632 i=0;
2633 cout << Verbose(2) << "INFO: CentralNode is " << *CentralNode << "." << endl;
2634 for (; (OtherCircleRunner != CircleofPoints->end()) && (CircleRunner != CircleofPoints->end()); (CircleRunner++), (OtherCircleRunner++)) {
2635 cout << Verbose(3) << "INFO: CircleRunner's node is " << **CircleRunner << "." << endl;
2636 cout << Verbose(3) << "INFO: OtherCircleRunner's node is " << **OtherCircleRunner << "." << endl;
2637 *out << Verbose(4) << "Adding new triangle points."<< endl;
2638 AddTesselationPoint(CentralNode, 0);
2639 AddTesselationPoint(*OtherCircleRunner, 1);
2640 AddTesselationPoint(*CircleRunner, 2);
2641 *out << Verbose(4) << "Adding new triangle lines."<< endl;
2642 AddTesselationLine(TPS[0], TPS[1], 0);
2643 AddTesselationLine(TPS[0], TPS[2], 1);
2644 AddTesselationLine(TPS[1], TPS[2], 2);
2645 BTS = new class BoundaryTriangleSet(BLS, numbers[i]);
2646 TrianglesOnBoundary.insert(TrianglePair(numbers[i], BTS));
2647 *out << Verbose(4) << "Created triangle " << *BTS << "." << endl;
2648 // calculate volume summand as a general tetraeder
2649 for (int j=0;j<3;j++) {
2650 TetraederVector[j].CopyVector(TPS[j]->node->node);
2651 TetraederVector[j].SubtractVector(&OldPoint);
2652 }
2653 OldPoint.CopyVector(&TetraederVector[0]);
2654 OldPoint.VectorProduct(&TetraederVector[1]);
2655 volume += 1./6. * fabs(OldPoint.ScalarProduct(&TetraederVector[2]));
2656 // advance number
2657 i++;
2658 if (i >= count)
2659 *out << Verbose(2) << "WARNING: Maximum of numbers reached!" << endl;
2660 }
2661 *out << Verbose(1) << i << " triangles were created." << endl;
2662
2663 delete[](numbers);
2664
2665 return volume;
2666};
2667
2668/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
2669 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
2670 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
2671 * \param TPS[3] nodes of the triangle
2672 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
2673 */
2674bool CheckLineCriteriaforDegeneratedTriangle(class BoundaryPointSet *nodes[3])
2675{
2676 bool result = false;
2677 int counter = 0;
2678
2679 // check all three points
2680 for (int i=0;i<3;i++)
2681 for (int j=i+1; j<3; j++) {
2682 if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
2683 LineMap::iterator FindLine;
2684 pair<LineMap::iterator,LineMap::iterator> FindPair;
2685 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
2686 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
2687 // If there is a line with less than two attached triangles, we don't need a new line.
2688 if (FindLine->second->triangles.size() < 2) {
2689 counter++;
2690 break; // increase counter only once per edge
2691 }
2692 }
2693 } else { // no line
2694 cout << Verbose(1) << "The line between " << nodes[i] << " and " << nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
2695 result = true;
2696 }
2697 }
2698 if (counter > 1) {
2699 cout << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
2700 result = true;
2701 }
2702 return result;
2703};
2704
2705
2706/** Sort function for the candidate list.
2707 */
2708bool sortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2)
2709{
2710 Vector BaseLineVector, OrthogonalVector, helper;
2711 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
2712 cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
2713 //return false;
2714 exit(1);
2715 }
2716 // create baseline vector
2717 BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
2718 BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2719 BaseLineVector.Normalize();
2720
2721 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
2722 helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
2723 helper.SubtractVector(candidate1->point->node);
2724 OrthogonalVector.CopyVector(&helper);
2725 helper.VectorProduct(&BaseLineVector);
2726 OrthogonalVector.SubtractVector(&helper);
2727 OrthogonalVector.Normalize();
2728
2729 // calculate both angles and correct with in-plane vector
2730 helper.CopyVector(candidate1->point->node);
2731 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2732 double phi = BaseLineVector.Angle(&helper);
2733 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
2734 phi = 2.*M_PI - phi;
2735 }
2736 helper.CopyVector(candidate2->point->node);
2737 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2738 double psi = BaseLineVector.Angle(&helper);
2739 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
2740 psi = 2.*M_PI - psi;
2741 }
2742
2743 cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
2744 cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
2745
2746 // return comparison
2747 return phi < psi;
2748};
2749
2750/**
2751 * Finds the point which is second closest to the provided one.
2752 *
2753 * @param Point to which to find the second closest other point
2754 * @param linked cell structure
2755 *
2756 * @return point which is second closest to the provided one
2757 */
2758TesselPoint* findSecondClosestPoint(const Vector* Point, LinkedCell* LC)
2759{
2760 LinkedNodes *List = NULL;
2761 TesselPoint* closestPoint = NULL;
2762 TesselPoint* secondClosestPoint = NULL;
2763 double distance = 1e16;
2764 double secondDistance = 1e16;
2765 Vector helper;
2766 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2767
2768 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
2769 for(int i=0;i<NDIM;i++) // store indices of this cell
2770 N[i] = LC->n[i];
2771 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2772
2773 LC->GetNeighbourBounds(Nlower, Nupper);
2774 //cout << endl;
2775 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2776 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2777 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2778 List = LC->GetCurrentCell();
2779 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
2780 if (List != NULL) {
2781 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2782 helper.CopyVector(Point);
2783 helper.SubtractVector((*Runner)->node);
2784 double currentNorm = helper. Norm();
2785 if (currentNorm < distance) {
2786 // remember second point
2787 secondDistance = distance;
2788 secondClosestPoint = closestPoint;
2789 // mark down new closest point
2790 distance = currentNorm;
2791 closestPoint = (*Runner);
2792 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
2793 }
2794 }
2795 } else {
2796 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
2797 << LC->n[2] << " is invalid!" << endl;
2798 }
2799 }
2800
2801 return secondClosestPoint;
2802};
2803
2804
2805
2806/**
2807 * Finds the point which is closest to the provided one.
2808 *
2809 * @param Point to which to find the closest other point
2810 * @param SecondPoint the second closest other point on return, NULL if none found
2811 * @param linked cell structure
2812 *
2813 * @return point which is closest to the provided one, NULL if none found
2814 */
2815TesselPoint* findClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, LinkedCell* LC)
2816{
2817 LinkedNodes *List = NULL;
2818 TesselPoint* closestPoint = NULL;
2819 SecondPoint = NULL;
2820 double distance = 1e16;
2821 double secondDistance = 1e16;
2822 Vector helper;
2823 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2824
2825 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
2826 for(int i=0;i<NDIM;i++) // store indices of this cell
2827 N[i] = LC->n[i];
2828 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2829
2830 LC->GetNeighbourBounds(Nlower, Nupper);
2831 //cout << endl;
2832 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2833 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2834 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2835 List = LC->GetCurrentCell();
2836 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
2837 if (List != NULL) {
2838 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2839 helper.CopyVector(Point);
2840 helper.SubtractVector((*Runner)->node);
2841 double currentNorm = helper. Norm();
2842 if (currentNorm < distance) {
2843 secondDistance = distance;
2844 SecondPoint = closestPoint;
2845 distance = currentNorm;
2846 closestPoint = (*Runner);
2847 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
2848 } else if (currentNorm < secondDistance) {
2849 secondDistance = currentNorm;
2850 SecondPoint = (*Runner);
2851 cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
2852 }
2853 }
2854 } else {
2855 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
2856 << LC->n[2] << " is invalid!" << endl;
2857 }
2858 }
2859
2860 return closestPoint;
2861};
2862
2863
2864/**
2865 * Finds triangles belonging to the three provided points.
2866 *
2867 * @param *Points[3] list, is expected to contain three points
2868 *
2869 * @return triangles which belong to the provided points, will be empty if there are none,
2870 * will usually be one, in case of degeneration, there will be two
2871 */
2872list<BoundaryTriangleSet*> *Tesselation::FindTriangles(TesselPoint* Points[3])
2873{
2874 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>;
2875 LineMap::iterator FindLine;
2876 PointMap::iterator FindPoint;
2877 TriangleMap::iterator FindTriangle;
2878 class BoundaryPointSet *TrianglePoints[3];
2879
2880 for (int i = 0; i < 3; i++) {
2881 FindPoint = PointsOnBoundary.find(Points[i]->nr);
2882 if (FindPoint != PointsOnBoundary.end()) {
2883 TrianglePoints[i] = FindPoint->second;
2884 } else {
2885 TrianglePoints[i] = NULL;
2886 }
2887 }
2888
2889 // checks lines between the points in the Points for their adjacent triangles
2890 for (int i = 0; i < 3; i++) {
2891 if (TrianglePoints[i] != NULL) {
2892 for (int j = i; j < 3; j++) {
2893 if (TrianglePoints[j] != NULL) {
2894 FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr);
2895 if (FindLine != TrianglePoints[i]->lines.end()) {
2896 for (; FindLine->first == TrianglePoints[j]->node->nr; FindLine++) {
2897 FindTriangle = FindLine->second->triangles.begin();
2898 for (; FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
2899 if ((
2900 (FindTriangle->second->endpoints[0] == TrianglePoints[0])
2901 || (FindTriangle->second->endpoints[0] == TrianglePoints[1])
2902 || (FindTriangle->second->endpoints[0] == TrianglePoints[2])
2903 ) && (
2904 (FindTriangle->second->endpoints[1] == TrianglePoints[0])
2905 || (FindTriangle->second->endpoints[1] == TrianglePoints[1])
2906 || (FindTriangle->second->endpoints[1] == TrianglePoints[2])
2907 ) && (
2908 (FindTriangle->second->endpoints[2] == TrianglePoints[0])
2909 || (FindTriangle->second->endpoints[2] == TrianglePoints[1])
2910 || (FindTriangle->second->endpoints[2] == TrianglePoints[2])
2911 )
2912 ) {
2913 result->push_back(FindTriangle->second);
2914 }
2915 }
2916 }
2917 // Is it sufficient to consider one of the triangle lines for this.
2918 return result;
2919
2920 }
2921 }
2922 }
2923 }
2924 }
2925
2926 return result;
2927}
2928
2929/** Gets the angle between a point and a reference relative to the provided center.
2930 * We have two shanks point and reference between which the angle is calculated
2931 * and by scalar product with OrthogonalVector we decide the interval.
2932 * @param point to calculate the angle for
2933 * @param reference to which to calculate the angle
2934 * @param OrthogonalVector points in direction of [pi,2pi] interval
2935 *
2936 * @return angle between point and reference
2937 */
2938double getAngle(const Vector &point, const Vector &reference, const Vector OrthogonalVector)
2939{
2940 if (reference.IsZero())
2941 return M_PI;
2942
2943 // calculate both angles and correct with in-plane vector
2944 if (point.IsZero())
2945 return M_PI;
2946 double phi = point.Angle(&reference);
2947 if (OrthogonalVector.ScalarProduct(&point) > 0) {
2948 phi = 2.*M_PI - phi;
2949 }
2950
2951 cout << Verbose(3) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
2952
2953 return phi;
2954}
2955
Note: See TracBrowser for help on using the repository browser.