source: src/tesselation.cpp@ cfe56d

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since cfe56d was cfe56d, checked in by Frederik Heber <heber@…>, 16 years ago

BUGFIX of Tesselation::FindStartingTriangle() - second Point Temporary not initialised to NULL.

  • this caused a segfault with tesselating cluster with radius 1., as the second point added was not present actually.
  • Property mode set to 100644
File size: 231.6 KB
RevLine 
[357fba]1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
[f66195]8#include <fstream>
[f04f11]9#include <assert.h>
[f66195]10
[a2028e]11#include "helpers.hpp"
[f67b6e]12#include "info.hpp"
[57066a]13#include "linkedcell.hpp"
[e138de]14#include "log.hpp"
[357fba]15#include "tesselation.hpp"
[57066a]16#include "tesselationhelpers.hpp"
[8db598]17#include "triangleintersectionlist.hpp"
[57066a]18#include "vector.hpp"
[f66195]19#include "verbose.hpp"
[57066a]20
21class molecule;
[357fba]22
23// ======================================== Points on Boundary =================================
24
[16d866]25/** Constructor of BoundaryPointSet.
26 */
[1e168b]27BoundaryPointSet::BoundaryPointSet() :
[6613ec]28 LinesCount(0), value(0.), Nr(-1)
[357fba]29{
[6613ec]30 Info FunctionInfo(__func__);
[a67d19]31 DoLog(1) && (Log() << Verbose(1) << "Adding noname." << endl);
[6613ec]32}
33;
[357fba]34
[16d866]35/** Constructor of BoundaryPointSet with Tesselpoint.
36 * \param *Walker TesselPoint this boundary point represents
37 */
[9473f6]38BoundaryPointSet::BoundaryPointSet(TesselPoint * const Walker) :
[6613ec]39 LinesCount(0), node(Walker), value(0.), Nr(Walker->nr)
[357fba]40{
[6613ec]41 Info FunctionInfo(__func__);
[a67d19]42 DoLog(1) && (Log() << Verbose(1) << "Adding Node " << *Walker << endl);
[6613ec]43}
44;
[357fba]45
[16d866]46/** Destructor of BoundaryPointSet.
47 * Sets node to NULL to avoid removing the original, represented TesselPoint.
48 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
49 */
[357fba]50BoundaryPointSet::~BoundaryPointSet()
51{
[6613ec]52 Info FunctionInfo(__func__);
[f67b6e]53 //Log() << Verbose(0) << "Erasing point nr. " << Nr << "." << endl;
[357fba]54 if (!lines.empty())
[6613ec]55 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl);
[357fba]56 node = NULL;
[6613ec]57}
58;
[357fba]59
[16d866]60/** Add a line to the LineMap of this point.
61 * \param *line line to add
62 */
[9473f6]63void BoundaryPointSet::AddLine(BoundaryLineSet * const line)
[357fba]64{
[6613ec]65 Info FunctionInfo(__func__);
[a67d19]66 DoLog(1) && (Log() << Verbose(1) << "Adding " << *this << " to line " << *line << "." << endl);
[6613ec]67 if (line->endpoints[0] == this) {
68 lines.insert(LinePair(line->endpoints[1]->Nr, line));
69 } else {
70 lines.insert(LinePair(line->endpoints[0]->Nr, line));
71 }
[357fba]72 LinesCount++;
[6613ec]73}
74;
[357fba]75
[16d866]76/** output operator for BoundaryPointSet.
77 * \param &ost output stream
78 * \param &a boundary point
79 */
[776b64]80ostream & operator <<(ostream &ost, const BoundaryPointSet &a)
[357fba]81{
[57066a]82 ost << "[" << a.Nr << "|" << a.node->Name << " at " << *a.node->node << "]";
[357fba]83 return ost;
84}
85;
86
87// ======================================== Lines on Boundary =================================
88
[16d866]89/** Constructor of BoundaryLineSet.
90 */
[1e168b]91BoundaryLineSet::BoundaryLineSet() :
[6613ec]92 Nr(-1)
[357fba]93{
[6613ec]94 Info FunctionInfo(__func__);
[357fba]95 for (int i = 0; i < 2; i++)
96 endpoints[i] = NULL;
[6613ec]97}
98;
[357fba]99
[16d866]100/** Constructor of BoundaryLineSet with two endpoints.
101 * Adds line automatically to each endpoints' LineMap
102 * \param *Point[2] array of two boundary points
103 * \param number number of the list
104 */
[9473f6]105BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point[2], const int number)
[357fba]106{
[6613ec]107 Info FunctionInfo(__func__);
[357fba]108 // set number
109 Nr = number;
110 // set endpoints in ascending order
111 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
112 // add this line to the hash maps of both endpoints
113 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
114 Point[1]->AddLine(this); //
[1e168b]115 // set skipped to false
116 skipped = false;
[357fba]117 // clear triangles list
[a67d19]118 DoLog(0) && (Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl);
[6613ec]119}
120;
[357fba]121
[9473f6]122/** Constructor of BoundaryLineSet with two endpoints.
123 * Adds line automatically to each endpoints' LineMap
124 * \param *Point1 first boundary point
125 * \param *Point2 second boundary point
126 * \param number number of the list
127 */
128BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point1, BoundaryPointSet * const Point2, const int number)
129{
130 Info FunctionInfo(__func__);
131 // set number
132 Nr = number;
133 // set endpoints in ascending order
134 SetEndpointsOrdered(endpoints, Point1, Point2);
135 // add this line to the hash maps of both endpoints
136 Point1->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
137 Point2->AddLine(this); //
138 // set skipped to false
139 skipped = false;
140 // clear triangles list
[a67d19]141 DoLog(0) && (Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl);
[6613ec]142}
143;
[9473f6]144
[16d866]145/** Destructor for BoundaryLineSet.
146 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
147 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
148 */
[357fba]149BoundaryLineSet::~BoundaryLineSet()
150{
[6613ec]151 Info FunctionInfo(__func__);
[357fba]152 int Numbers[2];
[16d866]153
154 // get other endpoint number of finding copies of same line
155 if (endpoints[1] != NULL)
156 Numbers[0] = endpoints[1]->Nr;
157 else
158 Numbers[0] = -1;
159 if (endpoints[0] != NULL)
160 Numbers[1] = endpoints[0]->Nr;
161 else
162 Numbers[1] = -1;
163
[357fba]164 for (int i = 0; i < 2; i++) {
[16d866]165 if (endpoints[i] != NULL) {
166 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
167 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
168 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
169 if ((*Runner).second == this) {
[f67b6e]170 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[16d866]171 endpoints[i]->lines.erase(Runner);
172 break;
173 }
174 } else { // there's just a single line left
[57066a]175 if (endpoints[i]->lines.erase(Nr)) {
[f67b6e]176 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[57066a]177 }
[357fba]178 }
[16d866]179 if (endpoints[i]->lines.empty()) {
[f67b6e]180 //Log() << Verbose(0) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
[16d866]181 if (endpoints[i] != NULL) {
[6613ec]182 delete (endpoints[i]);
[16d866]183 endpoints[i] = NULL;
184 }
185 }
186 }
[357fba]187 }
188 if (!triangles.empty())
[6613ec]189 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl);
190}
191;
[357fba]192
[16d866]193/** Add triangle to TriangleMap of this boundary line.
194 * \param *triangle to add
195 */
[9473f6]196void BoundaryLineSet::AddTriangle(BoundaryTriangleSet * const triangle)
[357fba]197{
[6613ec]198 Info FunctionInfo(__func__);
[a67d19]199 DoLog(0) && (Log() << Verbose(0) << "Add " << triangle->Nr << " to line " << *this << "." << endl);
[357fba]200 triangles.insert(TrianglePair(triangle->Nr, triangle));
[6613ec]201}
202;
[357fba]203
204/** Checks whether we have a common endpoint with given \a *line.
205 * \param *line other line to test
206 * \return true - common endpoint present, false - not connected
207 */
[9473f6]208bool BoundaryLineSet::IsConnectedTo(const BoundaryLineSet * const line) const
[357fba]209{
[6613ec]210 Info FunctionInfo(__func__);
[357fba]211 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
212 return true;
213 else
214 return false;
[6613ec]215}
216;
[357fba]217
218/** Checks whether the adjacent triangles of a baseline are convex or not.
[57066a]219 * We sum the two angles of each height vector with respect to the center of the baseline.
[357fba]220 * If greater/equal M_PI than we are convex.
221 * \param *out output stream for debugging
222 * \return true - triangles are convex, false - concave or less than two triangles connected
223 */
[9473f6]224bool BoundaryLineSet::CheckConvexityCriterion() const
[357fba]225{
[6613ec]226 Info FunctionInfo(__func__);
[5c7bf8]227 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
[357fba]228 // get the two triangles
[5c7bf8]229 if (triangles.size() != 2) {
[6613ec]230 DoeLog(0) && (eLog() << Verbose(0) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl);
[1d9b7aa]231 return true;
[357fba]232 }
[5c7bf8]233 // check normal vectors
[357fba]234 // have a normal vector on the base line pointing outwards
[f67b6e]235 //Log() << Verbose(0) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
[62bb91]236 BaseLineCenter.CopyVector(endpoints[0]->node->node);
237 BaseLineCenter.AddVector(endpoints[1]->node->node);
[6613ec]238 BaseLineCenter.Scale(1. / 2.);
[62bb91]239 BaseLine.CopyVector(endpoints[0]->node->node);
240 BaseLine.SubtractVector(endpoints[1]->node->node);
[f67b6e]241 //Log() << Verbose(0) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
[357fba]242
[62bb91]243 BaseLineNormal.Zero();
[5c7bf8]244 NormalCheck.Zero();
245 double sign = -1.;
[6613ec]246 int i = 0;
[62bb91]247 class BoundaryPointSet *node = NULL;
[6613ec]248 for (TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
[f67b6e]249 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
[5c7bf8]250 NormalCheck.AddVector(&runner->second->NormalVector);
251 NormalCheck.Scale(sign);
252 sign = -sign;
[57066a]253 if (runner->second->NormalVector.NormSquared() > MYEPSILON)
[6613ec]254 BaseLineNormal.CopyVector(&runner->second->NormalVector); // yes, copy second on top of first
[57066a]255 else {
[6613ec]256 DoeLog(0) && (eLog() << Verbose(0) << "Triangle " << *runner->second << " has zero normal vector!" << endl);
[57066a]257 }
[62bb91]258 node = runner->second->GetThirdEndpoint(this);
259 if (node != NULL) {
[f67b6e]260 //Log() << Verbose(0) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
[62bb91]261 helper[i].CopyVector(node->node->node);
262 helper[i].SubtractVector(&BaseLineCenter);
[6613ec]263 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
[f67b6e]264 //Log() << Verbose(0) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
[62bb91]265 i++;
266 } else {
[6613ec]267 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl);
[62bb91]268 return true;
269 }
270 }
[f67b6e]271 //Log() << Verbose(0) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
[5c7bf8]272 if (NormalCheck.NormSquared() < MYEPSILON) {
[a67d19]273 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl);
[5c7bf8]274 return true;
[62bb91]275 }
[57066a]276 BaseLineNormal.Scale(-1.);
[f1cccd]277 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
[1d9b7aa]278 if ((angle - M_PI) > -MYEPSILON) {
[a67d19]279 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Angle is greater than pi: convex." << endl);
[357fba]280 return true;
[1d9b7aa]281 } else {
[a67d19]282 DoLog(0) && (Log() << Verbose(0) << "REJECT: Angle is less than pi: concave." << endl);
[357fba]283 return false;
[1d9b7aa]284 }
[357fba]285}
286
287/** Checks whether point is any of the two endpoints this line contains.
288 * \param *point point to test
289 * \return true - point is of the line, false - is not
290 */
[9473f6]291bool BoundaryLineSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
[357fba]292{
[6613ec]293 Info FunctionInfo(__func__);
294 for (int i = 0; i < 2; i++)
[357fba]295 if (point == endpoints[i])
296 return true;
297 return false;
[6613ec]298}
299;
[357fba]300
[62bb91]301/** Returns other endpoint of the line.
302 * \param *point other endpoint
303 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
304 */
[9473f6]305class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(const BoundaryPointSet * const point) const
[62bb91]306{
[6613ec]307 Info FunctionInfo(__func__);
[62bb91]308 if (endpoints[0] == point)
309 return endpoints[1];
310 else if (endpoints[1] == point)
311 return endpoints[0];
312 else
313 return NULL;
[6613ec]314}
315;
[62bb91]316
[16d866]317/** output operator for BoundaryLineSet.
318 * \param &ost output stream
319 * \param &a boundary line
320 */
[6613ec]321ostream & operator <<(ostream &ost, const BoundaryLineSet &a)
[357fba]322{
[57066a]323 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "]";
[357fba]324 return ost;
[6613ec]325}
326;
[357fba]327
328// ======================================== Triangles on Boundary =================================
329
[16d866]330/** Constructor for BoundaryTriangleSet.
331 */
[1e168b]332BoundaryTriangleSet::BoundaryTriangleSet() :
333 Nr(-1)
[357fba]334{
[6613ec]335 Info FunctionInfo(__func__);
336 for (int i = 0; i < 3; i++) {
337 endpoints[i] = NULL;
338 lines[i] = NULL;
339 }
340}
341;
[357fba]342
[16d866]343/** Constructor for BoundaryTriangleSet with three lines.
344 * \param *line[3] lines that make up the triangle
345 * \param number number of triangle
346 */
[9473f6]347BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
[1e168b]348 Nr(number)
[357fba]349{
[6613ec]350 Info FunctionInfo(__func__);
[357fba]351 // set number
352 // set lines
[f67b6e]353 for (int i = 0; i < 3; i++) {
354 lines[i] = line[i];
355 lines[i]->AddTriangle(this);
356 }
[357fba]357 // get ascending order of endpoints
[f67b6e]358 PointMap OrderMap;
[357fba]359 for (int i = 0; i < 3; i++)
360 // for all three lines
[f67b6e]361 for (int j = 0; j < 2; j++) { // for both endpoints
[6613ec]362 OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
[f67b6e]363 // and we don't care whether insertion fails
364 }
[357fba]365 // set endpoints
366 int Counter = 0;
[a67d19]367 DoLog(0) && (Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl);
[f67b6e]368 for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
369 endpoints[Counter] = runner->second;
[a67d19]370 DoLog(0) && (Log() << Verbose(0) << " " << *endpoints[Counter] << endl);
[f67b6e]371 Counter++;
372 }
373 if (Counter < 3) {
[6613ec]374 DoeLog(0) && (eLog() << Verbose(0) << "We have a triangle with only two distinct endpoints!" << endl);
[f67b6e]375 performCriticalExit();
376 }
[6613ec]377}
378;
[357fba]379
[16d866]380/** Destructor of BoundaryTriangleSet.
381 * Removes itself from each of its lines' LineMap and removes them if necessary.
382 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
383 */
[357fba]384BoundaryTriangleSet::~BoundaryTriangleSet()
385{
[6613ec]386 Info FunctionInfo(__func__);
[357fba]387 for (int i = 0; i < 3; i++) {
[16d866]388 if (lines[i] != NULL) {
[57066a]389 if (lines[i]->triangles.erase(Nr)) {
[f67b6e]390 //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
[57066a]391 }
[16d866]392 if (lines[i]->triangles.empty()) {
[6613ec]393 //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
394 delete (lines[i]);
395 lines[i] = NULL;
[16d866]396 }
397 }
[357fba]398 }
[f67b6e]399 //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl;
[6613ec]400}
401;
[357fba]402
403/** Calculates the normal vector for this triangle.
404 * Is made unique by comparison with \a OtherVector to point in the other direction.
405 * \param &OtherVector direction vector to make normal vector unique.
406 */
[9473f6]407void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
[357fba]408{
[6613ec]409 Info FunctionInfo(__func__);
[357fba]410 // get normal vector
411 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
412
413 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
[658efb]414 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
[357fba]415 NormalVector.Scale(-1.);
[a67d19]416 DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl);
[6613ec]417}
418;
[357fba]419
[97498a]420/** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
[357fba]421 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
[9473f6]422 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
[7dea7c]423 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
424 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
425 * the first two basepoints) or not.
[357fba]426 * \param *out output stream for debugging
427 * \param *MolCenter offset vector of line
428 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
429 * \param *Intersection intersection on plane on return
430 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
431 */
[9473f6]432bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const
[357fba]433{
[fee69b]434 Info FunctionInfo(__func__);
[357fba]435 Vector CrossPoint;
436 Vector helper;
437
[e138de]438 if (!Intersection->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, MolCenter, x)) {
[6613ec]439 DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl);
[357fba]440 return false;
441 }
442
[a67d19]443 DoLog(1) && (Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl);
444 DoLog(1) && (Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl);
445 DoLog(1) && (Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl);
[97498a]446
[fee69b]447 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) {
[a67d19]448 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl);
[fee69b]449 return true;
[6613ec]450 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) {
[a67d19]451 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl);
[fee69b]452 return true;
[6613ec]453 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) {
[a67d19]454 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl);
[fee69b]455 return true;
456 }
[357fba]457 // Calculate cross point between one baseline and the line from the third endpoint to intersection
[6613ec]458 int i = 0;
[357fba]459 do {
[6613ec]460 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(endpoints[i % 3]->node->node, endpoints[(i + 1) % 3]->node->node, endpoints[(i + 2) % 3]->node->node, Intersection, &NormalVector)) {
461 helper.CopyVector(endpoints[(i + 1) % 3]->node->node);
462 helper.SubtractVector(endpoints[i % 3]->node->node);
463 CrossPoint.SubtractVector(endpoints[i % 3]->node->node); // cross point was returned as absolute vector
464 const double s = CrossPoint.ScalarProduct(&helper) / helper.NormSquared();
[a67d19]465 DoLog(1) && (Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl);
[6613ec]466 if ((s < -MYEPSILON) || ((s - 1.) > MYEPSILON)) {
[a67d19]467 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl);
[6613ec]468 i = 4;
[fee69b]469 break;
470 }
[5c7bf8]471 i++;
[6613ec]472 } else
[fcad4b]473 break;
[6613ec]474 } while (i < 3);
475 if (i == 3) {
[a67d19]476 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl);
[357fba]477 return true;
[fcad4b]478 } else {
[a67d19]479 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl);
[357fba]480 return false;
481 }
[6613ec]482}
483;
[357fba]484
[8db598]485/** Finds the point on the triangle to the point \a *x.
486 * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
487 * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
488 * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
[9473f6]489 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
490 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
491 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
492 * the first two basepoints) or not.
493 * \param *x point
494 * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
495 * \return Distance squared between \a *x and closest point inside triangle
496 */
497double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector * const x, Vector * const ClosestPoint) const
498{
499 Info FunctionInfo(__func__);
500 Vector Direction;
501
502 // 1. get intersection with plane
[a67d19]503 DoLog(1) && (Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl);
[9473f6]504 GetCenter(&Direction);
505 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) {
506 ClosestPoint->CopyVector(x);
507 }
508
509 // 2. Calculate in plane part of line (x, intersection)
510 Vector InPlane;
511 InPlane.CopyVector(x);
[6613ec]512 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point
[9473f6]513 InPlane.ProjectOntoPlane(&NormalVector);
514 InPlane.AddVector(ClosestPoint);
515
[a67d19]516 DoLog(2) && (Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl);
517 DoLog(2) && (Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl);
518 DoLog(2) && (Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl);
[9473f6]519
520 // Calculate cross point between one baseline and the desired point such that distance is shortest
521 double ShortestDistance = -1.;
522 bool InsideFlag = false;
523 Vector CrossDirection[3];
524 Vector CrossPoint[3];
525 Vector helper;
[6613ec]526 for (int i = 0; i < 3; i++) {
[9473f6]527 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point
[6613ec]528 Direction.CopyVector(endpoints[(i + 1) % 3]->node->node);
529 Direction.SubtractVector(endpoints[i % 3]->node->node);
[9473f6]530 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
[6613ec]531 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i % 3]->node->node, endpoints[(i + 1) % 3]->node->node);
[9473f6]532 CrossDirection[i].CopyVector(&CrossPoint[i]);
533 CrossDirection[i].SubtractVector(&InPlane);
[6613ec]534 CrossPoint[i].SubtractVector(endpoints[i % 3]->node->node); // cross point was returned as absolute vector
535 const double s = CrossPoint[i].ScalarProduct(&Direction) / Direction.NormSquared();
[a67d19]536 DoLog(2) && (Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl);
[6613ec]537 if ((s >= -MYEPSILON) && ((s - 1.) <= MYEPSILON)) {
538 CrossPoint[i].AddVector(endpoints[i % 3]->node->node); // make cross point absolute again
[a67d19]539 DoLog(2) && (Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i % 3]->node->node << " and " << *endpoints[(i + 1) % 3]->node->node << "." << endl);
[9473f6]540 const double distance = CrossPoint[i].DistanceSquared(x);
541 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
542 ShortestDistance = distance;
543 ClosestPoint->CopyVector(&CrossPoint[i]);
544 }
545 } else
546 CrossPoint[i].Zero();
547 }
548 InsideFlag = true;
[6613ec]549 for (int i = 0; i < 3; i++) {
550 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i + 1) % 3]);
551 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i + 2) % 3]);
552 ;
553 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
[9473f6]554 InsideFlag = false;
555 }
556 if (InsideFlag) {
557 ClosestPoint->CopyVector(&InPlane);
558 ShortestDistance = InPlane.DistanceSquared(x);
[6613ec]559 } else { // also check endnodes
560 for (int i = 0; i < 3; i++) {
[9473f6]561 const double distance = x->DistanceSquared(endpoints[i]->node->node);
562 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
563 ShortestDistance = distance;
564 ClosestPoint->CopyVector(endpoints[i]->node->node);
565 }
566 }
567 }
[a67d19]568 DoLog(1) && (Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl);
[9473f6]569 return ShortestDistance;
[6613ec]570}
571;
[9473f6]572
[357fba]573/** Checks whether lines is any of the three boundary lines this triangle contains.
574 * \param *line line to test
575 * \return true - line is of the triangle, false - is not
576 */
[9473f6]577bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
[357fba]578{
[6613ec]579 Info FunctionInfo(__func__);
580 for (int i = 0; i < 3; i++)
[357fba]581 if (line == lines[i])
582 return true;
583 return false;
[6613ec]584}
585;
[357fba]586
587/** Checks whether point is any of the three endpoints this triangle contains.
588 * \param *point point to test
589 * \return true - point is of the triangle, false - is not
590 */
[9473f6]591bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
[357fba]592{
[6613ec]593 Info FunctionInfo(__func__);
594 for (int i = 0; i < 3; i++)
[357fba]595 if (point == endpoints[i])
596 return true;
597 return false;
[6613ec]598}
599;
[357fba]600
[7dea7c]601/** Checks whether point is any of the three endpoints this triangle contains.
602 * \param *point TesselPoint to test
603 * \return true - point is of the triangle, false - is not
604 */
[9473f6]605bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
[7dea7c]606{
[6613ec]607 Info FunctionInfo(__func__);
608 for (int i = 0; i < 3; i++)
[7dea7c]609 if (point == endpoints[i]->node)
610 return true;
611 return false;
[6613ec]612}
613;
[7dea7c]614
[357fba]615/** Checks whether three given \a *Points coincide with triangle's endpoints.
616 * \param *Points[3] pointer to BoundaryPointSet
617 * \return true - is the very triangle, false - is not
618 */
[9473f6]619bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
[357fba]620{
[6613ec]621 Info FunctionInfo(__func__);
[a67d19]622 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl);
[6613ec]623 return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
624
625 ));
626}
627;
[357fba]628
[57066a]629/** Checks whether three given \a *Points coincide with triangle's endpoints.
630 * \param *Points[3] pointer to BoundaryPointSet
631 * \return true - is the very triangle, false - is not
632 */
[9473f6]633bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
[57066a]634{
[6613ec]635 Info FunctionInfo(__func__);
636 return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
637
638 ));
639}
640;
[57066a]641
[62bb91]642/** Returns the endpoint which is not contained in the given \a *line.
643 * \param *line baseline defining two endpoints
644 * \return pointer third endpoint or NULL if line does not belong to triangle.
645 */
[9473f6]646class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
[62bb91]647{
[6613ec]648 Info FunctionInfo(__func__);
[62bb91]649 // sanity check
650 if (!ContainsBoundaryLine(line))
651 return NULL;
[6613ec]652 for (int i = 0; i < 3; i++)
[62bb91]653 if (!line->ContainsBoundaryPoint(endpoints[i]))
654 return endpoints[i];
655 // actually, that' impossible :)
656 return NULL;
[6613ec]657}
658;
[62bb91]659
660/** Calculates the center point of the triangle.
661 * Is third of the sum of all endpoints.
662 * \param *center central point on return.
663 */
[9473f6]664void BoundaryTriangleSet::GetCenter(Vector * const center) const
[62bb91]665{
[6613ec]666 Info FunctionInfo(__func__);
[62bb91]667 center->Zero();
[6613ec]668 for (int i = 0; i < 3; i++)
[62bb91]669 center->AddVector(endpoints[i]->node->node);
[6613ec]670 center->Scale(1. / 3.);
[a67d19]671 DoLog(1) && (Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl);
[62bb91]672}
673
[16d866]674/** output operator for BoundaryTriangleSet.
675 * \param &ost output stream
676 * \param &a boundary triangle
677 */
[776b64]678ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
[357fba]679{
[f67b6e]680 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
[6613ec]681 // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
682 // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
[357fba]683 return ost;
[6613ec]684}
685;
[357fba]686
[262bae]687// ======================================== Polygons on Boundary =================================
688
689/** Constructor for BoundaryPolygonSet.
690 */
691BoundaryPolygonSet::BoundaryPolygonSet() :
692 Nr(-1)
693{
694 Info FunctionInfo(__func__);
[6613ec]695}
696;
[262bae]697
698/** Destructor of BoundaryPolygonSet.
699 * Just clears endpoints.
700 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
701 */
702BoundaryPolygonSet::~BoundaryPolygonSet()
703{
704 Info FunctionInfo(__func__);
705 endpoints.clear();
[a67d19]706 DoLog(1) && (Log() << Verbose(1) << "Erasing polygon Nr." << Nr << " itself." << endl);
[6613ec]707}
708;
[262bae]709
710/** Calculates the normal vector for this triangle.
711 * Is made unique by comparison with \a OtherVector to point in the other direction.
712 * \param &OtherVector direction vector to make normal vector unique.
713 * \return allocated vector in normal direction
714 */
715Vector * BoundaryPolygonSet::GetNormalVector(const Vector &OtherVector) const
716{
717 Info FunctionInfo(__func__);
718 // get normal vector
719 Vector TemporaryNormal;
720 Vector *TotalNormal = new Vector;
721 PointSet::const_iterator Runner[3];
[6613ec]722 for (int i = 0; i < 3; i++) {
[262bae]723 Runner[i] = endpoints.begin();
[6613ec]724 for (int j = 0; j < i; j++) { // go as much further
[262bae]725 Runner[i]++;
726 if (Runner[i] == endpoints.end()) {
[6613ec]727 DoeLog(0) && (eLog() << Verbose(0) << "There are less than three endpoints in the polygon!" << endl);
[262bae]728 performCriticalExit();
729 }
730 }
731 }
732 TotalNormal->Zero();
[6613ec]733 int counter = 0;
734 for (; Runner[2] != endpoints.end();) {
[262bae]735 TemporaryNormal.MakeNormalVector((*Runner[0])->node->node, (*Runner[1])->node->node, (*Runner[2])->node->node);
[6613ec]736 for (int i = 0; i < 3; i++) // increase each of them
[262bae]737 Runner[i]++;
738 TotalNormal->AddVector(&TemporaryNormal);
739 }
[6613ec]740 TotalNormal->Scale(1. / (double) counter);
[262bae]741
742 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
743 if (TotalNormal->ScalarProduct(&OtherVector) > 0.)
744 TotalNormal->Scale(-1.);
[a67d19]745 DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << *TotalNormal << "." << endl);
[262bae]746
747 return TotalNormal;
[6613ec]748}
749;
[262bae]750
751/** Calculates the center point of the triangle.
752 * Is third of the sum of all endpoints.
753 * \param *center central point on return.
754 */
755void BoundaryPolygonSet::GetCenter(Vector * const center) const
756{
757 Info FunctionInfo(__func__);
758 center->Zero();
759 int counter = 0;
[6613ec]760 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
[262bae]761 center->AddVector((*Runner)->node->node);
762 counter++;
763 }
[6613ec]764 center->Scale(1. / (double) counter);
[a67d19]765 DoLog(1) && (Log() << Verbose(1) << "Center is at " << *center << "." << endl);
[262bae]766}
767
768/** Checks whether the polygons contains all three endpoints of the triangle.
769 * \param *triangle triangle to test
770 * \return true - triangle is contained polygon, false - is not
771 */
772bool BoundaryPolygonSet::ContainsBoundaryTriangle(const BoundaryTriangleSet * const triangle) const
773{
774 Info FunctionInfo(__func__);
775 return ContainsPresentTupel(triangle->endpoints, 3);
[6613ec]776}
777;
[262bae]778
779/** Checks whether the polygons contains both endpoints of the line.
780 * \param *line line to test
781 * \return true - line is of the triangle, false - is not
782 */
783bool BoundaryPolygonSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
784{
[856098]785 Info FunctionInfo(__func__);
[262bae]786 return ContainsPresentTupel(line->endpoints, 2);
[6613ec]787}
788;
[262bae]789
790/** Checks whether point is any of the three endpoints this triangle contains.
791 * \param *point point to test
792 * \return true - point is of the triangle, false - is not
793 */
794bool BoundaryPolygonSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
795{
796 Info FunctionInfo(__func__);
[6613ec]797 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
[a67d19]798 DoLog(0) && (Log() << Verbose(0) << "Checking against " << **Runner << endl);
[856098]799 if (point == (*Runner)) {
[a67d19]800 DoLog(0) && (Log() << Verbose(0) << " Contained." << endl);
[262bae]801 return true;
[856098]802 }
803 }
[a67d19]804 DoLog(0) && (Log() << Verbose(0) << " Not contained." << endl);
[262bae]805 return false;
[6613ec]806}
807;
[262bae]808
809/** Checks whether point is any of the three endpoints this triangle contains.
810 * \param *point TesselPoint to test
811 * \return true - point is of the triangle, false - is not
812 */
813bool BoundaryPolygonSet::ContainsBoundaryPoint(const TesselPoint * const point) const
814{
815 Info FunctionInfo(__func__);
[6613ec]816 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
[856098]817 if (point == (*Runner)->node) {
[a67d19]818 DoLog(0) && (Log() << Verbose(0) << " Contained." << endl);
[262bae]819 return true;
[856098]820 }
[a67d19]821 DoLog(0) && (Log() << Verbose(0) << " Not contained." << endl);
[262bae]822 return false;
[6613ec]823}
824;
[262bae]825
826/** Checks whether given array of \a *Points coincide with polygons's endpoints.
827 * \param **Points pointer to an array of BoundaryPointSet
828 * \param dim dimension of array
829 * \return true - set of points is contained in polygon, false - is not
830 */
831bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPointSet * const * Points, const int dim) const
832{
[856098]833 Info FunctionInfo(__func__);
[262bae]834 int counter = 0;
[a67d19]835 DoLog(1) && (Log() << Verbose(1) << "Polygon is " << *this << endl);
[6613ec]836 for (int i = 0; i < dim; i++) {
[a67d19]837 DoLog(1) && (Log() << Verbose(1) << " Testing endpoint " << *Points[i] << endl);
[856098]838 if (ContainsBoundaryPoint(Points[i])) {
[262bae]839 counter++;
[856098]840 }
841 }
[262bae]842
843 if (counter == dim)
844 return true;
845 else
846 return false;
[6613ec]847}
848;
[262bae]849
850/** Checks whether given PointList coincide with polygons's endpoints.
851 * \param &endpoints PointList
852 * \return true - set of points is contained in polygon, false - is not
853 */
854bool BoundaryPolygonSet::ContainsPresentTupel(const PointSet &endpoints) const
855{
[856098]856 Info FunctionInfo(__func__);
[262bae]857 size_t counter = 0;
[a67d19]858 DoLog(1) && (Log() << Verbose(1) << "Polygon is " << *this << endl);
[6613ec]859 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
[a67d19]860 DoLog(1) && (Log() << Verbose(1) << " Testing endpoint " << **Runner << endl);
[262bae]861 if (ContainsBoundaryPoint(*Runner))
862 counter++;
863 }
864
865 if (counter == endpoints.size())
866 return true;
867 else
868 return false;
[6613ec]869}
870;
[262bae]871
872/** Checks whether given set of \a *Points coincide with polygons's endpoints.
873 * \param *P pointer to BoundaryPolygonSet
874 * \return true - is the very triangle, false - is not
875 */
876bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPolygonSet * const P) const
877{
[6613ec]878 return ContainsPresentTupel((const PointSet) P->endpoints);
879}
880;
[262bae]881
882/** Gathers all the endpoints' triangles in a unique set.
883 * \return set of all triangles
884 */
[856098]885TriangleSet * BoundaryPolygonSet::GetAllContainedTrianglesFromEndpoints() const
[262bae]886{
887 Info FunctionInfo(__func__);
[6613ec]888 pair<TriangleSet::iterator, bool> Tester;
[262bae]889 TriangleSet *triangles = new TriangleSet;
890
[6613ec]891 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
892 for (LineMap::const_iterator Walker = (*Runner)->lines.begin(); Walker != (*Runner)->lines.end(); Walker++)
893 for (TriangleMap::const_iterator Sprinter = (Walker->second)->triangles.begin(); Sprinter != (Walker->second)->triangles.end(); Sprinter++) {
[856098]894 //Log() << Verbose(0) << " Testing triangle " << *(Sprinter->second) << endl;
895 if (ContainsBoundaryTriangle(Sprinter->second)) {
896 Tester = triangles->insert(Sprinter->second);
897 if (Tester.second)
[a67d19]898 DoLog(0) && (Log() << Verbose(0) << "Adding triangle " << *(Sprinter->second) << endl);
[856098]899 }
900 }
[262bae]901
[a67d19]902 DoLog(1) && (Log() << Verbose(1) << "The Polygon of " << endpoints.size() << " endpoints has " << triangles->size() << " unique triangles in total." << endl);
[262bae]903 return triangles;
[6613ec]904}
905;
[262bae]906
907/** Fills the endpoints of this polygon from the triangles attached to \a *line.
908 * \param *line lines with triangles attached
[856098]909 * \return true - polygon contains endpoints, false - line was NULL
[262bae]910 */
911bool BoundaryPolygonSet::FillPolygonFromTrianglesOfLine(const BoundaryLineSet * const line)
912{
[856098]913 Info FunctionInfo(__func__);
[6613ec]914 pair<PointSet::iterator, bool> Tester;
[856098]915 if (line == NULL)
916 return false;
[a67d19]917 DoLog(1) && (Log() << Verbose(1) << "Filling polygon from line " << *line << endl);
[6613ec]918 for (TriangleMap::const_iterator Runner = line->triangles.begin(); Runner != line->triangles.end(); Runner++) {
919 for (int i = 0; i < 3; i++) {
[856098]920 Tester = endpoints.insert((Runner->second)->endpoints[i]);
921 if (Tester.second)
[a67d19]922 DoLog(1) && (Log() << Verbose(1) << " Inserting endpoint " << *((Runner->second)->endpoints[i]) << endl);
[856098]923 }
[262bae]924 }
925
[856098]926 return true;
[6613ec]927}
928;
[262bae]929
930/** output operator for BoundaryPolygonSet.
931 * \param &ost output stream
932 * \param &a boundary polygon
933 */
934ostream &operator <<(ostream &ost, const BoundaryPolygonSet &a)
935{
936 ost << "[" << a.Nr << "|";
[6613ec]937 for (PointSet::const_iterator Runner = a.endpoints.begin(); Runner != a.endpoints.end();) {
938 ost << (*Runner)->node->Name;
939 Runner++;
940 if (Runner != a.endpoints.end())
941 ost << ",";
[262bae]942 }
[6613ec]943 ost << "]";
[262bae]944 return ost;
[6613ec]945}
946;
[262bae]947
[357fba]948// =========================================================== class TESSELPOINT ===========================================
949
950/** Constructor of class TesselPoint.
951 */
952TesselPoint::TesselPoint()
953{
[244a84]954 //Info FunctionInfo(__func__);
[357fba]955 node = NULL;
956 nr = -1;
[6613ec]957 Name = NULL;
958}
959;
[357fba]960
961/** Destructor for class TesselPoint.
962 */
963TesselPoint::~TesselPoint()
964{
[244a84]965 //Info FunctionInfo(__func__);
[6613ec]966}
967;
[357fba]968
969/** Prints LCNode to screen.
970 */
[6613ec]971ostream & operator <<(ostream &ost, const TesselPoint &a)
[357fba]972{
[57066a]973 ost << "[" << (a.Name) << "|" << a.Name << " at " << *a.node << "]";
[357fba]974 return ost;
[6613ec]975}
976;
[357fba]977
[5c7bf8]978/** Prints LCNode to screen.
979 */
[6613ec]980ostream & TesselPoint::operator <<(ostream &ost)
[5c7bf8]981{
[6613ec]982 Info FunctionInfo(__func__);
[27bd2f]983 ost << "[" << (nr) << "|" << this << "]";
[5c7bf8]984 return ost;
[6613ec]985}
986;
[357fba]987
988// =========================================================== class POINTCLOUD ============================================
989
990/** Constructor of class PointCloud.
991 */
992PointCloud::PointCloud()
993{
[6613ec]994 //Info FunctionInfo(__func__);
995}
996;
[357fba]997
998/** Destructor for class PointCloud.
999 */
1000PointCloud::~PointCloud()
1001{
[6613ec]1002 //Info FunctionInfo(__func__);
1003}
1004;
[357fba]1005
1006// ============================ CandidateForTesselation =============================
1007
1008/** Constructor of class CandidateForTesselation.
1009 */
[6613ec]1010CandidateForTesselation::CandidateForTesselation(BoundaryLineSet* line) :
1011 BaseLine(line), ThirdPoint(NULL), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI)
[1e168b]1012{
[6613ec]1013 Info FunctionInfo(__func__);
1014}
1015;
[1e168b]1016
1017/** Constructor of class CandidateForTesselation.
1018 */
[6613ec]1019CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, BoundaryPointSet* point, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) :
1020 BaseLine(line), ThirdPoint(point), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI)
[1e168b]1021{
[6613ec]1022 Info FunctionInfo(__func__);
[357fba]1023 OptCenter.CopyVector(&OptCandidateCenter);
1024 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
[6613ec]1025}
1026;
[357fba]1027
1028/** Destructor for class CandidateForTesselation.
1029 */
[6613ec]1030CandidateForTesselation::~CandidateForTesselation()
1031{
1032}
1033;
[357fba]1034
[734816]1035/** Checks validity of a given sphere of a candidate line.
1036 * Sphere must touch all candidates and the baseline endpoints and there must be no other atoms inside.
1037 * \param RADIUS radius of sphere
1038 * \param *LC LinkedCell structure with other atoms
1039 * \return true - sphere is valid, false - sphere contains other points
1040 */
1041bool CandidateForTesselation::CheckValidity(const double RADIUS, const LinkedCell *LC) const
1042{
[09898c]1043 Info FunctionInfo(__func__);
1044
[6613ec]1045 const double radiusSquared = RADIUS * RADIUS;
[734816]1046 list<const Vector *> VectorList;
1047 VectorList.push_back(&OptCenter);
[09898c]1048 //VectorList.push_back(&OtherOptCenter); // don't check the other (wrong) center
[734816]1049
[09898c]1050 if (!pointlist.empty())
[6613ec]1051 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains candidate list and baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl);
[09898c]1052 else
1053 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere with no candidates contains baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl);
[734816]1054 // check baseline for OptCenter and OtherOptCenter being on sphere's surface
1055 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
[6613ec]1056 for (int i = 0; i < 2; i++) {
[f07f86d]1057 const double distance = fabs((*VRunner)->DistanceSquared(BaseLine->endpoints[i]->node->node) - radiusSquared);
1058 if (distance > HULLEPSILON) {
[6613ec]1059 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << *BaseLine->endpoints[i] << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl);
[734816]1060 return false;
1061 }
[f07f86d]1062 }
[734816]1063 }
1064
1065 // check Candidates for OptCenter and OtherOptCenter being on sphere's surface
[6613ec]1066 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) {
[734816]1067 const TesselPoint *Walker = *Runner;
1068 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
[f07f86d]1069 const double distance = fabs((*VRunner)->DistanceSquared(Walker->node) - radiusSquared);
1070 if (distance > HULLEPSILON) {
[6613ec]1071 DoeLog(1) && (eLog() << Verbose(1) << "Candidate " << *Walker << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl);
[734816]1072 return false;
[6613ec]1073 } else {
[a67d19]1074 DoLog(1) && (Log() << Verbose(1) << "Candidate " << *Walker << " is inside by " << distance << "." << endl);
[734816]1075 }
1076 }
1077 }
1078
[09898c]1079 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl);
[734816]1080 bool flag = true;
1081 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
1082 // get all points inside the sphere
1083 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, (*VRunner));
[6613ec]1084
[a67d19]1085 DoLog(1) && (Log() << Verbose(1) << "The following atoms are inside sphere at " << OtherOptCenter << ":" << endl);
[6613ec]1086 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
[a67d19]1087 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&OtherOptCenter) << "." << endl);
[6613ec]1088
[734816]1089 // remove baseline's endpoints and candidates
[6613ec]1090 for (int i = 0; i < 2; i++) {
[a67d19]1091 DoLog(1) && (Log() << Verbose(1) << "INFO: removing baseline tesselpoint " << *BaseLine->endpoints[i]->node << "." << endl);
[734816]1092 ListofPoints->remove(BaseLine->endpoints[i]->node);
[6613ec]1093 }
1094 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) {
[a67d19]1095 DoLog(1) && (Log() << Verbose(1) << "INFO: removing candidate tesselpoint " << *(*Runner) << "." << endl);
[734816]1096 ListofPoints->remove(*Runner);
[6613ec]1097 }
[734816]1098 if (!ListofPoints->empty()) {
[6613ec]1099 DoeLog(1) && (eLog() << Verbose(1) << "CheckValidity: There are still " << ListofPoints->size() << " points inside the sphere." << endl);
[734816]1100 flag = false;
[09898c]1101 DoeLog(1) && (eLog() << Verbose(1) << "External atoms inside of sphere at " << *(*VRunner) << ":" << endl);
1102 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
1103 DoeLog(1) && (eLog() << Verbose(1) << " " << *(*Runner) << endl);
[734816]1104 }
[6613ec]1105 delete (ListofPoints);
[09898c]1106
1107 // check with animate_sphere.tcl VMD script
1108 if (ThirdPoint != NULL) {
[a67d19]1109 DoLog(1) && (Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " " << ThirdPoint->Nr + 1 << " " << RADIUS << " " << OldCenter.x[0] << " " << OldCenter.x[1] << " " << OldCenter.x[2] << " " << (*VRunner)->x[0] << " " << (*VRunner)->x[1] << " " << (*VRunner)->x[2] << endl);
[09898c]1110 } else {
[a67d19]1111 DoLog(1) && (Log() << Verbose(1) << "Check by: ... missing third point ..." << endl);
1112 DoLog(1) && (Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " ??? " << RADIUS << " " << OldCenter.x[0] << " " << OldCenter.x[1] << " " << OldCenter.x[2] << " " << (*VRunner)->x[0] << " " << (*VRunner)->x[1] << " " << (*VRunner)->x[2] << endl);
[09898c]1113 }
[734816]1114 }
1115 return flag;
[6613ec]1116}
1117;
[734816]1118
[1e168b]1119/** output operator for CandidateForTesselation.
1120 * \param &ost output stream
1121 * \param &a boundary line
1122 */
[6613ec]1123ostream & operator <<(ostream &ost, const CandidateForTesselation &a)
[1e168b]1124{
1125 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node->Name << "," << a.BaseLine->endpoints[1]->node->Name << "] with ";
[f67b6e]1126 if (a.pointlist.empty())
[1e168b]1127 ost << "no candidate.";
[f67b6e]1128 else {
1129 ost << "candidate";
1130 if (a.pointlist.size() != 1)
1131 ost << "s ";
1132 else
1133 ost << " ";
1134 for (TesselPointList::const_iterator Runner = a.pointlist.begin(); Runner != a.pointlist.end(); Runner++)
1135 ost << *(*Runner) << " ";
[6613ec]1136 ost << " at angle " << (a.ShortestAngle) << ".";
[f67b6e]1137 }
[1e168b]1138
1139 return ost;
[6613ec]1140}
1141;
[1e168b]1142
[357fba]1143// =========================================================== class TESSELATION ===========================================
1144
1145/** Constructor of class Tesselation.
1146 */
[1e168b]1147Tesselation::Tesselation() :
[6613ec]1148 PointsOnBoundaryCount(0), LinesOnBoundaryCount(0), TrianglesOnBoundaryCount(0), LastTriangle(NULL), TriangleFilesWritten(0), InternalPointer(PointsOnBoundary.begin())
[357fba]1149{
[6613ec]1150 Info FunctionInfo(__func__);
[357fba]1151}
1152;
1153
1154/** Destructor of class Tesselation.
1155 * We have to free all points, lines and triangles.
1156 */
1157Tesselation::~Tesselation()
1158{
[6613ec]1159 Info FunctionInfo(__func__);
[a67d19]1160 DoLog(0) && (Log() << Verbose(0) << "Free'ing TesselStruct ... " << endl);
[357fba]1161 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
1162 if (runner->second != NULL) {
1163 delete (runner->second);
1164 runner->second = NULL;
1165 } else
[6613ec]1166 DoeLog(1) && (eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl);
[357fba]1167 }
[a67d19]1168 DoLog(0) && (Log() << Verbose(0) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl);
[357fba]1169}
1170;
1171
[5c7bf8]1172/** PointCloud implementation of GetCenter
1173 * Uses PointsOnBoundary and STL stuff.
[6613ec]1174 */
[776b64]1175Vector * Tesselation::GetCenter(ofstream *out) const
[5c7bf8]1176{
[6613ec]1177 Info FunctionInfo(__func__);
1178 Vector *Center = new Vector(0., 0., 0.);
1179 int num = 0;
[5c7bf8]1180 for (GoToFirst(); (!IsEnd()); GoToNext()) {
1181 Center->AddVector(GetPoint()->node);
1182 num++;
1183 }
[6613ec]1184 Center->Scale(1. / num);
[5c7bf8]1185 return Center;
[6613ec]1186}
1187;
[5c7bf8]1188
1189/** PointCloud implementation of GoPoint
1190 * Uses PointsOnBoundary and STL stuff.
[6613ec]1191 */
[776b64]1192TesselPoint * Tesselation::GetPoint() const
[5c7bf8]1193{
[6613ec]1194 Info FunctionInfo(__func__);
[5c7bf8]1195 return (InternalPointer->second->node);
[6613ec]1196}
1197;
[5c7bf8]1198
1199/** PointCloud implementation of GetTerminalPoint.
1200 * Uses PointsOnBoundary and STL stuff.
[6613ec]1201 */
[776b64]1202TesselPoint * Tesselation::GetTerminalPoint() const
[5c7bf8]1203{
[6613ec]1204 Info FunctionInfo(__func__);
[776b64]1205 PointMap::const_iterator Runner = PointsOnBoundary.end();
[5c7bf8]1206 Runner--;
1207 return (Runner->second->node);
[6613ec]1208}
1209;
[5c7bf8]1210
1211/** PointCloud implementation of GoToNext.
1212 * Uses PointsOnBoundary and STL stuff.
[6613ec]1213 */
[776b64]1214void Tesselation::GoToNext() const
[5c7bf8]1215{
[6613ec]1216 Info FunctionInfo(__func__);
[5c7bf8]1217 if (InternalPointer != PointsOnBoundary.end())
1218 InternalPointer++;
[6613ec]1219}
1220;
[5c7bf8]1221
1222/** PointCloud implementation of GoToPrevious.
1223 * Uses PointsOnBoundary and STL stuff.
[6613ec]1224 */
[776b64]1225void Tesselation::GoToPrevious() const
[5c7bf8]1226{
[6613ec]1227 Info FunctionInfo(__func__);
[5c7bf8]1228 if (InternalPointer != PointsOnBoundary.begin())
1229 InternalPointer--;
[6613ec]1230}
1231;
[5c7bf8]1232
1233/** PointCloud implementation of GoToFirst.
1234 * Uses PointsOnBoundary and STL stuff.
[6613ec]1235 */
[776b64]1236void Tesselation::GoToFirst() const
[5c7bf8]1237{
[6613ec]1238 Info FunctionInfo(__func__);
[5c7bf8]1239 InternalPointer = PointsOnBoundary.begin();
[6613ec]1240}
1241;
[5c7bf8]1242
1243/** PointCloud implementation of GoToLast.
1244 * Uses PointsOnBoundary and STL stuff.
[776b64]1245 */
1246void Tesselation::GoToLast() const
[5c7bf8]1247{
[6613ec]1248 Info FunctionInfo(__func__);
[5c7bf8]1249 InternalPointer = PointsOnBoundary.end();
1250 InternalPointer--;
[6613ec]1251}
1252;
[5c7bf8]1253
1254/** PointCloud implementation of IsEmpty.
1255 * Uses PointsOnBoundary and STL stuff.
[6613ec]1256 */
[776b64]1257bool Tesselation::IsEmpty() const
[5c7bf8]1258{
[6613ec]1259 Info FunctionInfo(__func__);
[5c7bf8]1260 return (PointsOnBoundary.empty());
[6613ec]1261}
1262;
[5c7bf8]1263
1264/** PointCloud implementation of IsLast.
1265 * Uses PointsOnBoundary and STL stuff.
[6613ec]1266 */
[776b64]1267bool Tesselation::IsEnd() const
[5c7bf8]1268{
[6613ec]1269 Info FunctionInfo(__func__);
[5c7bf8]1270 return (InternalPointer == PointsOnBoundary.end());
[6613ec]1271}
1272;
[5c7bf8]1273
[357fba]1274/** Gueses first starting triangle of the convex envelope.
1275 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
1276 * \param *out output stream for debugging
1277 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
1278 */
[244a84]1279void Tesselation::GuessStartingTriangle()
[357fba]1280{
[6613ec]1281 Info FunctionInfo(__func__);
[357fba]1282 // 4b. create a starting triangle
1283 // 4b1. create all distances
1284 DistanceMultiMap DistanceMMap;
1285 double distance, tmp;
1286 Vector PlaneVector, TrialVector;
1287 PointMap::iterator A, B, C; // three nodes of the first triangle
1288 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
1289
1290 // with A chosen, take each pair B,C and sort
[6613ec]1291 if (A != PointsOnBoundary.end()) {
1292 B = A;
1293 B++;
1294 for (; B != PointsOnBoundary.end(); B++) {
1295 C = B;
1296 C++;
1297 for (; C != PointsOnBoundary.end(); C++) {
1298 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
1299 distance = tmp * tmp;
1300 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
1301 distance += tmp * tmp;
1302 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
1303 distance += tmp * tmp;
1304 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
1305 }
[357fba]1306 }
[6613ec]1307 }
[357fba]1308 // // listing distances
[e138de]1309 // Log() << Verbose(1) << "Listing DistanceMMap:";
[357fba]1310 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
[e138de]1311 // Log() << Verbose(0) << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
[357fba]1312 // }
[e138de]1313 // Log() << Verbose(0) << endl;
[357fba]1314 // 4b2. pick three baselines forming a triangle
1315 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1316 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
[6613ec]1317 for (; baseline != DistanceMMap.end(); baseline++) {
1318 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1319 // 2. next, we have to check whether all points reside on only one side of the triangle
1320 // 3. construct plane vector
1321 PlaneVector.MakeNormalVector(A->second->node->node, baseline->second.first->second->node->node, baseline->second.second->second->node->node);
[a67d19]1322 DoLog(2) && (Log() << Verbose(2) << "Plane vector of candidate triangle is " << PlaneVector << endl);
[6613ec]1323 // 4. loop over all points
1324 double sign = 0.;
1325 PointMap::iterator checker = PointsOnBoundary.begin();
1326 for (; checker != PointsOnBoundary.end(); checker++) {
1327 // (neglecting A,B,C)
1328 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
1329 continue;
1330 // 4a. project onto plane vector
1331 TrialVector.CopyVector(checker->second->node->node);
1332 TrialVector.SubtractVector(A->second->node->node);
1333 distance = TrialVector.ScalarProduct(&PlaneVector);
1334 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
1335 continue;
[a67d19]1336 DoLog(2) && (Log() << Verbose(2) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl);
[6613ec]1337 tmp = distance / fabs(distance);
1338 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
1339 if ((sign != 0) && (tmp != sign)) {
1340 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
[a67d19]1341 DoLog(2) && (Log() << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leaves " << checker->second->node->Name << " outside the convex hull." << endl);
[6613ec]1342 break;
1343 } else { // note the sign for later
[a67d19]1344 DoLog(2) && (Log() << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl);
[6613ec]1345 sign = tmp;
1346 }
1347 // 4d. Check whether the point is inside the triangle (check distance to each node
1348 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
1349 int innerpoint = 0;
1350 if ((tmp < A->second->node->node->DistanceSquared(baseline->second.first->second->node->node)) && (tmp < A->second->node->node->DistanceSquared(baseline->second.second->second->node->node)))
1351 innerpoint++;
1352 tmp = checker->second->node->node->DistanceSquared(baseline->second.first->second->node->node);
1353 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(A->second->node->node)) && (tmp < baseline->second.first->second->node->node->DistanceSquared(baseline->second.second->second->node->node)))
1354 innerpoint++;
1355 tmp = checker->second->node->node->DistanceSquared(baseline->second.second->second->node->node);
1356 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(baseline->second.first->second->node->node)) && (tmp < baseline->second.second->second->node->node->DistanceSquared(A->second->node->node)))
1357 innerpoint++;
1358 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
1359 if (innerpoint == 3)
1360 break;
[357fba]1361 }
[6613ec]1362 // 5. come this far, all on same side? Then break 1. loop and construct triangle
1363 if (checker == PointsOnBoundary.end()) {
[a67d19]1364 DoLog(2) && (Log() << Verbose(2) << "Looks like we have a candidate!" << endl);
[6613ec]1365 break;
[357fba]1366 }
[6613ec]1367 }
1368 if (baseline != DistanceMMap.end()) {
1369 BPS[0] = baseline->second.first->second;
1370 BPS[1] = baseline->second.second->second;
1371 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1372 BPS[0] = A->second;
1373 BPS[1] = baseline->second.second->second;
1374 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1375 BPS[0] = baseline->second.first->second;
1376 BPS[1] = A->second;
1377 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1378
1379 // 4b3. insert created triangle
1380 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1381 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1382 TrianglesOnBoundaryCount++;
1383 for (int i = 0; i < NDIM; i++) {
1384 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
1385 LinesOnBoundaryCount++;
[357fba]1386 }
[6613ec]1387
[a67d19]1388 DoLog(1) && (Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl);
[6613ec]1389 } else {
1390 DoeLog(0) && (eLog() << Verbose(0) << "No starting triangle found." << endl);
1391 }
[357fba]1392}
1393;
1394
1395/** Tesselates the convex envelope of a cluster from a single starting triangle.
1396 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
1397 * 2 triangles. Hence, we go through all current lines:
1398 * -# if the lines contains to only one triangle
1399 * -# We search all points in the boundary
1400 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
1401 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
1402 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
1403 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
1404 * \param *out output stream for debugging
1405 * \param *configuration for IsAngstroem
1406 * \param *cloud cluster of points
1407 */
[e138de]1408void Tesselation::TesselateOnBoundary(const PointCloud * const cloud)
[357fba]1409{
[6613ec]1410 Info FunctionInfo(__func__);
[357fba]1411 bool flag;
1412 PointMap::iterator winner;
1413 class BoundaryPointSet *peak = NULL;
1414 double SmallestAngle, TempAngle;
1415 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
1416 LineMap::iterator LineChecker[2];
1417
[e138de]1418 Center = cloud->GetCenter();
[357fba]1419 // create a first tesselation with the given BoundaryPoints
1420 do {
1421 flag = false;
1422 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
[5c7bf8]1423 if (baseline->second->triangles.size() == 1) {
[357fba]1424 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
1425 SmallestAngle = M_PI;
1426
1427 // get peak point with respect to this base line's only triangle
1428 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
[a67d19]1429 DoLog(0) && (Log() << Verbose(0) << "Current baseline is between " << *(baseline->second) << "." << endl);
[357fba]1430 for (int i = 0; i < 3; i++)
1431 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
1432 peak = BTS->endpoints[i];
[a67d19]1433 DoLog(1) && (Log() << Verbose(1) << " and has peak " << *peak << "." << endl);
[357fba]1434
1435 // prepare some auxiliary vectors
1436 Vector BaseLineCenter, BaseLine;
1437 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
1438 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
1439 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
1440 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
1441 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
1442
1443 // offset to center of triangle
1444 CenterVector.Zero();
1445 for (int i = 0; i < 3; i++)
1446 CenterVector.AddVector(BTS->endpoints[i]->node->node);
1447 CenterVector.Scale(1. / 3.);
[a67d19]1448 DoLog(2) && (Log() << Verbose(2) << "CenterVector of base triangle is " << CenterVector << endl);
[357fba]1449
1450 // normal vector of triangle
1451 NormalVector.CopyVector(Center);
1452 NormalVector.SubtractVector(&CenterVector);
1453 BTS->GetNormalVector(NormalVector);
1454 NormalVector.CopyVector(&BTS->NormalVector);
[a67d19]1455 DoLog(2) && (Log() << Verbose(2) << "NormalVector of base triangle is " << NormalVector << endl);
[357fba]1456
1457 // vector in propagation direction (out of triangle)
1458 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
1459 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
1460 TempVector.CopyVector(&CenterVector);
1461 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
[f67b6e]1462 //Log() << Verbose(0) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
[658efb]1463 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
[357fba]1464 PropagationVector.Scale(-1.);
[a67d19]1465 DoLog(2) && (Log() << Verbose(2) << "PropagationVector of base triangle is " << PropagationVector << endl);
[357fba]1466 winner = PointsOnBoundary.end();
1467
1468 // loop over all points and calculate angle between normal vector of new and present triangle
1469 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
1470 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
[a67d19]1471 DoLog(1) && (Log() << Verbose(1) << "Target point is " << *(target->second) << ":" << endl);
[357fba]1472
1473 // first check direction, so that triangles don't intersect
1474 VirtualNormalVector.CopyVector(target->second->node->node);
1475 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
1476 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
1477 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
[a67d19]1478 DoLog(2) && (Log() << Verbose(2) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl);
[6613ec]1479 if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees)
[a67d19]1480 DoLog(2) && (Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl);
[357fba]1481 continue;
1482 } else
[a67d19]1483 DoLog(2) && (Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl);
[357fba]1484
1485 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
1486 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
1487 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
[5c7bf8]1488 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
[a67d19]1489 DoLog(2) && (Log() << Verbose(2) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl);
[357fba]1490 continue;
1491 }
[5c7bf8]1492 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
[a67d19]1493 DoLog(2) && (Log() << Verbose(2) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl);
[357fba]1494 continue;
1495 }
1496
1497 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
1498 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
[a67d19]1499 DoLog(4) && (Log() << Verbose(4) << "Current target is peak!" << endl);
[357fba]1500 continue;
1501 }
1502
1503 // check for linear dependence
1504 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1505 TempVector.SubtractVector(target->second->node->node);
1506 helper.CopyVector(baseline->second->endpoints[1]->node->node);
1507 helper.SubtractVector(target->second->node->node);
1508 helper.ProjectOntoPlane(&TempVector);
1509 if (fabs(helper.NormSquared()) < MYEPSILON) {
[a67d19]1510 DoLog(2) && (Log() << Verbose(2) << "Chosen set of vectors is linear dependent." << endl);
[357fba]1511 continue;
1512 }
1513
1514 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
1515 flag = true;
1516 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
1517 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1518 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
1519 TempVector.AddVector(target->second->node->node);
[6613ec]1520 TempVector.Scale(1. / 3.);
[357fba]1521 TempVector.SubtractVector(Center);
1522 // make it always point outward
[658efb]1523 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
[357fba]1524 VirtualNormalVector.Scale(-1.);
1525 // calculate angle
1526 TempAngle = NormalVector.Angle(&VirtualNormalVector);
[a67d19]1527 DoLog(2) && (Log() << Verbose(2) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl);
[357fba]1528 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
1529 SmallestAngle = TempAngle;
1530 winner = target;
[a67d19]1531 DoLog(2) && (Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl);
[357fba]1532 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
1533 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
1534 helper.CopyVector(target->second->node->node);
1535 helper.SubtractVector(&BaseLineCenter);
1536 helper.ProjectOntoPlane(&BaseLine);
1537 // ...the one with the smaller angle is the better candidate
1538 TempVector.CopyVector(target->second->node->node);
1539 TempVector.SubtractVector(&BaseLineCenter);
1540 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1541 TempAngle = TempVector.Angle(&helper);
1542 TempVector.CopyVector(winner->second->node->node);
1543 TempVector.SubtractVector(&BaseLineCenter);
1544 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1545 if (TempAngle < TempVector.Angle(&helper)) {
1546 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1547 SmallestAngle = TempAngle;
1548 winner = target;
[a67d19]1549 DoLog(2) && (Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl);
[357fba]1550 } else
[a67d19]1551 DoLog(2) && (Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl);
[357fba]1552 } else
[a67d19]1553 DoLog(2) && (Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl);
[357fba]1554 }
1555 } // end of loop over all boundary points
1556
1557 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
1558 if (winner != PointsOnBoundary.end()) {
[a67d19]1559 DoLog(0) && (Log() << Verbose(0) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl);
[357fba]1560 // create the lins of not yet present
1561 BLS[0] = baseline->second;
1562 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1563 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1564 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1565 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1566 BPS[0] = baseline->second->endpoints[0];
1567 BPS[1] = winner->second;
1568 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1569 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1570 LinesOnBoundaryCount++;
1571 } else
1572 BLS[1] = LineChecker[0]->second;
1573 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1574 BPS[0] = baseline->second->endpoints[1];
1575 BPS[1] = winner->second;
1576 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1577 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1578 LinesOnBoundaryCount++;
1579 } else
1580 BLS[2] = LineChecker[1]->second;
1581 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[62bb91]1582 BTS->GetCenter(&helper);
1583 helper.SubtractVector(Center);
1584 helper.Scale(-1);
1585 BTS->GetNormalVector(helper);
[357fba]1586 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1587 TrianglesOnBoundaryCount++;
1588 } else {
[6613ec]1589 DoeLog(2) && (eLog() << Verbose(2) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl);
[357fba]1590 }
1591
1592 // 5d. If the set of lines is not yet empty, go to 5. and continue
1593 } else
[a67d19]1594 DoLog(0) && (Log() << Verbose(0) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl);
[357fba]1595 } while (flag);
1596
1597 // exit
[6613ec]1598 delete (Center);
1599}
1600;
[357fba]1601
[62bb91]1602/** Inserts all points outside of the tesselated surface into it by adding new triangles.
[357fba]1603 * \param *out output stream for debugging
1604 * \param *cloud cluster of points
[62bb91]1605 * \param *LC LinkedCell structure to find nearest point quickly
[357fba]1606 * \return true - all straddling points insert, false - something went wrong
1607 */
[e138de]1608bool Tesselation::InsertStraddlingPoints(const PointCloud *cloud, const LinkedCell *LC)
[357fba]1609{
[6613ec]1610 Info FunctionInfo(__func__);
[5c7bf8]1611 Vector Intersection, Normal;
[357fba]1612 TesselPoint *Walker = NULL;
[e138de]1613 Vector *Center = cloud->GetCenter();
[c15ca2]1614 TriangleList *triangles = NULL;
[7dea7c]1615 bool AddFlag = false;
1616 LinkedCell *BoundaryPoints = NULL;
[62bb91]1617
[357fba]1618 cloud->GoToFirst();
[7dea7c]1619 BoundaryPoints = new LinkedCell(this, 5.);
[6613ec]1620 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
[7dea7c]1621 if (AddFlag) {
[6613ec]1622 delete (BoundaryPoints);
[7dea7c]1623 BoundaryPoints = new LinkedCell(this, 5.);
1624 AddFlag = false;
1625 }
[357fba]1626 Walker = cloud->GetPoint();
[a67d19]1627 DoLog(0) && (Log() << Verbose(0) << "Current point is " << *Walker << "." << endl);
[357fba]1628 // get the next triangle
[c15ca2]1629 triangles = FindClosestTrianglesToVector(Walker->node, BoundaryPoints);
[7dea7c]1630 BTS = triangles->front();
1631 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
[a67d19]1632 DoLog(0) && (Log() << Verbose(0) << "No triangles found, probably a tesselation point itself." << endl);
[62bb91]1633 cloud->GoToNext();
1634 continue;
1635 } else {
[357fba]1636 }
[a67d19]1637 DoLog(0) && (Log() << Verbose(0) << "Closest triangle is " << *BTS << "." << endl);
[357fba]1638 // get the intersection point
[e138de]1639 if (BTS->GetIntersectionInsideTriangle(Center, Walker->node, &Intersection)) {
[a67d19]1640 DoLog(0) && (Log() << Verbose(0) << "We have an intersection at " << Intersection << "." << endl);
[357fba]1641 // we have the intersection, check whether in- or outside of boundary
1642 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1643 // inside, next!
[a67d19]1644 DoLog(0) && (Log() << Verbose(0) << *Walker << " is inside wrt triangle " << *BTS << "." << endl);
[357fba]1645 } else {
1646 // outside!
[a67d19]1647 DoLog(0) && (Log() << Verbose(0) << *Walker << " is outside wrt triangle " << *BTS << "." << endl);
[357fba]1648 class BoundaryLineSet *OldLines[3], *NewLines[3];
1649 class BoundaryPointSet *OldPoints[3], *NewPoint;
1650 // store the three old lines and old points
[6613ec]1651 for (int i = 0; i < 3; i++) {
[357fba]1652 OldLines[i] = BTS->lines[i];
1653 OldPoints[i] = BTS->endpoints[i];
1654 }
[5c7bf8]1655 Normal.CopyVector(&BTS->NormalVector);
[357fba]1656 // add Walker to boundary points
[a67d19]1657 DoLog(0) && (Log() << Verbose(0) << "Adding " << *Walker << " to BoundaryPoints." << endl);
[7dea7c]1658 AddFlag = true;
[6613ec]1659 if (AddBoundaryPoint(Walker, 0))
[357fba]1660 NewPoint = BPS[0];
1661 else
1662 continue;
1663 // remove triangle
[a67d19]1664 DoLog(0) && (Log() << Verbose(0) << "Erasing triangle " << *BTS << "." << endl);
[357fba]1665 TrianglesOnBoundary.erase(BTS->Nr);
[6613ec]1666 delete (BTS);
[357fba]1667 // create three new boundary lines
[6613ec]1668 for (int i = 0; i < 3; i++) {
[357fba]1669 BPS[0] = NewPoint;
1670 BPS[1] = OldPoints[i];
1671 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
[a67d19]1672 DoLog(1) && (Log() << Verbose(1) << "Creating new line " << *NewLines[i] << "." << endl);
[357fba]1673 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1674 LinesOnBoundaryCount++;
1675 }
1676 // create three new triangle with new point
[6613ec]1677 for (int i = 0; i < 3; i++) { // find all baselines
[357fba]1678 BLS[0] = OldLines[i];
1679 int n = 1;
[6613ec]1680 for (int j = 0; j < 3; j++) {
[357fba]1681 if (NewLines[j]->IsConnectedTo(BLS[0])) {
[6613ec]1682 if (n > 2) {
1683 DoeLog(2) && (eLog() << Verbose(2) << BLS[0] << " connects to all of the new lines?!" << endl);
[357fba]1684 return false;
1685 } else
1686 BLS[n++] = NewLines[j];
1687 }
1688 }
1689 // create the triangle
1690 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[5c7bf8]1691 Normal.Scale(-1.);
1692 BTS->GetNormalVector(Normal);
1693 Normal.Scale(-1.);
[a67d19]1694 DoLog(0) && (Log() << Verbose(0) << "Created new triangle " << *BTS << "." << endl);
[357fba]1695 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1696 TrianglesOnBoundaryCount++;
1697 }
1698 }
1699 } else { // something is wrong with FindClosestTriangleToPoint!
[6613ec]1700 DoeLog(1) && (eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl);
[357fba]1701 return false;
1702 }
1703 cloud->GoToNext();
1704 }
1705
1706 // exit
[6613ec]1707 delete (Center);
[357fba]1708 return true;
[6613ec]1709}
1710;
[357fba]1711
[16d866]1712/** Adds a point to the tesselation::PointsOnBoundary list.
[62bb91]1713 * \param *Walker point to add
[08ef35]1714 * \param n TesselStruct::BPS index to put pointer into
1715 * \return true - new point was added, false - point already present
[357fba]1716 */
[776b64]1717bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
[357fba]1718{
[6613ec]1719 Info FunctionInfo(__func__);
[357fba]1720 PointTestPair InsertUnique;
[08ef35]1721 BPS[n] = new class BoundaryPointSet(Walker);
1722 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1723 if (InsertUnique.second) { // if new point was not present before, increase counter
[357fba]1724 PointsOnBoundaryCount++;
[08ef35]1725 return true;
1726 } else {
[6613ec]1727 delete (BPS[n]);
[08ef35]1728 BPS[n] = InsertUnique.first->second;
1729 return false;
[357fba]1730 }
1731}
1732;
1733
1734/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1735 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1736 * @param Candidate point to add
1737 * @param n index for this point in Tesselation::TPS array
1738 */
[776b64]1739void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
[357fba]1740{
[6613ec]1741 Info FunctionInfo(__func__);
[357fba]1742 PointTestPair InsertUnique;
1743 TPS[n] = new class BoundaryPointSet(Candidate);
1744 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1745 if (InsertUnique.second) { // if new point was not present before, increase counter
1746 PointsOnBoundaryCount++;
1747 } else {
1748 delete TPS[n];
[a67d19]1749 DoLog(0) && (Log() << Verbose(0) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl);
[357fba]1750 TPS[n] = (InsertUnique.first)->second;
1751 }
1752}
1753;
1754
[f1ef60a]1755/** Sets point to a present Tesselation::PointsOnBoundary.
1756 * Tesselation::TPS is set to the existing one or NULL if not found.
1757 * @param Candidate point to set to
1758 * @param n index for this point in Tesselation::TPS array
1759 */
1760void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
1761{
[6613ec]1762 Info FunctionInfo(__func__);
[f1ef60a]1763 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->nr);
1764 if (FindPoint != PointsOnBoundary.end())
1765 TPS[n] = FindPoint->second;
1766 else
1767 TPS[n] = NULL;
[6613ec]1768}
1769;
[f1ef60a]1770
[357fba]1771/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1772 * If successful it raises the line count and inserts the new line into the BLS,
1773 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
[f07f86d]1774 * @param *OptCenter desired OptCenter if there are more than one candidate line
[d5fea7]1775 * @param *candidate third point of the triangle to be, for checking between multiple open line candidates
[357fba]1776 * @param *a first endpoint
1777 * @param *b second endpoint
1778 * @param n index of Tesselation::BLS giving the line with both endpoints
1779 */
[6613ec]1780void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
1781{
[357fba]1782 bool insertNewLine = true;
[b998c3]1783 LineMap::iterator FindLine = a->lines.find(b->node->nr);
[d5fea7]1784 BoundaryLineSet *WinningLine = NULL;
[b998c3]1785 if (FindLine != a->lines.end()) {
[a67d19]1786 DoLog(1) && (Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl);
[b998c3]1787
[6613ec]1788 pair<LineMap::iterator, LineMap::iterator> FindPair;
[357fba]1789 FindPair = a->lines.equal_range(b->node->nr);
1790
[6613ec]1791 for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) {
[a67d19]1792 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl);
[357fba]1793 // If there is a line with less than two attached triangles, we don't need a new line.
[d5fea7]1794 if (FindLine->second->triangles.size() == 1) {
1795 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
[f07f86d]1796 if (!Finder->second->pointlist.empty())
[a67d19]1797 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl);
[f07f86d]1798 else
[a67d19]1799 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate." << endl);
[f07f86d]1800 // get open line
[6613ec]1801 for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) {
[b0a5f1]1802 if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || OptCenter->DistanceSquared(&Finder->second->OptCenter) < MYEPSILON )) { // stop searching if candidate matches
1803 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Candidate " << *(*CandidateChecker) << " has the right center " << Finder->second->OptCenter << "." << endl);
[6613ec]1804 insertNewLine = false;
1805 WinningLine = FindLine->second;
1806 break;
[b0a5f1]1807 } else {
1808 DoLog(1) && (Log() << Verbose(1) << "REJECT: Candidate " << *(*CandidateChecker) << "'s center " << Finder->second->OptCenter << " does not match desired on " << *OptCenter << "." << endl);
[6613ec]1809 }
[d5fea7]1810 }
[357fba]1811 }
1812 }
1813 }
1814
1815 if (insertNewLine) {
[474961]1816 AddNewTesselationTriangleLine(a, b, n);
[d5fea7]1817 } else {
1818 AddExistingTesselationTriangleLine(WinningLine, n);
[357fba]1819 }
1820}
1821;
1822
1823/**
1824 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1825 * Raises the line count and inserts the new line into the BLS.
1826 *
1827 * @param *a first endpoint
1828 * @param *b second endpoint
1829 * @param n index of Tesselation::BLS giving the line with both endpoints
1830 */
[474961]1831void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
[357fba]1832{
[6613ec]1833 Info FunctionInfo(__func__);
[a67d19]1834 DoLog(0) && (Log() << Verbose(0) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl);
[357fba]1835 BPS[0] = a;
1836 BPS[1] = b;
[6613ec]1837 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
[357fba]1838 // add line to global map
1839 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1840 // increase counter
1841 LinesOnBoundaryCount++;
[1e168b]1842 // also add to open lines
1843 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
[6613ec]1844 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
1845}
1846;
[357fba]1847
[474961]1848/** Uses an existing line for a new triangle.
1849 * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines.
1850 * \param *FindLine the line to add
1851 * \param n index of the line to set in Tesselation::BLS
1852 */
1853void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n)
1854{
1855 Info FunctionInfo(__func__);
[a67d19]1856 DoLog(0) && (Log() << Verbose(0) << "Using existing line " << *Line << endl);
[474961]1857
1858 // set endpoints and line
1859 BPS[0] = Line->endpoints[0];
1860 BPS[1] = Line->endpoints[1];
1861 BLS[n] = Line;
1862 // remove existing line from OpenLines
1863 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
1864 if (CandidateLine != OpenLines.end()) {
[a67d19]1865 DoLog(1) && (Log() << Verbose(1) << " Removing line from OpenLines." << endl);
[6613ec]1866 delete (CandidateLine->second);
[474961]1867 OpenLines.erase(CandidateLine);
1868 } else {
[6613ec]1869 DoeLog(1) && (eLog() << Verbose(1) << "Line exists and is attached to less than two triangles, but not in OpenLines!" << endl);
[474961]1870 }
[6613ec]1871}
1872;
[474961]1873
[7dea7c]1874/** Function adds triangle to global list.
1875 * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
[357fba]1876 */
[16d866]1877void Tesselation::AddTesselationTriangle()
[357fba]1878{
[6613ec]1879 Info FunctionInfo(__func__);
[a67d19]1880 DoLog(1) && (Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl);
[357fba]1881
1882 // add triangle to global map
1883 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1884 TrianglesOnBoundaryCount++;
1885
[57066a]1886 // set as last new triangle
1887 LastTriangle = BTS;
1888
[357fba]1889 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[6613ec]1890}
1891;
[16d866]1892
[7dea7c]1893/** Function adds triangle to global list.
1894 * Furthermore, the triangle number is set to \a nr.
1895 * \param nr triangle number
1896 */
[776b64]1897void Tesselation::AddTesselationTriangle(const int nr)
[7dea7c]1898{
[6613ec]1899 Info FunctionInfo(__func__);
[a67d19]1900 DoLog(0) && (Log() << Verbose(0) << "Adding triangle to global TrianglesOnBoundary map." << endl);
[7dea7c]1901
1902 // add triangle to global map
1903 TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
1904
1905 // set as last new triangle
1906 LastTriangle = BTS;
1907
1908 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[6613ec]1909}
1910;
[7dea7c]1911
[16d866]1912/** Removes a triangle from the tesselation.
1913 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1914 * Removes itself from memory.
1915 * \param *triangle to remove
1916 */
1917void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1918{
[6613ec]1919 Info FunctionInfo(__func__);
[16d866]1920 if (triangle == NULL)
1921 return;
1922 for (int i = 0; i < 3; i++) {
1923 if (triangle->lines[i] != NULL) {
[a67d19]1924 DoLog(0) && (Log() << Verbose(0) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl);
[16d866]1925 triangle->lines[i]->triangles.erase(triangle->Nr);
1926 if (triangle->lines[i]->triangles.empty()) {
[a67d19]1927 DoLog(0) && (Log() << Verbose(0) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl);
[6613ec]1928 RemoveTesselationLine(triangle->lines[i]);
[065e82]1929 } else {
[a67d19]1930 DoLog(0) && (Log() << Verbose(0) << *triangle->lines[i] << " is still attached to another triangle: ");
[6613ec]1931 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
1932 for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
[a67d19]1933 DoLog(0) && (Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t");
1934 DoLog(0) && (Log() << Verbose(0) << endl);
[6613ec]1935 // for (int j=0;j<2;j++) {
1936 // Log() << Verbose(0) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";
1937 // for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)
1938 // Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1939 // Log() << Verbose(0) << endl;
1940 // }
[065e82]1941 }
[6613ec]1942 triangle->lines[i] = NULL; // free'd or not: disconnect
[16d866]1943 } else
[6613ec]1944 DoeLog(1) && (eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl);
[16d866]1945 }
1946
1947 if (TrianglesOnBoundary.erase(triangle->Nr))
[a67d19]1948 DoLog(0) && (Log() << Verbose(0) << "Removing triangle Nr. " << triangle->Nr << "." << endl);
[6613ec]1949 delete (triangle);
1950}
1951;
[16d866]1952
1953/** Removes a line from the tesselation.
1954 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1955 * \param *line line to remove
1956 */
1957void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1958{
[6613ec]1959 Info FunctionInfo(__func__);
[16d866]1960 int Numbers[2];
1961
1962 if (line == NULL)
1963 return;
[065e82]1964 // get other endpoint number for finding copies of same line
[16d866]1965 if (line->endpoints[1] != NULL)
1966 Numbers[0] = line->endpoints[1]->Nr;
1967 else
1968 Numbers[0] = -1;
1969 if (line->endpoints[0] != NULL)
1970 Numbers[1] = line->endpoints[0]->Nr;
1971 else
1972 Numbers[1] = -1;
1973
1974 for (int i = 0; i < 2; i++) {
1975 if (line->endpoints[i] != NULL) {
1976 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1977 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1978 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1979 if ((*Runner).second == line) {
[a67d19]1980 DoLog(0) && (Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl);
[16d866]1981 line->endpoints[i]->lines.erase(Runner);
1982 break;
1983 }
1984 } else { // there's just a single line left
1985 if (line->endpoints[i]->lines.erase(line->Nr))
[a67d19]1986 DoLog(0) && (Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl);
[16d866]1987 }
1988 if (line->endpoints[i]->lines.empty()) {
[a67d19]1989 DoLog(0) && (Log() << Verbose(0) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl);
[16d866]1990 RemoveTesselationPoint(line->endpoints[i]);
[065e82]1991 } else {
[a67d19]1992 DoLog(0) && (Log() << Verbose(0) << *line->endpoints[i] << " has still lines it's attached to: ");
[6613ec]1993 for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
[a67d19]1994 DoLog(0) && (Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t");
1995 DoLog(0) && (Log() << Verbose(0) << endl);
[065e82]1996 }
[6613ec]1997 line->endpoints[i] = NULL; // free'd or not: disconnect
[16d866]1998 } else
[6613ec]1999 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl);
[16d866]2000 }
2001 if (!line->triangles.empty())
[6613ec]2002 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl);
[16d866]2003
2004 if (LinesOnBoundary.erase(line->Nr))
[a67d19]2005 DoLog(0) && (Log() << Verbose(0) << "Removing line Nr. " << line->Nr << "." << endl);
[6613ec]2006 delete (line);
2007}
2008;
[16d866]2009
2010/** Removes a point from the tesselation.
2011 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
2012 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
2013 * \param *point point to remove
2014 */
2015void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
2016{
[6613ec]2017 Info FunctionInfo(__func__);
[16d866]2018 if (point == NULL)
2019 return;
2020 if (PointsOnBoundary.erase(point->Nr))
[a67d19]2021 DoLog(0) && (Log() << Verbose(0) << "Removing point Nr. " << point->Nr << "." << endl);
[6613ec]2022 delete (point);
2023}
2024;
[f07f86d]2025
2026/** Checks validity of a given sphere of a candidate line.
2027 * \sa CandidateForTesselation::CheckValidity(), which is more evolved.
[6613ec]2028 * We check CandidateForTesselation::OtherOptCenter
2029 * \param &CandidateLine contains other degenerated candidates which we have to subtract as well
[f07f86d]2030 * \param RADIUS radius of sphere
2031 * \param *LC LinkedCell structure with other atoms
2032 * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated
2033 */
[6613ec]2034bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC) const
[f07f86d]2035{
2036 Info FunctionInfo(__func__);
2037
2038 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl);
2039 bool flag = true;
2040
[a67d19]2041 DoLog(1) && (Log() << Verbose(1) << "Check by: draw sphere {" << CandidateLine.OtherOptCenter.x[0] << " " << CandidateLine.OtherOptCenter.x[1] << " " << CandidateLine.OtherOptCenter.x[2] << "} radius " << RADIUS << " resolution 30" << endl);
[f07f86d]2042 // get all points inside the sphere
[6613ec]2043 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter);
[f07f86d]2044
[a67d19]2045 DoLog(1) && (Log() << Verbose(1) << "The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":" << endl);
[f07f86d]2046 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
[a67d19]2047 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&CandidateLine.OtherOptCenter) << "." << endl);
[f07f86d]2048
2049 // remove triangles's endpoints
[6613ec]2050 for (int i = 0; i < 2; i++)
2051 ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node);
2052
2053 // remove other candidates
2054 for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner)
2055 ListofPoints->remove(*Runner);
[f07f86d]2056
2057 // check for other points
2058 if (!ListofPoints->empty()) {
[a67d19]2059 DoLog(1) && (Log() << Verbose(1) << "CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere." << endl);
[f07f86d]2060 flag = false;
[a67d19]2061 DoLog(1) && (Log() << Verbose(1) << "External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":" << endl);
[f07f86d]2062 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
[a67d19]2063 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&CandidateLine.OtherOptCenter) << "." << endl);
[f07f86d]2064 }
[6613ec]2065 delete (ListofPoints);
[f07f86d]2066
2067 return flag;
[6613ec]2068}
2069;
[f07f86d]2070
[62bb91]2071/** Checks whether the triangle consisting of the three points is already present.
[357fba]2072 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2073 * lines. If any of the three edges already has two triangles attached, false is
2074 * returned.
2075 * \param *out output stream for debugging
2076 * \param *Candidates endpoints of the triangle candidate
2077 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
2078 * triangles exist which is the maximum for three points
2079 */
[f1ef60a]2080int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
2081{
[6613ec]2082 Info FunctionInfo(__func__);
[357fba]2083 int adjacentTriangleCount = 0;
2084 class BoundaryPointSet *Points[3];
2085
2086 // builds a triangle point set (Points) of the end points
2087 for (int i = 0; i < 3; i++) {
[f1ef60a]2088 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
[357fba]2089 if (FindPoint != PointsOnBoundary.end()) {
2090 Points[i] = FindPoint->second;
2091 } else {
2092 Points[i] = NULL;
2093 }
2094 }
2095
2096 // checks lines between the points in the Points for their adjacent triangles
2097 for (int i = 0; i < 3; i++) {
2098 if (Points[i] != NULL) {
2099 for (int j = i; j < 3; j++) {
2100 if (Points[j] != NULL) {
[f1ef60a]2101 LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
[357fba]2102 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2103 TriangleMap *triangles = &FindLine->second->triangles;
[a67d19]2104 DoLog(1) && (Log() << Verbose(1) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl);
[f1ef60a]2105 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
[357fba]2106 if (FindTriangle->second->IsPresentTupel(Points)) {
2107 adjacentTriangleCount++;
2108 }
2109 }
[a67d19]2110 DoLog(1) && (Log() << Verbose(1) << "end." << endl);
[357fba]2111 }
2112 // Only one of the triangle lines must be considered for the triangle count.
[f67b6e]2113 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
[065e82]2114 //return adjacentTriangleCount;
[357fba]2115 }
2116 }
2117 }
2118 }
2119
[a67d19]2120 DoLog(0) && (Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl);
[357fba]2121 return adjacentTriangleCount;
[6613ec]2122}
2123;
[357fba]2124
[065e82]2125/** Checks whether the triangle consisting of the three points is already present.
2126 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2127 * lines. If any of the three edges already has two triangles attached, false is
2128 * returned.
2129 * \param *out output stream for debugging
2130 * \param *Candidates endpoints of the triangle candidate
2131 * \return NULL - none found or pointer to triangle
2132 */
[e138de]2133class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
[065e82]2134{
[6613ec]2135 Info FunctionInfo(__func__);
[065e82]2136 class BoundaryTriangleSet *triangle = NULL;
2137 class BoundaryPointSet *Points[3];
2138
2139 // builds a triangle point set (Points) of the end points
2140 for (int i = 0; i < 3; i++) {
2141 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
2142 if (FindPoint != PointsOnBoundary.end()) {
2143 Points[i] = FindPoint->second;
2144 } else {
2145 Points[i] = NULL;
2146 }
2147 }
2148
2149 // checks lines between the points in the Points for their adjacent triangles
2150 for (int i = 0; i < 3; i++) {
2151 if (Points[i] != NULL) {
2152 for (int j = i; j < 3; j++) {
2153 if (Points[j] != NULL) {
2154 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
2155 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2156 TriangleMap *triangles = &FindLine->second->triangles;
2157 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
2158 if (FindTriangle->second->IsPresentTupel(Points)) {
2159 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
2160 triangle = FindTriangle->second;
2161 }
2162 }
2163 }
2164 // Only one of the triangle lines must be considered for the triangle count.
[f67b6e]2165 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
[065e82]2166 //return adjacentTriangleCount;
2167 }
2168 }
2169 }
2170 }
2171
2172 return triangle;
[6613ec]2173}
2174;
[357fba]2175
[f1cccd]2176/** Finds the starting triangle for FindNonConvexBorder().
2177 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
2178 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
[357fba]2179 * point are called.
2180 * \param *out output stream for debugging
2181 * \param RADIUS radius of virtual rolling sphere
2182 * \param *LC LinkedCell structure with neighbouring TesselPoint's
2183 */
[e138de]2184void Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC)
[357fba]2185{
[6613ec]2186 Info FunctionInfo(__func__);
[357fba]2187 int i = 0;
[62bb91]2188 TesselPoint* MaxPoint[NDIM];
[7273fc]2189 TesselPoint* Temporary;
[f1cccd]2190 double maxCoordinate[NDIM];
[f07f86d]2191 BoundaryLineSet *BaseLine = NULL;
[357fba]2192 Vector helper;
2193 Vector Chord;
2194 Vector SearchDirection;
[6613ec]2195 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
[b998c3]2196 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2197 Vector SphereCenter;
2198 Vector NormalVector;
[357fba]2199
[b998c3]2200 NormalVector.Zero();
[357fba]2201
2202 for (i = 0; i < 3; i++) {
[62bb91]2203 MaxPoint[i] = NULL;
[f1cccd]2204 maxCoordinate[i] = -1;
[357fba]2205 }
2206
[62bb91]2207 // 1. searching topmost point with respect to each axis
[6613ec]2208 for (int i = 0; i < NDIM; i++) { // each axis
2209 LC->n[i] = LC->N[i] - 1; // current axis is topmost cell
2210 for (LC->n[(i + 1) % NDIM] = 0; LC->n[(i + 1) % NDIM] < LC->N[(i + 1) % NDIM]; LC->n[(i + 1) % NDIM]++)
2211 for (LC->n[(i + 2) % NDIM] = 0; LC->n[(i + 2) % NDIM] < LC->N[(i + 2) % NDIM]; LC->n[(i + 2) % NDIM]++) {
[734816]2212 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[f67b6e]2213 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
[357fba]2214 if (List != NULL) {
[6613ec]2215 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[f1cccd]2216 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
[a67d19]2217 DoLog(1) && (Log() << Verbose(1) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl);
[f1cccd]2218 maxCoordinate[i] = (*Runner)->node->x[i];
[62bb91]2219 MaxPoint[i] = (*Runner);
[357fba]2220 }
2221 }
2222 } else {
[6613ec]2223 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
[357fba]2224 }
2225 }
2226 }
2227
[a67d19]2228 DoLog(1) && (Log() << Verbose(1) << "Found maximum coordinates: ");
[6613ec]2229 for (int i = 0; i < NDIM; i++)
[a67d19]2230 DoLog(0) && (Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t");
2231 DoLog(0) && (Log() << Verbose(0) << endl);
[357fba]2232
2233 BTS = NULL;
[6613ec]2234 for (int k = 0; k < NDIM; k++) {
[b998c3]2235 NormalVector.Zero();
2236 NormalVector.x[k] = 1.;
[f07f86d]2237 BaseLine = new BoundaryLineSet();
2238 BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
[a67d19]2239 DoLog(0) && (Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl);
[357fba]2240
2241 double ShortestAngle;
2242 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
2243
[cfe56d]2244 Temporary = NULL;
[f07f86d]2245 FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
[711ac2]2246 if (Temporary == NULL) {
2247 // have we found a second point?
2248 delete BaseLine;
[357fba]2249 continue;
[711ac2]2250 }
[f07f86d]2251 BaseLine->endpoints[1] = new BoundaryPointSet(Temporary);
[357fba]2252
[b998c3]2253 // construct center of circle
[f07f86d]2254 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2255 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
[b998c3]2256 CircleCenter.Scale(0.5);
2257
2258 // construct normal vector of circle
[f07f86d]2259 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2260 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
[357fba]2261
[b998c3]2262 double radius = CirclePlaneNormal.NormSquared();
[6613ec]2263 double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.);
[b998c3]2264
2265 NormalVector.ProjectOntoPlane(&CirclePlaneNormal);
2266 NormalVector.Normalize();
[6613ec]2267 ShortestAngle = 2. * M_PI; // This will indicate the quadrant.
[b998c3]2268
2269 SphereCenter.CopyVector(&NormalVector);
2270 SphereCenter.Scale(CircleRadius);
2271 SphereCenter.AddVector(&CircleCenter);
2272 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
[357fba]2273
2274 // look in one direction of baseline for initial candidate
[6613ec]2275 SearchDirection.MakeNormalVector(&CirclePlaneNormal, &NormalVector); // whether we look "left" first or "right" first is not important ...
[357fba]2276
[5c7bf8]2277 // adding point 1 and point 2 and add the line between them
[a67d19]2278 DoLog(0) && (Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl);
2279 DoLog(0) && (Log() << Verbose(0) << "Found second point is at " << *BaseLine->endpoints[1]->node << ".\n");
[357fba]2280
[f67b6e]2281 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << helper << ".\n";
[f07f86d]2282 CandidateForTesselation OptCandidates(BaseLine);
[b998c3]2283 FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
[a67d19]2284 DoLog(0) && (Log() << Verbose(0) << "List of third Points is:" << endl);
[f67b6e]2285 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) {
[a67d19]2286 DoLog(0) && (Log() << Verbose(0) << " " << *(*it) << endl);
[357fba]2287 }
[f07f86d]2288 if (!OptCandidates.pointlist.empty()) {
2289 BTS = NULL;
2290 AddCandidatePolygon(OptCandidates, RADIUS, LC);
2291 } else {
2292 delete BaseLine;
2293 continue;
2294 }
[7273fc]2295
[711ac2]2296 if (BTS != NULL) { // we have created one starting triangle
2297 delete BaseLine;
[357fba]2298 break;
[711ac2]2299 } else {
[357fba]2300 // remove all candidates from the list and then the list itself
[7273fc]2301 OptCandidates.pointlist.clear();
[357fba]2302 }
[f07f86d]2303 delete BaseLine;
[357fba]2304 }
[6613ec]2305}
2306;
[357fba]2307
[f1ef60a]2308/** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
2309 * This is supposed to prevent early closing of the tesselation.
[f67b6e]2310 * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
[f1ef60a]2311 * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
2312 * \param RADIUS radius of sphere
2313 * \param *LC LinkedCell structure
2314 * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
2315 */
[f67b6e]2316//bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell * const LC) const
2317//{
2318// Info FunctionInfo(__func__);
2319// bool result = false;
2320// Vector CircleCenter;
2321// Vector CirclePlaneNormal;
2322// Vector OldSphereCenter;
2323// Vector SearchDirection;
2324// Vector helper;
2325// TesselPoint *OtherOptCandidate = NULL;
2326// double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2327// double radius, CircleRadius;
2328// BoundaryLineSet *Line = NULL;
2329// BoundaryTriangleSet *T = NULL;
2330//
2331// // check both other lines
2332// PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->nr);
2333// if (FindPoint != PointsOnBoundary.end()) {
2334// for (int i=0;i<2;i++) {
2335// LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->nr);
2336// if (FindLine != (FindPoint->second)->lines.end()) {
2337// Line = FindLine->second;
2338// Log() << Verbose(0) << "Found line " << *Line << "." << endl;
2339// if (Line->triangles.size() == 1) {
2340// T = Line->triangles.begin()->second;
2341// // construct center of circle
2342// CircleCenter.CopyVector(Line->endpoints[0]->node->node);
2343// CircleCenter.AddVector(Line->endpoints[1]->node->node);
2344// CircleCenter.Scale(0.5);
2345//
2346// // construct normal vector of circle
2347// CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
2348// CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
2349//
2350// // calculate squared radius of circle
2351// radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2352// if (radius/4. < RADIUS*RADIUS) {
2353// CircleRadius = RADIUS*RADIUS - radius/4.;
2354// CirclePlaneNormal.Normalize();
2355// //Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2356//
2357// // construct old center
2358// GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
2359// helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
2360// radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
2361// helper.Scale(sqrt(RADIUS*RADIUS - radius));
2362// OldSphereCenter.AddVector(&helper);
2363// OldSphereCenter.SubtractVector(&CircleCenter);
2364// //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2365//
2366// // construct SearchDirection
2367// SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
2368// helper.CopyVector(Line->endpoints[0]->node->node);
2369// helper.SubtractVector(ThirdNode->node);
2370// if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2371// SearchDirection.Scale(-1.);
2372// SearchDirection.ProjectOntoPlane(&OldSphereCenter);
2373// SearchDirection.Normalize();
2374// Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2375// if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2376// // rotated the wrong way!
[58ed4a]2377// DoeLog(1) && (eLog()<< Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl);
[f67b6e]2378// }
2379//
2380// // add third point
2381// FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
2382// for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
2383// if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
2384// continue;
2385// Log() << Verbose(0) << " Third point candidate is " << (*it)
2386// << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
2387// Log() << Verbose(0) << " Baseline is " << *BaseRay << endl;
2388//
2389// // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
2390// TesselPoint *PointCandidates[3];
2391// PointCandidates[0] = (*it);
2392// PointCandidates[1] = BaseRay->endpoints[0]->node;
2393// PointCandidates[2] = BaseRay->endpoints[1]->node;
2394// bool check=false;
2395// int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
2396// // If there is no triangle, add it regularly.
2397// if (existentTrianglesCount == 0) {
2398// SetTesselationPoint((*it), 0);
2399// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2400// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2401//
2402// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
2403// OtherOptCandidate = (*it);
2404// check = true;
2405// }
2406// } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
2407// SetTesselationPoint((*it), 0);
2408// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2409// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2410//
2411// // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
2412// // i.e. at least one of the three lines must be present with TriangleCount <= 1
2413// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
2414// OtherOptCandidate = (*it);
2415// check = true;
2416// }
2417// }
2418//
2419// if (check) {
2420// if (ShortestAngle > OtherShortestAngle) {
2421// Log() << Verbose(0) << "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << "." << endl;
2422// result = true;
2423// break;
2424// }
2425// }
2426// }
2427// delete(OptCandidates);
2428// if (result)
2429// break;
2430// } else {
2431// Log() << Verbose(0) << "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!" << endl;
2432// }
2433// } else {
[58ed4a]2434// DoeLog(2) && (eLog()<< Verbose(2) << "Baseline is connected to two triangles already?" << endl);
[f67b6e]2435// }
2436// } else {
2437// Log() << Verbose(1) << "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << "." << endl;
2438// }
2439// }
2440// } else {
[58ed4a]2441// DoeLog(1) && (eLog()<< Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl);
[f67b6e]2442// }
2443//
2444// return result;
2445//};
[357fba]2446
2447/** This function finds a triangle to a line, adjacent to an existing one.
2448 * @param out output stream for debugging
[1e168b]2449 * @param CandidateLine current cadndiate baseline to search from
[357fba]2450 * @param T current triangle which \a Line is edge of
2451 * @param RADIUS radius of the rolling ball
2452 * @param N number of found triangles
[62bb91]2453 * @param *LC LinkedCell structure with neighbouring points
[357fba]2454 */
[f07f86d]2455bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC)
[357fba]2456{
[6613ec]2457 Info FunctionInfo(__func__);
[357fba]2458 Vector CircleCenter;
2459 Vector CirclePlaneNormal;
[b998c3]2460 Vector RelativeSphereCenter;
[357fba]2461 Vector SearchDirection;
2462 Vector helper;
[09898c]2463 BoundaryPointSet *ThirdPoint = NULL;
[357fba]2464 LineMap::iterator testline;
2465 double radius, CircleRadius;
2466
[6613ec]2467 for (int i = 0; i < 3; i++)
[09898c]2468 if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) {
2469 ThirdPoint = T.endpoints[i];
[b998c3]2470 break;
2471 }
[a67d19]2472 DoLog(0) && (Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << "." << endl);
[09898c]2473
2474 CandidateLine.T = &T;
[357fba]2475
2476 // construct center of circle
[1e168b]2477 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2478 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]2479 CircleCenter.Scale(0.5);
2480
2481 // construct normal vector of circle
[1e168b]2482 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2483 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]2484
2485 // calculate squared radius of circle
2486 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
[6613ec]2487 if (radius / 4. < RADIUS * RADIUS) {
[b998c3]2488 // construct relative sphere center with now known CircleCenter
2489 RelativeSphereCenter.CopyVector(&T.SphereCenter);
2490 RelativeSphereCenter.SubtractVector(&CircleCenter);
2491
[6613ec]2492 CircleRadius = RADIUS * RADIUS - radius / 4.;
[357fba]2493 CirclePlaneNormal.Normalize();
[a67d19]2494 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl);
[357fba]2495
[a67d19]2496 DoLog(1) && (Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl);
[b998c3]2497
2498 // construct SearchDirection and an "outward pointer"
2499 SearchDirection.MakeNormalVector(&RelativeSphereCenter, &CirclePlaneNormal);
2500 helper.CopyVector(&CircleCenter);
[09898c]2501 helper.SubtractVector(ThirdPoint->node->node);
[357fba]2502 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2503 SearchDirection.Scale(-1.);
[a67d19]2504 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl);
[b998c3]2505 if (fabs(RelativeSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
[357fba]2506 // rotated the wrong way!
[6613ec]2507 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl);
[357fba]2508 }
2509
2510 // add third point
[09898c]2511 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC);
[357fba]2512
2513 } else {
[a67d19]2514 DoLog(0) && (Log() << Verbose(0) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl);
[357fba]2515 }
2516
[f67b6e]2517 if (CandidateLine.pointlist.empty()) {
[6613ec]2518 DoeLog(2) && (eLog() << Verbose(2) << "Could not find a suitable candidate." << endl);
[357fba]2519 return false;
2520 }
[a67d19]2521 DoLog(0) && (Log() << Verbose(0) << "Third Points are: " << endl);
[f67b6e]2522 for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it) {
[a67d19]2523 DoLog(0) && (Log() << Verbose(0) << " " << *(*it) << endl);
[357fba]2524 }
2525
[f67b6e]2526 return true;
[6613ec]2527}
2528;
[f67b6e]2529
[6613ec]2530/** Walks through Tesselation::OpenLines() and finds candidates for newly created ones.
2531 * \param *&LCList atoms in LinkedCell list
2532 * \param RADIUS radius of the virtual sphere
2533 * \return true - for all open lines without candidates so far, a candidate has been found,
2534 * false - at least one open line without candidate still
2535 */
2536bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell *&LCList)
2537{
2538 bool TesselationFailFlag = true;
2539 CandidateForTesselation *baseline = NULL;
2540 BoundaryTriangleSet *T = NULL;
2541
2542 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
2543 baseline = Runner->second;
2544 if (baseline->pointlist.empty()) {
[f04f11]2545 assert((baseline->BaseLine->triangles.size() == 1) && ("Open line without exactly one attached triangle"));
[6613ec]2546 T = (((baseline->BaseLine->triangles.begin()))->second);
[a67d19]2547 DoLog(1) && (Log() << Verbose(1) << "Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T << endl);
[6613ec]2548 TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one.
2549 }
2550 }
2551 return TesselationFailFlag;
2552}
2553;
[357fba]2554
[1e168b]2555/** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
[f67b6e]2556 * \param CandidateLine triangle to add
[474961]2557 * \param RADIUS Radius of sphere
2558 * \param *LC LinkedCell structure
2559 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in
2560 * AddTesselationLine() in AddCandidateTriangle()
[1e168b]2561 */
[474961]2562void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell *LC)
[1e168b]2563{
[ebb50e]2564 Info FunctionInfo(__func__);
[1e168b]2565 Vector Center;
[27bd2f]2566 TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
[09898c]2567 TesselPointList::iterator Runner;
2568 TesselPointList::iterator Sprinter;
[27bd2f]2569
2570 // fill the set of neighbours
[c15ca2]2571 TesselPointSet SetOfNeighbours;
[27bd2f]2572 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
2573 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
2574 SetOfNeighbours.insert(*Runner);
[c15ca2]2575 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node);
[27bd2f]2576
[a67d19]2577 DoLog(0) && (Log() << Verbose(0) << "List of Candidates for Turning Point " << *TurningPoint << ":" << endl);
[c15ca2]2578 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
[a67d19]2579 DoLog(0) && (Log() << Verbose(0) << " " << **TesselRunner << endl);
[09898c]2580
2581 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
2582 Runner = connectedClosestPoints->begin();
2583 Sprinter = Runner;
[27bd2f]2584 Sprinter++;
[6613ec]2585 while (Sprinter != connectedClosestPoints->end()) {
[a67d19]2586 DoLog(0) && (Log() << Verbose(0) << "Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << "." << endl);
[6613ec]2587
[f07f86d]2588 AddTesselationPoint(TurningPoint, 0);
2589 AddTesselationPoint(*Runner, 1);
2590 AddTesselationPoint(*Sprinter, 2);
2591
[6613ec]2592 AddCandidateTriangle(CandidateLine, Opt);
2593
2594 Runner = Sprinter;
2595 Sprinter++;
2596 if (Sprinter != connectedClosestPoints->end()) {
2597 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
[f04f11]2598 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter); // Assume BTS contains last triangle
[a67d19]2599 DoLog(0) && (Log() << Verbose(0) << " There are still more triangles to add." << endl);
[6613ec]2600 }
2601 // pick candidates for other open lines as well
2602 FindCandidatesforOpenLines(RADIUS, LC);
2603
[f07f86d]2604 // check whether we add a degenerate or a normal triangle
[6613ec]2605 if (CheckDegeneracy(CandidateLine, RADIUS, LC)) {
[f07f86d]2606 // add normal and degenerate triangles
[a67d19]2607 DoLog(1) && (Log() << Verbose(1) << "Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides." << endl);
[6613ec]2608 AddCandidateTriangle(CandidateLine, OtherOpt);
2609
2610 if (Sprinter != connectedClosestPoints->end()) {
2611 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
2612 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter);
2613 }
2614 // pick candidates for other open lines as well
2615 FindCandidatesforOpenLines(RADIUS, LC);
[474961]2616 }
[6613ec]2617 }
2618 delete (connectedClosestPoints);
2619};
[474961]2620
[6613ec]2621/** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate.
2622 * \param *Sprinter next candidate to which internal open lines are set
2623 * \param *OptCenter OptCenter for this candidate
2624 */
2625void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter)
2626{
2627 Info FunctionInfo(__func__);
2628
2629 pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->nr);
2630 for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
[a67d19]2631 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl);
[6613ec]2632 // If there is a line with less than two attached triangles, we don't need a new line.
2633 if (FindLine->second->triangles.size() == 1) {
2634 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
2635 if (!Finder->second->pointlist.empty())
[a67d19]2636 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl);
[6613ec]2637 else {
[a67d19]2638 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter) << endl);
[f04f11]2639 Finder->second->T = BTS; // is last triangle
[6613ec]2640 Finder->second->pointlist.push_back(Sprinter);
2641 Finder->second->ShortestAngle = 0.;
2642 Finder->second->OptCenter.CopyVector(OptCenter);
2643 }
2644 }
[f67b6e]2645 }
[1e168b]2646};
2647
[f07f86d]2648/** If a given \a *triangle is degenerated, this adds both sides.
[474961]2649 * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction.
[f07f86d]2650 * Note that endpoints are stored in Tesselation::TPS
2651 * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine
[474961]2652 * \param RADIUS radius of sphere
2653 * \param *LC pointer to LinkedCell structure
2654 */
[711ac2]2655void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC)
[474961]2656{
2657 Info FunctionInfo(__func__);
[f07f86d]2658 Vector Center;
2659 CandidateMap::const_iterator CandidateCheck = OpenLines.end();
[711ac2]2660 BoundaryTriangleSet *triangle = NULL;
[f07f86d]2661
[711ac2]2662 /// 1. Create or pick the lines for the first triangle
[a67d19]2663 DoLog(0) && (Log() << Verbose(0) << "INFO: Creating/Picking lines for first triangle ..." << endl);
[6613ec]2664 for (int i = 0; i < 3; i++) {
[711ac2]2665 BLS[i] = NULL;
[a67d19]2666 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[6613ec]2667 AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
[474961]2668 }
[f07f86d]2669
[711ac2]2670 /// 2. create the first triangle and NormalVector and so on
[a67d19]2671 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding first triangle with center at " << CandidateLine.OptCenter << " ..." << endl);
[f07f86d]2672 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2673 AddTesselationTriangle();
[711ac2]2674
[f07f86d]2675 // create normal vector
2676 BTS->GetCenter(&Center);
2677 Center.SubtractVector(&CandidateLine.OptCenter);
2678 BTS->SphereCenter.CopyVector(&CandidateLine.OptCenter);
2679 BTS->GetNormalVector(Center);
2680 // give some verbose output about the whole procedure
2681 if (CandidateLine.T != NULL)
[a67d19]2682 DoLog(0) && (Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl);
[f07f86d]2683 else
[a67d19]2684 DoLog(0) && (Log() << Verbose(0) << "--> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl);
[f07f86d]2685 triangle = BTS;
2686
[711ac2]2687 /// 3. Gather candidates for each new line
[a67d19]2688 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding candidates to new lines ..." << endl);
[6613ec]2689 for (int i = 0; i < 3; i++) {
[a67d19]2690 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[f07f86d]2691 CandidateCheck = OpenLines.find(BLS[i]);
2692 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
2693 if (CandidateCheck->second->T == NULL)
2694 CandidateCheck->second->T = triangle;
2695 FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC);
[474961]2696 }
[f07f86d]2697 }
[d5fea7]2698
[711ac2]2699 /// 4. Create or pick the lines for the second triangle
[a67d19]2700 DoLog(0) && (Log() << Verbose(0) << "INFO: Creating/Picking lines for second triangle ..." << endl);
[6613ec]2701 for (int i = 0; i < 3; i++) {
[a67d19]2702 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[6613ec]2703 AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
[474961]2704 }
[f07f86d]2705
[711ac2]2706 /// 5. create the second triangle and NormalVector and so on
[a67d19]2707 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ..." << endl);
[f07f86d]2708 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2709 AddTesselationTriangle();
[711ac2]2710
[f07f86d]2711 BTS->SphereCenter.CopyVector(&CandidateLine.OtherOptCenter);
2712 // create normal vector in other direction
2713 BTS->GetNormalVector(&triangle->NormalVector);
2714 BTS->NormalVector.Scale(-1.);
2715 // give some verbose output about the whole procedure
2716 if (CandidateLine.T != NULL)
[a67d19]2717 DoLog(0) && (Log() << Verbose(0) << "--> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl);
[f07f86d]2718 else
[a67d19]2719 DoLog(0) && (Log() << Verbose(0) << "--> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl);
[f07f86d]2720
[711ac2]2721 /// 6. Adding triangle to new lines
[a67d19]2722 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding second triangles to new lines ..." << endl);
[6613ec]2723 for (int i = 0; i < 3; i++) {
[a67d19]2724 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[711ac2]2725 CandidateCheck = OpenLines.find(BLS[i]);
2726 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
2727 if (CandidateCheck->second->T == NULL)
2728 CandidateCheck->second->T = BTS;
2729 }
2730 }
[6613ec]2731}
2732;
[474961]2733
2734/** Adds a triangle to the Tesselation structure from three given TesselPoint's.
[f07f86d]2735 * Note that endpoints are in Tesselation::TPS.
2736 * \param CandidateLine CandidateForTesselation structure contains other information
[6613ec]2737 * \param type which opt center to add (i.e. which side) and thus which NormalVector to take
[474961]2738 */
[6613ec]2739void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type)
[474961]2740{
2741 Info FunctionInfo(__func__);
[f07f86d]2742 Vector Center;
[6613ec]2743 Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter;
[474961]2744
2745 // add the lines
[6613ec]2746 AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0);
2747 AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1);
2748 AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2);
[474961]2749
2750 // add the triangles
2751 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2752 AddTesselationTriangle();
[f07f86d]2753
2754 // create normal vector
2755 BTS->GetCenter(&Center);
[6613ec]2756 Center.SubtractVector(OptCenter);
2757 BTS->SphereCenter.CopyVector(OptCenter);
[f07f86d]2758 BTS->GetNormalVector(Center);
2759
2760 // give some verbose output about the whole procedure
2761 if (CandidateLine.T != NULL)
[a67d19]2762 DoLog(0) && (Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl);
[f07f86d]2763 else
[a67d19]2764 DoLog(0) && (Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl);
[6613ec]2765}
2766;
[474961]2767
[16d866]2768/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
2769 * We look whether the closest point on \a *Base with respect to the other baseline is outside
2770 * of the segment formed by both endpoints (concave) or not (convex).
2771 * \param *out output stream for debugging
2772 * \param *Base line to be flipped
[57066a]2773 * \return NULL - convex, otherwise endpoint that makes it concave
[16d866]2774 */
[e138de]2775class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
[16d866]2776{
[6613ec]2777 Info FunctionInfo(__func__);
[16d866]2778 class BoundaryPointSet *Spot = NULL;
2779 class BoundaryLineSet *OtherBase;
[0077b5]2780 Vector *ClosestPoint;
[16d866]2781
[6613ec]2782 int m = 0;
2783 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2784 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2785 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2786 BPS[m++] = runner->second->endpoints[j];
[6613ec]2787 OtherBase = new class BoundaryLineSet(BPS, -1);
[16d866]2788
[a67d19]2789 DoLog(1) && (Log() << Verbose(1) << "INFO: Current base line is " << *Base << "." << endl);
2790 DoLog(1) && (Log() << Verbose(1) << "INFO: Other base line is " << *OtherBase << "." << endl);
[16d866]2791
2792 // get the closest point on each line to the other line
[e138de]2793 ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
[16d866]2794
2795 // delete the temporary other base line
[6613ec]2796 delete (OtherBase);
[16d866]2797
2798 // get the distance vector from Base line to OtherBase line
[0077b5]2799 Vector DistanceToIntersection[2], BaseLine;
2800 double distance[2];
[16d866]2801 BaseLine.CopyVector(Base->endpoints[1]->node->node);
2802 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
[6613ec]2803 for (int i = 0; i < 2; i++) {
[0077b5]2804 DistanceToIntersection[i].CopyVector(ClosestPoint);
2805 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
2806 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
[16d866]2807 }
[6613ec]2808 delete (ClosestPoint);
2809 if ((distance[0] * distance[1]) > 0) { // have same sign?
[a67d19]2810 DoLog(1) && (Log() << Verbose(1) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl);
[0077b5]2811 if (distance[0] < distance[1]) {
2812 Spot = Base->endpoints[0];
2813 } else {
2814 Spot = Base->endpoints[1];
2815 }
[16d866]2816 return Spot;
[6613ec]2817 } else { // different sign, i.e. we are in between
[a67d19]2818 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl);
[16d866]2819 return NULL;
2820 }
2821
[6613ec]2822}
2823;
[16d866]2824
[776b64]2825void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
[0077b5]2826{
[6613ec]2827 Info FunctionInfo(__func__);
[0077b5]2828 // print all lines
[a67d19]2829 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary points for debugging:" << endl);
[6613ec]2830 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++)
[a67d19]2831 DoLog(0) && (Log() << Verbose(0) << *(PointRunner->second) << endl);
[6613ec]2832}
2833;
[0077b5]2834
[776b64]2835void Tesselation::PrintAllBoundaryLines(ofstream *out) const
[0077b5]2836{
[6613ec]2837 Info FunctionInfo(__func__);
[0077b5]2838 // print all lines
[a67d19]2839 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary lines for debugging:" << endl);
[776b64]2840 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
[a67d19]2841 DoLog(0) && (Log() << Verbose(0) << *(LineRunner->second) << endl);
[6613ec]2842}
2843;
[0077b5]2844
[776b64]2845void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
[0077b5]2846{
[6613ec]2847 Info FunctionInfo(__func__);
[0077b5]2848 // print all triangles
[a67d19]2849 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary triangles for debugging:" << endl);
[776b64]2850 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
[a67d19]2851 DoLog(0) && (Log() << Verbose(0) << *(TriangleRunner->second) << endl);
[6613ec]2852}
2853;
[357fba]2854
[16d866]2855/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
[357fba]2856 * \param *out output stream for debugging
[16d866]2857 * \param *Base line to be flipped
[57066a]2858 * \return volume change due to flipping (0 - then no flipped occured)
[357fba]2859 */
[e138de]2860double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
[357fba]2861{
[6613ec]2862 Info FunctionInfo(__func__);
[16d866]2863 class BoundaryLineSet *OtherBase;
2864 Vector *ClosestPoint[2];
[57066a]2865 double volume;
[16d866]2866
[6613ec]2867 int m = 0;
2868 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2869 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2870 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2871 BPS[m++] = runner->second->endpoints[j];
[6613ec]2872 OtherBase = new class BoundaryLineSet(BPS, -1);
[62bb91]2873
[a67d19]2874 DoLog(0) && (Log() << Verbose(0) << "INFO: Current base line is " << *Base << "." << endl);
2875 DoLog(0) && (Log() << Verbose(0) << "INFO: Other base line is " << *OtherBase << "." << endl);
[62bb91]2876
[16d866]2877 // get the closest point on each line to the other line
[e138de]2878 ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
2879 ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
[16d866]2880
2881 // get the distance vector from Base line to OtherBase line
2882 Vector Distance;
2883 Distance.CopyVector(ClosestPoint[1]);
2884 Distance.SubtractVector(ClosestPoint[0]);
2885
[57066a]2886 // calculate volume
[c0f6c6]2887 volume = CalculateVolumeofGeneralTetraeder(*Base->endpoints[1]->node->node, *OtherBase->endpoints[0]->node->node, *OtherBase->endpoints[1]->node->node, *Base->endpoints[0]->node->node);
[57066a]2888
[0077b5]2889 // delete the temporary other base line and the closest points
[6613ec]2890 delete (ClosestPoint[0]);
2891 delete (ClosestPoint[1]);
2892 delete (OtherBase);
[16d866]2893
2894 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
[a67d19]2895 DoLog(0) && (Log() << Verbose(0) << "REJECT: Both lines have an intersection: Nothing to do." << endl);
[16d866]2896 return false;
2897 } else { // check for sign against BaseLineNormal
2898 Vector BaseLineNormal;
[5c7bf8]2899 BaseLineNormal.Zero();
2900 if (Base->triangles.size() < 2) {
[6613ec]2901 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl);
[57066a]2902 return 0.;
[5c7bf8]2903 }
2904 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
[a67d19]2905 DoLog(1) && (Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl);
[5c7bf8]2906 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2907 }
[6613ec]2908 BaseLineNormal.Scale(1. / 2.);
[357fba]2909
[16d866]2910 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
[a67d19]2911 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl);
[57066a]2912 // calculate volume summand as a general tetraeder
2913 return volume;
[6613ec]2914 } else { // Base higher than OtherBase -> do nothing
[a67d19]2915 DoLog(0) && (Log() << Verbose(0) << "REJECT: Base line is higher: Nothing to do." << endl);
[57066a]2916 return 0.;
[16d866]2917 }
2918 }
[6613ec]2919}
2920;
[357fba]2921
[16d866]2922/** For a given baseline and its two connected triangles, flips the baseline.
2923 * I.e. we create the new baseline between the other two endpoints of these four
2924 * endpoints and reconstruct the two triangles accordingly.
2925 * \param *out output stream for debugging
2926 * \param *Base line to be flipped
[57066a]2927 * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
[16d866]2928 */
[e138de]2929class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
[16d866]2930{
[6613ec]2931 Info FunctionInfo(__func__);
[16d866]2932 class BoundaryLineSet *OldLines[4], *NewLine;
2933 class BoundaryPointSet *OldPoints[2];
2934 Vector BaseLineNormal;
2935 int OldTriangleNrs[2], OldBaseLineNr;
[6613ec]2936 int i, m;
[16d866]2937
2938 // calculate NormalVector for later use
2939 BaseLineNormal.Zero();
2940 if (Base->triangles.size() < 2) {
[6613ec]2941 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl);
[57066a]2942 return NULL;
[16d866]2943 }
2944 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
[a67d19]2945 DoLog(1) && (Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl);
[16d866]2946 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2947 }
[6613ec]2948 BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
[16d866]2949
2950 // get the two triangles
2951 // gather four endpoints and four lines
[6613ec]2952 for (int j = 0; j < 4; j++)
[16d866]2953 OldLines[j] = NULL;
[6613ec]2954 for (int j = 0; j < 2; j++)
[16d866]2955 OldPoints[j] = NULL;
[6613ec]2956 i = 0;
2957 m = 0;
[a67d19]2958 DoLog(0) && (Log() << Verbose(0) << "The four old lines are: ");
[6613ec]2959 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2960 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2961 if (runner->second->lines[j] != Base) { // pick not the central baseline
2962 OldLines[i++] = runner->second->lines[j];
[a67d19]2963 DoLog(0) && (Log() << Verbose(0) << *runner->second->lines[j] << "\t");
[357fba]2964 }
[a67d19]2965 DoLog(0) && (Log() << Verbose(0) << endl);
2966 DoLog(0) && (Log() << Verbose(0) << "The two old points are: ");
[6613ec]2967 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2968 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2969 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
2970 OldPoints[m++] = runner->second->endpoints[j];
[a67d19]2971 DoLog(0) && (Log() << Verbose(0) << *runner->second->endpoints[j] << "\t");
[16d866]2972 }
[a67d19]2973 DoLog(0) && (Log() << Verbose(0) << endl);
[16d866]2974
2975 // check whether everything is in place to create new lines and triangles
[6613ec]2976 if (i < 4) {
2977 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl);
[57066a]2978 return NULL;
[16d866]2979 }
[6613ec]2980 for (int j = 0; j < 4; j++)
[16d866]2981 if (OldLines[j] == NULL) {
[6613ec]2982 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl);
[57066a]2983 return NULL;
[16d866]2984 }
[6613ec]2985 for (int j = 0; j < 2; j++)
[16d866]2986 if (OldPoints[j] == NULL) {
[6613ec]2987 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl);
[57066a]2988 return NULL;
[357fba]2989 }
[16d866]2990
2991 // remove triangles and baseline removes itself
[a67d19]2992 DoLog(0) && (Log() << Verbose(0) << "INFO: Deleting baseline " << *Base << " from global list." << endl);
[16d866]2993 OldBaseLineNr = Base->Nr;
[6613ec]2994 m = 0;
2995 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
[a67d19]2996 DoLog(0) && (Log() << Verbose(0) << "INFO: Deleting triangle " << *(runner->second) << "." << endl);
[16d866]2997 OldTriangleNrs[m++] = runner->second->Nr;
2998 RemoveTesselationTriangle(runner->second);
2999 }
3000
3001 // construct new baseline (with same number as old one)
3002 BPS[0] = OldPoints[0];
3003 BPS[1] = OldPoints[1];
3004 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
3005 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
[a67d19]3006 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new baseline " << *NewLine << "." << endl);
[16d866]3007
3008 // construct new triangles with flipped baseline
[6613ec]3009 i = -1;
[16d866]3010 if (OldLines[0]->IsConnectedTo(OldLines[2]))
[6613ec]3011 i = 2;
[16d866]3012 if (OldLines[0]->IsConnectedTo(OldLines[3]))
[6613ec]3013 i = 3;
3014 if (i != -1) {
[16d866]3015 BLS[0] = OldLines[0];
3016 BLS[1] = OldLines[i];
3017 BLS[2] = NewLine;
3018 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
3019 BTS->GetNormalVector(BaseLineNormal);
[7dea7c]3020 AddTesselationTriangle(OldTriangleNrs[0]);
[a67d19]3021 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl);
[16d866]3022
[6613ec]3023 BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]);
[16d866]3024 BLS[1] = OldLines[1];
3025 BLS[2] = NewLine;
3026 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
3027 BTS->GetNormalVector(BaseLineNormal);
[7dea7c]3028 AddTesselationTriangle(OldTriangleNrs[1]);
[a67d19]3029 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl);
[16d866]3030 } else {
[6613ec]3031 DoeLog(0) && (eLog() << Verbose(0) << "The four old lines do not connect, something's utterly wrong here!" << endl);
[57066a]3032 return NULL;
[357fba]3033 }
[16d866]3034
[57066a]3035 return NewLine;
[6613ec]3036}
3037;
[16d866]3038
[357fba]3039/** Finds the second point of starting triangle.
3040 * \param *a first node
3041 * \param Oben vector indicating the outside
[f1cccd]3042 * \param OptCandidate reference to recommended candidate on return
[357fba]3043 * \param Storage[3] array storing angles and other candidate information
3044 * \param RADIUS radius of virtual sphere
[62bb91]3045 * \param *LC LinkedCell structure with neighbouring points
[357fba]3046 */
[776b64]3047void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC)
[357fba]3048{
[6613ec]3049 Info FunctionInfo(__func__);
[357fba]3050 Vector AngleCheck;
[57066a]3051 class TesselPoint* Candidate = NULL;
[776b64]3052 double norm = -1.;
3053 double angle = 0.;
3054 int N[NDIM];
3055 int Nlower[NDIM];
3056 int Nupper[NDIM];
[357fba]3057
[6613ec]3058 if (LC->SetIndexToNode(a)) { // get cell for the starting point
3059 for (int i = 0; i < NDIM; i++) // store indices of this cell
[357fba]3060 N[i] = LC->n[i];
3061 } else {
[6613ec]3062 DoeLog(1) && (eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl);
[357fba]3063 return;
3064 }
[62bb91]3065 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[6613ec]3066 for (int i = 0; i < NDIM; i++) {
3067 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
3068 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
[357fba]3069 }
[a67d19]3070 DoLog(0) && (Log() << Verbose(0) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl);
[357fba]3071
3072 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3073 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3074 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]3075 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[f67b6e]3076 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
[357fba]3077 if (List != NULL) {
[734816]3078 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[357fba]3079 Candidate = (*Runner);
3080 // check if we only have one unique point yet ...
3081 if (a != Candidate) {
3082 // Calculate center of the circle with radius RADIUS through points a and Candidate
[f1cccd]3083 Vector OrthogonalizedOben, aCandidate, Center;
[357fba]3084 double distance, scaleFactor;
3085
3086 OrthogonalizedOben.CopyVector(&Oben);
[f1cccd]3087 aCandidate.CopyVector(a->node);
3088 aCandidate.SubtractVector(Candidate->node);
3089 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
[357fba]3090 OrthogonalizedOben.Normalize();
[f1cccd]3091 distance = 0.5 * aCandidate.Norm();
[357fba]3092 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
3093 OrthogonalizedOben.Scale(scaleFactor);
3094
3095 Center.CopyVector(Candidate->node);
3096 Center.AddVector(a->node);
3097 Center.Scale(0.5);
3098 Center.AddVector(&OrthogonalizedOben);
3099
3100 AngleCheck.CopyVector(&Center);
3101 AngleCheck.SubtractVector(a->node);
[f1cccd]3102 norm = aCandidate.Norm();
[357fba]3103 // second point shall have smallest angle with respect to Oben vector
[6613ec]3104 if (norm < RADIUS * 2.) {
[357fba]3105 angle = AngleCheck.Angle(&Oben);
3106 if (angle < Storage[0]) {
[f67b6e]3107 //Log() << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
[a67d19]3108 DoLog(1) && (Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n");
[f1cccd]3109 OptCandidate = Candidate;
[357fba]3110 Storage[0] = angle;
[f67b6e]3111 //Log() << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
[357fba]3112 } else {
[f67b6e]3113 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
[357fba]3114 }
3115 } else {
[f67b6e]3116 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
[357fba]3117 }
3118 } else {
[f67b6e]3119 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
[357fba]3120 }
3121 }
3122 } else {
[a67d19]3123 DoLog(0) && (Log() << Verbose(0) << "Linked cell list is empty." << endl);
[357fba]3124 }
3125 }
[6613ec]3126}
3127;
[357fba]3128
3129/** This recursive function finds a third point, to form a triangle with two given ones.
3130 * Note that this function is for the starting triangle.
3131 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
3132 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
3133 * the center of the sphere is still fixed up to a single parameter. The band of possible values
3134 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
3135 * us the "null" on this circle, the new center of the candidate point will be some way along this
3136 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
3137 * by the normal vector of the base triangle that always points outwards by construction.
3138 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
3139 * We construct the normal vector that defines the plane this circle lies in, it is just in the
3140 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
3141 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
3142 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
3143 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
3144 * both.
3145 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
3146 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
3147 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
3148 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
3149 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
3150 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
[f1cccd]3151 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
[357fba]3152 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
3153 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
[f67b6e]3154 * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
[09898c]3155 * @param ThirdPoint third point to avoid in search
[357fba]3156 * @param RADIUS radius of sphere
[62bb91]3157 * @param *LC LinkedCell structure with neighbouring points
[357fba]3158 */
[6613ec]3159void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell *LC) const
[357fba]3160{
[6613ec]3161 Info FunctionInfo(__func__);
3162 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
[357fba]3163 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
3164 Vector SphereCenter;
[6613ec]3165 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
3166 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
3167 Vector NewNormalVector; // normal vector of the Candidate's triangle
[357fba]3168 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
[b998c3]3169 Vector RelativeOldSphereCenter;
3170 Vector NewPlaneCenter;
[357fba]3171 double CircleRadius; // radius of this circle
3172 double radius;
[b998c3]3173 double otherradius;
[357fba]3174 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
3175 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3176 TesselPoint *Candidate = NULL;
3177
[a67d19]3178 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl);
[357fba]3179
[09898c]3180 // copy old center
3181 CandidateLine.OldCenter.CopyVector(&OldSphereCenter);
3182 CandidateLine.ThirdPoint = ThirdPoint;
3183 CandidateLine.pointlist.clear();
3184
[357fba]3185 // construct center of circle
[f67b6e]3186 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
3187 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]3188 CircleCenter.Scale(0.5);
3189
3190 // construct normal vector of circle
[f67b6e]3191 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
3192 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]3193
[b998c3]3194 RelativeOldSphereCenter.CopyVector(&OldSphereCenter);
3195 RelativeOldSphereCenter.SubtractVector(&CircleCenter);
3196
[09898c]3197 // calculate squared radius TesselPoint *ThirdPoint,f circle
[6613ec]3198 radius = CirclePlaneNormal.NormSquared() / 4.;
3199 if (radius < RADIUS * RADIUS) {
3200 CircleRadius = RADIUS * RADIUS - radius;
[357fba]3201 CirclePlaneNormal.Normalize();
[a67d19]3202 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl);
[357fba]3203
3204 // test whether old center is on the band's plane
[b998c3]3205 if (fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
[6613ec]3206 DoeLog(1) && (eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl);
[b998c3]3207 RelativeOldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
[357fba]3208 }
[b998c3]3209 radius = RelativeOldSphereCenter.NormSquared();
[357fba]3210 if (fabs(radius - CircleRadius) < HULLEPSILON) {
[a67d19]3211 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl);
[357fba]3212
3213 // check SearchDirection
[a67d19]3214 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl);
[6613ec]3215 if (fabs(RelativeOldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
3216 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl);
[357fba]3217 }
3218
[62bb91]3219 // get cell for the starting point
[357fba]3220 if (LC->SetIndexToVector(&CircleCenter)) {
[6613ec]3221 for (int i = 0; i < NDIM; i++) // store indices of this cell
3222 N[i] = LC->n[i];
[f67b6e]3223 //Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
[357fba]3224 } else {
[6613ec]3225 DoeLog(1) && (eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl);
[357fba]3226 return;
3227 }
[62bb91]3228 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[f67b6e]3229 //Log() << Verbose(1) << "LC Intervals:";
[6613ec]3230 for (int i = 0; i < NDIM; i++) {
3231 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
3232 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
[e138de]3233 //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ";
[357fba]3234 }
[e138de]3235 //Log() << Verbose(0) << endl;
[357fba]3236 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3237 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3238 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]3239 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[f67b6e]3240 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
[357fba]3241 if (List != NULL) {
[734816]3242 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[357fba]3243 Candidate = (*Runner);
3244
3245 // check for three unique points
[a67d19]3246 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << "." << endl);
[6613ec]3247 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) {
[357fba]3248
[b998c3]3249 // find center on the plane
3250 GetCenterofCircumcircle(&NewPlaneCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node);
[a67d19]3251 DoLog(1) && (Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl);
[357fba]3252
[6613ec]3253 if (NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node) && (fabs(NewNormalVector.NormSquared()) > HULLEPSILON)) {
[a67d19]3254 DoLog(1) && (Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl);
[b998c3]3255 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewPlaneCenter);
[a67d19]3256 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl);
3257 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl);
3258 DoLog(1) && (Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl);
[6613ec]3259 if (radius < RADIUS * RADIUS) {
[b998c3]3260 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(&NewPlaneCenter);
[620a3f]3261 if (fabs(radius - otherradius) < HULLEPSILON) {
3262 // construct both new centers
3263 NewSphereCenter.CopyVector(&NewPlaneCenter);
3264 OtherNewSphereCenter.CopyVector(&NewPlaneCenter);
3265 helper.CopyVector(&NewNormalVector);
3266 helper.Scale(sqrt(RADIUS * RADIUS - radius));
3267 DoLog(2) && (Log() << Verbose(2) << "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << "." << endl);
3268 NewSphereCenter.AddVector(&helper);
3269 DoLog(2) && (Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl);
3270 // OtherNewSphereCenter is created by the same vector just in the other direction
3271 helper.Scale(-1.);
3272 OtherNewSphereCenter.AddVector(&helper);
3273 DoLog(2) && (Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl);
3274
3275 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3276 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3277 alpha = min(alpha, Otheralpha);
3278
3279 // if there is a better candidate, drop the current list and add the new candidate
3280 // otherwise ignore the new candidate and keep the list
3281 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
3282 if (fabs(alpha - Otheralpha) > MYEPSILON) {
3283 CandidateLine.OptCenter.CopyVector(&NewSphereCenter);
3284 CandidateLine.OtherOptCenter.CopyVector(&OtherNewSphereCenter);
3285 } else {
3286 CandidateLine.OptCenter.CopyVector(&OtherNewSphereCenter);
3287 CandidateLine.OtherOptCenter.CopyVector(&NewSphereCenter);
3288 }
3289 // if there is an equal candidate, add it to the list without clearing the list
3290 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
3291 CandidateLine.pointlist.push_back(Candidate);
3292 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl);
3293 } else {
3294 // remove all candidates from the list and then the list itself
3295 CandidateLine.pointlist.clear();
3296 CandidateLine.pointlist.push_back(Candidate);
3297 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl);
3298 }
3299 CandidateLine.ShortestAngle = alpha;
3300 DoLog(0) && (Log() << Verbose(0) << "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now." << endl);
[357fba]3301 } else {
[620a3f]3302 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
3303 DoLog(1) && (Log() << Verbose(1) << "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl);
3304 } else {
3305 DoLog(1) && (Log() << Verbose(1) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl);
3306 }
[357fba]3307 }
3308 } else {
[620a3f]3309 DoLog(1) && (Log() << Verbose(1) << "REJECT: Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius) << endl);
[357fba]3310 }
3311 } else {
[a67d19]3312 DoLog(1) && (Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl);
[357fba]3313 }
3314 } else {
[a67d19]3315 DoLog(1) && (Log() << Verbose(1) << "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl);
[357fba]3316 }
3317 } else {
[09898c]3318 if (ThirdPoint != NULL) {
[a67d19]3319 DoLog(1) && (Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << "." << endl);
[357fba]3320 } else {
[a67d19]3321 DoLog(1) && (Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << "." << endl);
[357fba]3322 }
3323 }
3324 }
3325 }
3326 }
3327 } else {
[6613ec]3328 DoeLog(1) && (eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
[357fba]3329 }
3330 } else {
[09898c]3331 if (ThirdPoint != NULL)
[a67d19]3332 DoLog(1) && (Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!" << endl);
[357fba]3333 else
[a67d19]3334 DoLog(1) && (Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!" << endl);
[357fba]3335 }
3336
[734816]3337 DoLog(1) && (Log() << Verbose(1) << "INFO: Sorting candidate list ..." << endl);
[f67b6e]3338 if (CandidateLine.pointlist.size() > 1) {
3339 CandidateLine.pointlist.unique();
3340 CandidateLine.pointlist.sort(); //SortCandidates);
[357fba]3341 }
[6613ec]3342
3343 if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) {
3344 DoeLog(0) && (eLog() << Verbose(0) << "There were other points contained in the rolling sphere as well!" << endl);
3345 performCriticalExit();
3346 }
3347}
3348;
[357fba]3349
3350/** Finds the endpoint two lines are sharing.
3351 * \param *line1 first line
3352 * \param *line2 second line
3353 * \return point which is shared or NULL if none
3354 */
[776b64]3355class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
[357fba]3356{
[6613ec]3357 Info FunctionInfo(__func__);
[776b64]3358 const BoundaryLineSet * lines[2] = { line1, line2 };
[357fba]3359 class BoundaryPointSet *node = NULL;
[c15ca2]3360 PointMap OrderMap;
3361 PointTestPair OrderTest;
[357fba]3362 for (int i = 0; i < 2; i++)
3363 // for both lines
[6613ec]3364 for (int j = 0; j < 2; j++) { // for both endpoints
3365 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
3366 if (!OrderTest.second) { // if insertion fails, we have common endpoint
3367 node = OrderTest.first->second;
[a67d19]3368 DoLog(1) && (Log() << Verbose(1) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl);
[6613ec]3369 j = 2;
3370 i = 2;
3371 break;
[357fba]3372 }
[6613ec]3373 }
[357fba]3374 return node;
[6613ec]3375}
3376;
[357fba]3377
[c15ca2]3378/** Finds the boundary points that are closest to a given Vector \a *x.
[62bb91]3379 * \param *out output stream for debugging
3380 * \param *x Vector to look from
[c15ca2]3381 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
[62bb91]3382 */
[97498a]3383DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector *x, const LinkedCell* LC) const
[62bb91]3384{
[c15ca2]3385 Info FunctionInfo(__func__);
[71b20e]3386 PointMap::const_iterator FindPoint;
3387 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
[62bb91]3388
3389 if (LinesOnBoundary.empty()) {
[6613ec]3390 DoeLog(1) && (eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl);
[62bb91]3391 return NULL;
3392 }
[71b20e]3393
3394 // gather all points close to the desired one
3395 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
[6613ec]3396 for (int i = 0; i < NDIM; i++) // store indices of this cell
[71b20e]3397 N[i] = LC->n[i];
[a67d19]3398 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
[97498a]3399 DistanceToPointMap * points = new DistanceToPointMap;
[71b20e]3400 LC->GetNeighbourBounds(Nlower, Nupper);
3401 //Log() << Verbose(1) << endl;
3402 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3403 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3404 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]3405 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[71b20e]3406 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
3407 if (List != NULL) {
[734816]3408 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[71b20e]3409 FindPoint = PointsOnBoundary.find((*Runner)->nr);
[97498a]3410 if (FindPoint != PointsOnBoundary.end()) {
[6613ec]3411 points->insert(DistanceToPointPair(FindPoint->second->node->node->DistanceSquared(x), FindPoint->second));
[a67d19]3412 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl);
[97498a]3413 }
[71b20e]3414 }
3415 } else {
[6613ec]3416 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
[99593f]3417 }
[57066a]3418 }
[62bb91]3419
[71b20e]3420 // check whether we found some points
[c15ca2]3421 if (points->empty()) {
[6613ec]3422 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
3423 delete (points);
[c15ca2]3424 return NULL;
3425 }
3426 return points;
[6613ec]3427}
3428;
[c15ca2]3429
3430/** Finds the boundary line that is closest to a given Vector \a *x.
3431 * \param *out output stream for debugging
3432 * \param *x Vector to look from
3433 * \return closest BoundaryLineSet or NULL in degenerate case.
3434 */
3435BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector *x, const LinkedCell* LC) const
3436{
3437 Info FunctionInfo(__func__);
3438 // get closest points
[6613ec]3439 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
[c15ca2]3440 if (points == NULL) {
[6613ec]3441 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
[71b20e]3442 return NULL;
3443 }
[62bb91]3444
[71b20e]3445 // for each point, check its lines, remember closest
[a67d19]3446 DoLog(1) && (Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl);
[71b20e]3447 BoundaryLineSet *ClosestLine = NULL;
3448 double MinDistance = -1.;
3449 Vector helper;
3450 Vector Center;
3451 Vector BaseLine;
[97498a]3452 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
[c15ca2]3453 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
[71b20e]3454 // calculate closest point on line to desired point
3455 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3456 helper.AddVector((LineRunner->second)->endpoints[1]->node->node);
3457 helper.Scale(0.5);
3458 Center.CopyVector(x);
3459 Center.SubtractVector(&helper);
3460 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3461 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3462 Center.ProjectOntoPlane(&BaseLine);
3463 const double distance = Center.NormSquared();
3464 if ((ClosestLine == NULL) || (distance < MinDistance)) {
3465 // additionally calculate intersection on line (whether it's on the line section or not)
3466 helper.CopyVector(x);
3467 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3468 helper.SubtractVector(&Center);
3469 const double lengthA = helper.ScalarProduct(&BaseLine);
3470 helper.CopyVector(x);
3471 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3472 helper.SubtractVector(&Center);
3473 const double lengthB = helper.ScalarProduct(&BaseLine);
[6613ec]3474 if (lengthB * lengthA < 0) { // if have different sign
[71b20e]3475 ClosestLine = LineRunner->second;
3476 MinDistance = distance;
[a67d19]3477 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl);
[71b20e]3478 } else {
[a67d19]3479 DoLog(1) && (Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl);
[71b20e]3480 }
3481 } else {
[a67d19]3482 DoLog(1) && (Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl);
[71b20e]3483 }
[99593f]3484 }
[57066a]3485 }
[6613ec]3486 delete (points);
[71b20e]3487 // check whether closest line is "too close" :), then it's inside
3488 if (ClosestLine == NULL) {
[a67d19]3489 DoLog(0) && (Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl);
[62bb91]3490 return NULL;
[71b20e]3491 }
[c15ca2]3492 return ClosestLine;
[6613ec]3493}
3494;
[c15ca2]3495
3496/** Finds the triangle that is closest to a given Vector \a *x.
3497 * \param *out output stream for debugging
3498 * \param *x Vector to look from
3499 * \return BoundaryTriangleSet of nearest triangle or NULL.
3500 */
3501TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const
3502{
[6613ec]3503 Info FunctionInfo(__func__);
3504 // get closest points
3505 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
[c15ca2]3506 if (points == NULL) {
[6613ec]3507 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
[c15ca2]3508 return NULL;
3509 }
3510
3511 // for each point, check its lines, remember closest
[a67d19]3512 DoLog(1) && (Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl);
[48b47a]3513 LineSet ClosestLines;
[97498a]3514 double MinDistance = 1e+16;
3515 Vector BaseLineIntersection;
[c15ca2]3516 Vector Center;
3517 Vector BaseLine;
[97498a]3518 Vector BaseLineCenter;
3519 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
[c15ca2]3520 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
[97498a]3521
3522 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3523 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3524 const double lengthBase = BaseLine.NormSquared();
3525
3526 BaseLineIntersection.CopyVector(x);
3527 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3528 const double lengthEndA = BaseLineIntersection.NormSquared();
3529
3530 BaseLineIntersection.CopyVector(x);
3531 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3532 const double lengthEndB = BaseLineIntersection.NormSquared();
3533
[6613ec]3534 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
[48b47a]3535 const double lengthEnd = Min(lengthEndA, lengthEndB);
3536 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
3537 ClosestLines.clear();
3538 ClosestLines.insert(LineRunner->second);
3539 MinDistance = lengthEnd;
[a67d19]3540 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl);
[6613ec]3541 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
[48b47a]3542 ClosestLines.insert(LineRunner->second);
[a67d19]3543 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl);
[48b47a]3544 } else { // line is worse
[a67d19]3545 DoLog(1) && (Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl);
[97498a]3546 }
3547 } else { // intersection is closer, calculate
[c15ca2]3548 // calculate closest point on line to desired point
[97498a]3549 BaseLineIntersection.CopyVector(x);
3550 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3551 Center.CopyVector(&BaseLineIntersection);
[c15ca2]3552 Center.ProjectOntoPlane(&BaseLine);
[97498a]3553 BaseLineIntersection.SubtractVector(&Center);
3554 const double distance = BaseLineIntersection.NormSquared();
3555 if (Center.NormSquared() > BaseLine.NormSquared()) {
[6613ec]3556 DoeLog(0) && (eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl);
[97498a]3557 }
[48b47a]3558 if ((ClosestLines.empty()) || (distance < MinDistance)) {
3559 ClosestLines.insert(LineRunner->second);
[97498a]3560 MinDistance = distance;
[a67d19]3561 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl);
[c15ca2]3562 } else {
[a67d19]3563 DoLog(2) && (Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl);
[c15ca2]3564 }
3565 }
3566 }
3567 }
[6613ec]3568 delete (points);
[c15ca2]3569
3570 // check whether closest line is "too close" :), then it's inside
[48b47a]3571 if (ClosestLines.empty()) {
[a67d19]3572 DoLog(0) && (Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl);
[c15ca2]3573 return NULL;
3574 }
3575 TriangleList * candidates = new TriangleList;
[48b47a]3576 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
3577 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
[6613ec]3578 candidates->push_back(Runner->second);
3579 }
[c15ca2]3580 return candidates;
[6613ec]3581}
3582;
[62bb91]3583
3584/** Finds closest triangle to a point.
3585 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
3586 * \param *out output stream for debugging
3587 * \param *x Vector to look from
[8db598]3588 * \param &distance contains found distance on return
[62bb91]3589 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
3590 */
[c15ca2]3591class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector *x, const LinkedCell* LC) const
[62bb91]3592{
[6613ec]3593 Info FunctionInfo(__func__);
[62bb91]3594 class BoundaryTriangleSet *result = NULL;
[c15ca2]3595 TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
3596 TriangleList candidates;
[57066a]3597 Vector Center;
[71b20e]3598 Vector helper;
[62bb91]3599
[71b20e]3600 if ((triangles == NULL) || (triangles->empty()))
[62bb91]3601 return NULL;
3602
[97498a]3603 // go through all and pick the one with the best alignment to x
[6613ec]3604 double MinAlignment = 2. * M_PI;
[c15ca2]3605 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
[71b20e]3606 (*Runner)->GetCenter(&Center);
3607 helper.CopyVector(x);
3608 helper.SubtractVector(&Center);
[97498a]3609 const double Alignment = helper.Angle(&(*Runner)->NormalVector);
3610 if (Alignment < MinAlignment) {
3611 result = *Runner;
3612 MinAlignment = Alignment;
[a67d19]3613 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl);
[71b20e]3614 } else {
[a67d19]3615 DoLog(1) && (Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl);
[57066a]3616 }
3617 }
[6613ec]3618 delete (triangles);
[97498a]3619
[62bb91]3620 return result;
[6613ec]3621}
3622;
[62bb91]3623
[9473f6]3624/** Checks whether the provided Vector is within the Tesselation structure.
3625 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
3626 * @param point of which to check the position
3627 * @param *LC LinkedCell structure
3628 *
3629 * @return true if the point is inside the Tesselation structure, false otherwise
3630 */
3631bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const
3632{
[8db598]3633 Info FunctionInfo(__func__);
[6613ec]3634 TriangleIntersectionList Intersections(&Point, this, LC);
[8db598]3635
3636 return Intersections.IsInside();
[6613ec]3637}
3638;
[9473f6]3639
3640/** Returns the distance to the surface given by the tesselation.
[97498a]3641 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
[9473f6]3642 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
3643 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
3644 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
3645 * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
3646 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
3647 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
3648 * -# If inside, take it to calculate closest distance
3649 * -# If not, take intersection with BoundaryLine as distance
3650 *
3651 * @note distance is squared despite it still contains a sign to determine in-/outside!
[62bb91]3652 *
3653 * @param point of which to check the position
3654 * @param *LC LinkedCell structure
3655 *
[244a84]3656 * @return >0 if outside, ==0 if on surface, <0 if inside
[62bb91]3657 */
[244a84]3658double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
[62bb91]3659{
[fcad4b]3660 Info FunctionInfo(__func__);
[57066a]3661 Vector Center;
[71b20e]3662 Vector helper;
[97498a]3663 Vector DistanceToCenter;
3664 Vector Intersection;
[9473f6]3665 double distance = 0.;
[57066a]3666
[244a84]3667 if (triangle == NULL) {// is boundary point or only point in point cloud?
[a67d19]3668 DoLog(1) && (Log() << Verbose(1) << "No triangle given!" << endl);
[244a84]3669 return -1.;
[71b20e]3670 } else {
[a67d19]3671 DoLog(1) && (Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl);
[57066a]3672 }
3673
[244a84]3674 triangle->GetCenter(&Center);
[a67d19]3675 DoLog(2) && (Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl);
[97498a]3676 DistanceToCenter.CopyVector(&Center);
3677 DistanceToCenter.SubtractVector(&Point);
[a67d19]3678 DoLog(2) && (Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl);
[97498a]3679
3680 // check whether we are on boundary
[244a84]3681 if (fabs(DistanceToCenter.ScalarProduct(&triangle->NormalVector)) < MYEPSILON) {
[97498a]3682 // calculate whether inside of triangle
[fcad4b]3683 DistanceToCenter.CopyVector(&Point);
3684 Center.CopyVector(&Point);
[244a84]3685 Center.SubtractVector(&triangle->NormalVector); // points towards MolCenter
3686 DistanceToCenter.AddVector(&triangle->NormalVector); // points outside
[a67d19]3687 DoLog(1) && (Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl);
[244a84]3688 if (triangle->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) {
[a67d19]3689 DoLog(1) && (Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl);
[9473f6]3690 return 0.;
[97498a]3691 } else {
[a67d19]3692 DoLog(1) && (Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl);
[97498a]3693 return false;
3694 }
[57066a]3695 } else {
[9473f6]3696 // calculate smallest distance
[244a84]3697 distance = triangle->GetClosestPointInsideTriangle(&Point, &Intersection);
[a67d19]3698 DoLog(1) && (Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl);
[9473f6]3699
3700 // then check direction to boundary
[244a84]3701 if (DistanceToCenter.ScalarProduct(&triangle->NormalVector) > MYEPSILON) {
[a67d19]3702 DoLog(1) && (Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl);
[9473f6]3703 return -distance;
3704 } else {
[a67d19]3705 DoLog(1) && (Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl);
[9473f6]3706 return +distance;
3707 }
[57066a]3708 }
[6613ec]3709}
3710;
[62bb91]3711
[8db598]3712/** Calculates minimum distance from \a&Point to a tesselated surface.
[244a84]3713 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3714 * \param &Point point to calculate distance from
3715 * \param *LC needed for finding closest points fast
3716 * \return distance squared to closest point on surface
3717 */
[8db598]3718double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell* const LC) const
[244a84]3719{
[8db598]3720 Info FunctionInfo(__func__);
[6613ec]3721 TriangleIntersectionList Intersections(&Point, this, LC);
[8db598]3722
3723 return Intersections.GetSmallestDistance();
[6613ec]3724}
3725;
[8db598]3726
3727/** Calculates minimum distance from \a&Point to a tesselated surface.
3728 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3729 * \param &Point point to calculate distance from
3730 * \param *LC needed for finding closest points fast
3731 * \return distance squared to closest point on surface
3732 */
3733BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell* const LC) const
3734{
3735 Info FunctionInfo(__func__);
[6613ec]3736 TriangleIntersectionList Intersections(&Point, this, LC);
[8db598]3737
3738 return Intersections.GetClosestTriangle();
[6613ec]3739}
3740;
[244a84]3741
[62bb91]3742/** Gets all points connected to the provided point by triangulation lines.
3743 *
3744 * @param *Point of which get all connected points
3745 *
[065e82]3746 * @return set of the all points linked to the provided one
[62bb91]3747 */
[c15ca2]3748TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
[62bb91]3749{
[6613ec]3750 Info FunctionInfo(__func__);
3751 TesselPointSet *connectedPoints = new TesselPointSet;
[5c7bf8]3752 class BoundaryPointSet *ReferencePoint = NULL;
[62bb91]3753 TesselPoint* current;
3754 bool takePoint = false;
[5c7bf8]3755 // find the respective boundary point
[776b64]3756 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
[5c7bf8]3757 if (PointRunner != PointsOnBoundary.end()) {
3758 ReferencePoint = PointRunner->second;
3759 } else {
[6613ec]3760 DoeLog(2) && (eLog() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl);
[5c7bf8]3761 ReferencePoint = NULL;
3762 }
[62bb91]3763
[065e82]3764 // little trick so that we look just through lines connect to the BoundaryPoint
[5c7bf8]3765 // OR fall-back to look through all lines if there is no such BoundaryPoint
[6613ec]3766 const LineMap *Lines;
3767 ;
[5c7bf8]3768 if (ReferencePoint != NULL)
3769 Lines = &(ReferencePoint->lines);
[776b64]3770 else
3771 Lines = &LinesOnBoundary;
3772 LineMap::const_iterator findLines = Lines->begin();
[5c7bf8]3773 while (findLines != Lines->end()) {
[6613ec]3774 takePoint = false;
3775
3776 if (findLines->second->endpoints[0]->Nr == Point->nr) {
3777 takePoint = true;
3778 current = findLines->second->endpoints[1]->node;
3779 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
3780 takePoint = true;
3781 current = findLines->second->endpoints[0]->node;
3782 }
[065e82]3783
[6613ec]3784 if (takePoint) {
[a67d19]3785 DoLog(1) && (Log() << Verbose(1) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl);
[6613ec]3786 connectedPoints->insert(current);
3787 }
[62bb91]3788
[6613ec]3789 findLines++;
[62bb91]3790 }
3791
[71b20e]3792 if (connectedPoints->empty()) { // if have not found any points
[6613ec]3793 DoeLog(1) && (eLog() << Verbose(1) << "We have not found any connected points to " << *Point << "." << endl);
[16d866]3794 return NULL;
3795 }
[065e82]3796
[16d866]3797 return connectedPoints;
[6613ec]3798}
3799;
[065e82]3800
3801/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
[16d866]3802 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3803 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3804 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3805 * triangle we are looking for.
3806 *
3807 * @param *out output stream for debugging
[27bd2f]3808 * @param *SetOfNeighbours all points for which the angle should be calculated
[16d866]3809 * @param *Point of which get all connected points
[065e82]3810 * @param *Reference Reference vector for zero angle or NULL for no preference
3811 * @return list of the all points linked to the provided one
[16d866]3812 */
[c15ca2]3813TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
[16d866]3814{
[6613ec]3815 Info FunctionInfo(__func__);
[16d866]3816 map<double, TesselPoint*> anglesOfPoints;
[c15ca2]3817 TesselPointList *connectedCircle = new TesselPointList;
[71b20e]3818 Vector PlaneNormal;
3819 Vector AngleZero;
3820 Vector OrthogonalVector;
3821 Vector helper;
[6613ec]3822 const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL };
[c15ca2]3823 TriangleList *triangles = NULL;
[71b20e]3824
3825 if (SetOfNeighbours == NULL) {
[6613ec]3826 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl);
3827 delete (connectedCircle);
[71b20e]3828 return NULL;
3829 }
3830
3831 // calculate central point
3832 triangles = FindTriangles(TrianglePoints);
3833 if ((triangles != NULL) && (!triangles->empty())) {
[c15ca2]3834 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
[71b20e]3835 PlaneNormal.AddVector(&(*Runner)->NormalVector);
3836 } else {
[6613ec]3837 DoeLog(0) && (eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl);
[71b20e]3838 performCriticalExit();
3839 }
[6613ec]3840 PlaneNormal.Scale(1.0 / triangles->size());
[a67d19]3841 DoLog(1) && (Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl);
[71b20e]3842 PlaneNormal.Normalize();
3843
3844 // construct one orthogonal vector
3845 if (Reference != NULL) {
3846 AngleZero.CopyVector(Reference);
3847 AngleZero.SubtractVector(Point->node);
3848 AngleZero.ProjectOntoPlane(&PlaneNormal);
3849 }
[6613ec]3850 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) {
[a67d19]3851 DoLog(1) && (Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl);
[71b20e]3852 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
3853 AngleZero.SubtractVector(Point->node);
3854 AngleZero.ProjectOntoPlane(&PlaneNormal);
3855 if (AngleZero.NormSquared() < MYEPSILON) {
[6613ec]3856 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl);
[71b20e]3857 performCriticalExit();
3858 }
3859 }
[a67d19]3860 DoLog(1) && (Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl);
[71b20e]3861 if (AngleZero.NormSquared() > MYEPSILON)
3862 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3863 else
3864 OrthogonalVector.MakeNormalVector(&PlaneNormal);
[a67d19]3865 DoLog(1) && (Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl);
[71b20e]3866
3867 // go through all connected points and calculate angle
[c15ca2]3868 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
[71b20e]3869 helper.CopyVector((*listRunner)->node);
3870 helper.SubtractVector(Point->node);
3871 helper.ProjectOntoPlane(&PlaneNormal);
3872 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[a67d19]3873 DoLog(0) && (Log() << Verbose(0) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl);
[6613ec]3874 anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
[71b20e]3875 }
3876
[6613ec]3877 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
[71b20e]3878 connectedCircle->push_back(AngleRunner->second);
3879 }
3880
3881 return connectedCircle;
3882}
3883
3884/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
3885 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3886 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3887 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3888 * triangle we are looking for.
3889 *
3890 * @param *SetOfNeighbours all points for which the angle should be calculated
3891 * @param *Point of which get all connected points
3892 * @param *Reference Reference vector for zero angle or NULL for no preference
3893 * @return list of the all points linked to the provided one
3894 */
[c15ca2]3895TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
[71b20e]3896{
3897 Info FunctionInfo(__func__);
3898 map<double, TesselPoint*> anglesOfPoints;
[c15ca2]3899 TesselPointList *connectedCircle = new TesselPointList;
[065e82]3900 Vector center;
3901 Vector PlaneNormal;
3902 Vector AngleZero;
3903 Vector OrthogonalVector;
3904 Vector helper;
[62bb91]3905
[27bd2f]3906 if (SetOfNeighbours == NULL) {
[6613ec]3907 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl);
3908 delete (connectedCircle);
[99593f]3909 return NULL;
3910 }
[a2028e]3911
[97498a]3912 // check whether there's something to do
3913 if (SetOfNeighbours->size() < 3) {
3914 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
3915 connectedCircle->push_back(*TesselRunner);
3916 return connectedCircle;
3917 }
3918
[a67d19]3919 DoLog(1) && (Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl);
[16d866]3920 // calculate central point
[97498a]3921 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
3922 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
3923 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
3924 TesselB++;
3925 TesselC++;
3926 TesselC++;
3927 int counter = 0;
3928 while (TesselC != SetOfNeighbours->end()) {
3929 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node);
[a67d19]3930 DoLog(0) && (Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl);
[97498a]3931 counter++;
3932 TesselA++;
3933 TesselB++;
3934 TesselC++;
3935 PlaneNormal.AddVector(&helper);
3936 }
3937 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()
3938 // << "; scale factor " << counter;
[6613ec]3939 PlaneNormal.Scale(1.0 / (double) counter);
3940 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl;
3941 //
3942 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
3943 // PlaneNormal.CopyVector(Point->node);
3944 // PlaneNormal.SubtractVector(&center);
3945 // PlaneNormal.Normalize();
[a67d19]3946 DoLog(1) && (Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl);
[62bb91]3947
3948 // construct one orthogonal vector
[a2028e]3949 if (Reference != NULL) {
[065e82]3950 AngleZero.CopyVector(Reference);
[a2028e]3951 AngleZero.SubtractVector(Point->node);
3952 AngleZero.ProjectOntoPlane(&PlaneNormal);
3953 }
[6613ec]3954 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) {
[a67d19]3955 DoLog(1) && (Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl);
[27bd2f]3956 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
[a2028e]3957 AngleZero.SubtractVector(Point->node);
3958 AngleZero.ProjectOntoPlane(&PlaneNormal);
3959 if (AngleZero.NormSquared() < MYEPSILON) {
[6613ec]3960 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl);
[a2028e]3961 performCriticalExit();
3962 }
3963 }
[a67d19]3964 DoLog(1) && (Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl);
[a2028e]3965 if (AngleZero.NormSquared() > MYEPSILON)
3966 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3967 else
3968 OrthogonalVector.MakeNormalVector(&PlaneNormal);
[a67d19]3969 DoLog(1) && (Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl);
[16d866]3970
[5c7bf8]3971 // go through all connected points and calculate angle
[6613ec]3972 pair<map<double, TesselPoint*>::iterator, bool> InserterTest;
[c15ca2]3973 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
[5c7bf8]3974 helper.CopyVector((*listRunner)->node);
3975 helper.SubtractVector(Point->node);
3976 helper.ProjectOntoPlane(&PlaneNormal);
[f1cccd]3977 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[97498a]3978 if (angle > M_PI) // the correction is of no use here (and not desired)
[6613ec]3979 angle = 2. * M_PI - angle;
[a67d19]3980 DoLog(0) && (Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl);
[6613ec]3981 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
[c15ca2]3982 if (!InserterTest.second) {
[6613ec]3983 DoeLog(0) && (eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl);
[c15ca2]3984 performCriticalExit();
3985 }
[62bb91]3986 }
3987
[6613ec]3988 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
[065e82]3989 connectedCircle->push_back(AngleRunner->second);
3990 }
[62bb91]3991
[065e82]3992 return connectedCircle;
3993}
[62bb91]3994
[065e82]3995/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
3996 *
3997 * @param *out output stream for debugging
3998 * @param *Point of which get all connected points
3999 * @return list of the all points linked to the provided one
4000 */
[244a84]4001ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
[065e82]4002{
[6613ec]4003 Info FunctionInfo(__func__);
[065e82]4004 map<double, TesselPoint*> anglesOfPoints;
[6613ec]4005 list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ;
[c15ca2]4006 TesselPointList *connectedPath = NULL;
[065e82]4007 Vector center;
4008 Vector PlaneNormal;
4009 Vector AngleZero;
4010 Vector OrthogonalVector;
4011 Vector helper;
4012 class BoundaryPointSet *ReferencePoint = NULL;
4013 class BoundaryPointSet *CurrentPoint = NULL;
4014 class BoundaryTriangleSet *triangle = NULL;
4015 class BoundaryLineSet *CurrentLine = NULL;
4016 class BoundaryLineSet *StartLine = NULL;
4017 // find the respective boundary point
[776b64]4018 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
[065e82]4019 if (PointRunner != PointsOnBoundary.end()) {
4020 ReferencePoint = PointRunner->second;
4021 } else {
[6613ec]4022 DoeLog(1) && (eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl);
[065e82]4023 return NULL;
4024 }
4025
[6613ec]4026 map<class BoundaryLineSet *, bool> TouchedLine;
4027 map<class BoundaryTriangleSet *, bool> TouchedTriangle;
4028 map<class BoundaryLineSet *, bool>::iterator LineRunner;
4029 map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
[57066a]4030 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
[6613ec]4031 TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false));
[57066a]4032 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
[6613ec]4033 TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false));
[57066a]4034 }
[065e82]4035 if (!ReferencePoint->lines.empty()) {
4036 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
[57066a]4037 LineRunner = TouchedLine.find(runner->second);
4038 if (LineRunner == TouchedLine.end()) {
[6613ec]4039 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl);
[57066a]4040 } else if (!LineRunner->second) {
4041 LineRunner->second = true;
[c15ca2]4042 connectedPath = new TesselPointList;
[065e82]4043 triangle = NULL;
4044 CurrentLine = runner->second;
4045 StartLine = CurrentLine;
4046 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
[a67d19]4047 DoLog(1) && (Log() << Verbose(1) << "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl);
[065e82]4048 do {
4049 // push current one
[a67d19]4050 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl);
[065e82]4051 connectedPath->push_back(CurrentPoint->node);
4052
4053 // find next triangle
[57066a]4054 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
[a67d19]4055 DoLog(1) && (Log() << Verbose(1) << "INFO: Inspecting triangle " << *Runner->second << "." << endl);
[57066a]4056 if ((Runner->second != triangle)) { // look for first triangle not equal to old one
4057 triangle = Runner->second;
4058 TriangleRunner = TouchedTriangle.find(triangle);
4059 if (TriangleRunner != TouchedTriangle.end()) {
4060 if (!TriangleRunner->second) {
4061 TriangleRunner->second = true;
[a67d19]4062 DoLog(1) && (Log() << Verbose(1) << "INFO: Connecting triangle is " << *triangle << "." << endl);
[57066a]4063 break;
4064 } else {
[a67d19]4065 DoLog(1) && (Log() << Verbose(1) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl);
[57066a]4066 triangle = NULL;
4067 }
4068 } else {
[6613ec]4069 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl);
[57066a]4070 triangle = NULL;
4071 }
[065e82]4072 }
4073 }
[57066a]4074 if (triangle == NULL)
4075 break;
[065e82]4076 // find next line
[6613ec]4077 for (int i = 0; i < 3; i++) {
[065e82]4078 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
4079 CurrentLine = triangle->lines[i];
[a67d19]4080 DoLog(1) && (Log() << Verbose(1) << "INFO: Connecting line is " << *CurrentLine << "." << endl);
[065e82]4081 break;
4082 }
4083 }
[57066a]4084 LineRunner = TouchedLine.find(CurrentLine);
4085 if (LineRunner == TouchedLine.end())
[6613ec]4086 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl);
[065e82]4087 else
[57066a]4088 LineRunner->second = true;
[065e82]4089 // find next point
4090 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
4091
4092 } while (CurrentLine != StartLine);
4093 // last point is missing, as it's on start line
[a67d19]4094 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl);
[57066a]4095 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
4096 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
[065e82]4097
4098 ListOfPaths->push_back(connectedPath);
4099 } else {
[a67d19]4100 DoLog(1) && (Log() << Verbose(1) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl);
[065e82]4101 }
4102 }
4103 } else {
[6613ec]4104 DoeLog(1) && (eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl);
[065e82]4105 }
4106
4107 return ListOfPaths;
[62bb91]4108}
4109
[065e82]4110/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
4111 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
4112 * @param *out output stream for debugging
4113 * @param *Point of which get all connected points
4114 * @return list of the closed paths
4115 */
[244a84]4116ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
[065e82]4117{
[6613ec]4118 Info FunctionInfo(__func__);
[c15ca2]4119 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
[6613ec]4120 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;
[c15ca2]4121 TesselPointList *connectedPath = NULL;
4122 TesselPointList *newPath = NULL;
[065e82]4123 int count = 0;
[c15ca2]4124 TesselPointList::iterator CircleRunner;
4125 TesselPointList::iterator CircleStart;
[065e82]4126
[6613ec]4127 for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
[065e82]4128 connectedPath = *ListRunner;
4129
[a67d19]4130 DoLog(1) && (Log() << Verbose(1) << "INFO: Current path is " << connectedPath << "." << endl);
[065e82]4131
4132 // go through list, look for reappearance of starting Point and count
4133 CircleStart = connectedPath->begin();
4134 // go through list, look for reappearance of starting Point and create list
[c15ca2]4135 TesselPointList::iterator Marker = CircleStart;
[065e82]4136 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
4137 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
4138 // we have a closed circle from Marker to new Marker
[a67d19]4139 DoLog(1) && (Log() << Verbose(1) << count + 1 << ". closed path consists of: ");
[c15ca2]4140 newPath = new TesselPointList;
4141 TesselPointList::iterator CircleSprinter = Marker;
[065e82]4142 for (; CircleSprinter != CircleRunner; CircleSprinter++) {
4143 newPath->push_back(*CircleSprinter);
[a67d19]4144 DoLog(0) && (Log() << Verbose(0) << (**CircleSprinter) << " <-> ");
[065e82]4145 }
[a67d19]4146 DoLog(0) && (Log() << Verbose(0) << ".." << endl);
[065e82]4147 count++;
4148 Marker = CircleRunner;
4149
4150 // add to list
4151 ListofClosedPaths->push_back(newPath);
4152 }
4153 }
4154 }
[a67d19]4155 DoLog(1) && (Log() << Verbose(1) << "INFO: " << count << " closed additional path(s) have been created." << endl);
[065e82]4156
4157 // delete list of paths
4158 while (!ListofPaths->empty()) {
4159 connectedPath = *(ListofPaths->begin());
4160 ListofPaths->remove(connectedPath);
[6613ec]4161 delete (connectedPath);
[065e82]4162 }
[6613ec]4163 delete (ListofPaths);
[065e82]4164
4165 // exit
4166 return ListofClosedPaths;
[6613ec]4167}
4168;
[065e82]4169
4170/** Gets all belonging triangles for a given BoundaryPointSet.
4171 * \param *out output stream for debugging
4172 * \param *Point BoundaryPoint
4173 * \return pointer to allocated list of triangles
4174 */
[c15ca2]4175TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
[065e82]4176{
[6613ec]4177 Info FunctionInfo(__func__);
4178 TriangleSet *connectedTriangles = new TriangleSet;
[065e82]4179
4180 if (Point == NULL) {
[6613ec]4181 DoeLog(1) && (eLog() << Verbose(1) << "Point given is NULL." << endl);
[065e82]4182 } else {
4183 // go through its lines and insert all triangles
[776b64]4184 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
[065e82]4185 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
[6613ec]4186 connectedTriangles->insert(TriangleRunner->second);
4187 }
[065e82]4188 }
4189
4190 return connectedTriangles;
[6613ec]4191}
4192;
[065e82]4193
[16d866]4194/** Removes a boundary point from the envelope while keeping it closed.
[57066a]4195 * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
4196 * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
4197 * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
4198 * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
4199 * -# the surface is closed, when the path is empty
4200 * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
[16d866]4201 * \param *out output stream for debugging
4202 * \param *point point to be removed
4203 * \return volume added to the volume inside the tesselated surface by the removal
4204 */
[6613ec]4205double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point)
4206{
[16d866]4207 class BoundaryLineSet *line = NULL;
4208 class BoundaryTriangleSet *triangle = NULL;
[57066a]4209 Vector OldPoint, NormalVector;
[16d866]4210 double volume = 0;
4211 int count = 0;
4212
[1d9b7aa]4213 if (point == NULL) {
[6613ec]4214 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl);
[1d9b7aa]4215 return 0.;
4216 } else
[a67d19]4217 DoLog(0) && (Log() << Verbose(0) << "Removing point " << *point << " from tesselated boundary ..." << endl);
[1d9b7aa]4218
[16d866]4219 // copy old location for the volume
4220 OldPoint.CopyVector(point->node->node);
4221
4222 // get list of connected points
4223 if (point->lines.empty()) {
[6613ec]4224 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl);
[16d866]4225 return 0.;
4226 }
4227
[c15ca2]4228 list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
4229 TesselPointList *connectedPath = NULL;
[065e82]4230
4231 // gather all triangles
[16d866]4232 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
[6613ec]4233 count += LineRunner->second->triangles.size();
[c15ca2]4234 TriangleMap Candidates;
[57066a]4235 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
[16d866]4236 line = LineRunner->second;
4237 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
4238 triangle = TriangleRunner->second;
[6613ec]4239 Candidates.insert(TrianglePair(triangle->Nr, triangle));
[16d866]4240 }
4241 }
4242
[065e82]4243 // remove all triangles
[6613ec]4244 count = 0;
[57066a]4245 NormalVector.Zero();
[c15ca2]4246 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
[a67d19]4247 DoLog(1) && (Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl);
[c15ca2]4248 NormalVector.SubtractVector(&Runner->second->NormalVector); // has to point inward
4249 RemoveTesselationTriangle(Runner->second);
[065e82]4250 count++;
4251 }
[a67d19]4252 DoLog(1) && (Log() << Verbose(1) << count << " triangles were removed." << endl);
[065e82]4253
[c15ca2]4254 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
4255 list<TesselPointList *>::iterator ListRunner = ListAdvance;
4256 TriangleMap::iterator NumberRunner = Candidates.begin();
4257 TesselPointList::iterator StartNode, MiddleNode, EndNode;
[57066a]4258 double angle;
4259 double smallestangle;
4260 Vector Point, Reference, OrthogonalVector;
[6613ec]4261 if (count > 2) { // less than three triangles, then nothing will be created
[065e82]4262 class TesselPoint *TriangleCandidates[3];
4263 count = 0;
[6613ec]4264 for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
[065e82]4265 if (ListAdvance != ListOfClosedPaths->end())
4266 ListAdvance++;
4267
4268 connectedPath = *ListRunner;
4269 // re-create all triangles by going through connected points list
[c15ca2]4270 LineList NewLines;
[6613ec]4271 for (; !connectedPath->empty();) {
[57066a]4272 // search middle node with widest angle to next neighbours
4273 EndNode = connectedPath->end();
4274 smallestangle = 0.;
4275 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
[a67d19]4276 DoLog(1) && (Log() << Verbose(1) << "INFO: MiddleNode is " << **MiddleNode << "." << endl);
[57066a]4277 // construct vectors to next and previous neighbour
4278 StartNode = MiddleNode;
4279 if (StartNode == connectedPath->begin())
4280 StartNode = connectedPath->end();
4281 StartNode--;
[e138de]4282 //Log() << Verbose(3) << "INFO: StartNode is " << **StartNode << "." << endl;
[57066a]4283 Point.CopyVector((*StartNode)->node);
4284 Point.SubtractVector((*MiddleNode)->node);
4285 StartNode = MiddleNode;
4286 StartNode++;
4287 if (StartNode == connectedPath->end())
4288 StartNode = connectedPath->begin();
[e138de]4289 //Log() << Verbose(3) << "INFO: EndNode is " << **StartNode << "." << endl;
[57066a]4290 Reference.CopyVector((*StartNode)->node);
4291 Reference.SubtractVector((*MiddleNode)->node);
4292 OrthogonalVector.CopyVector((*MiddleNode)->node);
4293 OrthogonalVector.SubtractVector(&OldPoint);
4294 OrthogonalVector.MakeNormalVector(&Reference);
4295 angle = GetAngle(Point, Reference, OrthogonalVector);
4296 //if (angle < M_PI) // no wrong-sided triangles, please?
[6613ec]4297 if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
4298 smallestangle = angle;
4299 EndNode = MiddleNode;
4300 }
[57066a]4301 }
4302 MiddleNode = EndNode;
4303 if (MiddleNode == connectedPath->end()) {
[6613ec]4304 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: Could not find a smallest angle!" << endl);
[f67b6e]4305 performCriticalExit();
[57066a]4306 }
4307 StartNode = MiddleNode;
4308 if (StartNode == connectedPath->begin())
4309 StartNode = connectedPath->end();
4310 StartNode--;
4311 EndNode++;
4312 if (EndNode == connectedPath->end())
4313 EndNode = connectedPath->begin();
[a67d19]4314 DoLog(2) && (Log() << Verbose(2) << "INFO: StartNode is " << **StartNode << "." << endl);
4315 DoLog(2) && (Log() << Verbose(2) << "INFO: MiddleNode is " << **MiddleNode << "." << endl);
4316 DoLog(2) && (Log() << Verbose(2) << "INFO: EndNode is " << **EndNode << "." << endl);
4317 DoLog(1) && (Log() << Verbose(1) << "INFO: Attempting to create triangle " << (*StartNode)->Name << ", " << (*MiddleNode)->Name << " and " << (*EndNode)->Name << "." << endl);
[57066a]4318 TriangleCandidates[0] = *StartNode;
4319 TriangleCandidates[1] = *MiddleNode;
4320 TriangleCandidates[2] = *EndNode;
[e138de]4321 triangle = GetPresentTriangle(TriangleCandidates);
[57066a]4322 if (triangle != NULL) {
[6613ec]4323 DoeLog(0) && (eLog() << Verbose(0) << "New triangle already present, skipping!" << endl);
[57066a]4324 StartNode++;
4325 MiddleNode++;
4326 EndNode++;
4327 if (StartNode == connectedPath->end())
4328 StartNode = connectedPath->begin();
4329 if (MiddleNode == connectedPath->end())
4330 MiddleNode = connectedPath->begin();
4331 if (EndNode == connectedPath->end())
4332 EndNode = connectedPath->begin();
4333 continue;
4334 }
[a67d19]4335 DoLog(3) && (Log() << Verbose(3) << "Adding new triangle points." << endl);
[57066a]4336 AddTesselationPoint(*StartNode, 0);
4337 AddTesselationPoint(*MiddleNode, 1);
4338 AddTesselationPoint(*EndNode, 2);
[a67d19]4339 DoLog(3) && (Log() << Verbose(3) << "Adding new triangle lines." << endl);
[f07f86d]4340 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4341 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
[57066a]4342 NewLines.push_back(BLS[1]);
[f07f86d]4343 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[065e82]4344 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[57066a]4345 BTS->GetNormalVector(NormalVector);
[065e82]4346 AddTesselationTriangle();
4347 // calculate volume summand as a general tetraeder
[c0f6c6]4348 volume += CalculateVolumeofGeneralTetraeder(*TPS[0]->node->node, *TPS[1]->node->node, *TPS[2]->node->node, OldPoint);
[065e82]4349 // advance number
4350 count++;
[57066a]4351
4352 // prepare nodes for next triangle
4353 StartNode = EndNode;
[a67d19]4354 DoLog(2) && (Log() << Verbose(2) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl);
[57066a]4355 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
4356 if (connectedPath->size() == 2) { // we are done
4357 connectedPath->remove(*StartNode); // remove the start node
4358 connectedPath->remove(*EndNode); // remove the end node
4359 break;
4360 } else if (connectedPath->size() < 2) { // something's gone wrong!
[6613ec]4361 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: There are only two endpoints left!" << endl);
[f67b6e]4362 performCriticalExit();
[57066a]4363 } else {
4364 MiddleNode = StartNode;
4365 MiddleNode++;
4366 if (MiddleNode == connectedPath->end())
4367 MiddleNode = connectedPath->begin();
4368 EndNode = MiddleNode;
4369 EndNode++;
4370 if (EndNode == connectedPath->end())
4371 EndNode = connectedPath->begin();
4372 }
[065e82]4373 }
[57066a]4374 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
4375 if (NewLines.size() > 1) {
[c15ca2]4376 LineList::iterator Candidate;
[57066a]4377 class BoundaryLineSet *OtherBase = NULL;
4378 double tmp, maxgain;
4379 do {
4380 maxgain = 0;
[6613ec]4381 for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
[e138de]4382 tmp = PickFarthestofTwoBaselines(*Runner);
[57066a]4383 if (maxgain < tmp) {
4384 maxgain = tmp;
4385 Candidate = Runner;
4386 }
4387 }
4388 if (maxgain != 0) {
4389 volume += maxgain;
[a67d19]4390 DoLog(1) && (Log() << Verbose(1) << "Flipping baseline with highest volume" << **Candidate << "." << endl);
[e138de]4391 OtherBase = FlipBaseline(*Candidate);
[57066a]4392 NewLines.erase(Candidate);
4393 NewLines.push_back(OtherBase);
4394 }
4395 } while (maxgain != 0.);
4396 }
4397
[065e82]4398 ListOfClosedPaths->remove(connectedPath);
[6613ec]4399 delete (connectedPath);
[16d866]4400 }
[a67d19]4401 DoLog(0) && (Log() << Verbose(0) << count << " triangles were created." << endl);
[065e82]4402 } else {
4403 while (!ListOfClosedPaths->empty()) {
4404 ListRunner = ListOfClosedPaths->begin();
4405 connectedPath = *ListRunner;
4406 ListOfClosedPaths->remove(connectedPath);
[6613ec]4407 delete (connectedPath);
[065e82]4408 }
[a67d19]4409 DoLog(0) && (Log() << Verbose(0) << "No need to create any triangles." << endl);
[16d866]4410 }
[6613ec]4411 delete (ListOfClosedPaths);
[16d866]4412
[a67d19]4413 DoLog(0) && (Log() << Verbose(0) << "Removed volume is " << volume << "." << endl);
[357fba]4414
[57066a]4415 return volume;
[6613ec]4416}
4417;
[ab1932]4418
4419/**
[62bb91]4420 * Finds triangles belonging to the three provided points.
[ab1932]4421 *
[71b20e]4422 * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
[ab1932]4423 *
[62bb91]4424 * @return triangles which belong to the provided points, will be empty if there are none,
[ab1932]4425 * will usually be one, in case of degeneration, there will be two
4426 */
[c15ca2]4427TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
[ab1932]4428{
[6613ec]4429 Info FunctionInfo(__func__);
4430 TriangleList *result = new TriangleList;
[776b64]4431 LineMap::const_iterator FindLine;
4432 TriangleMap::const_iterator FindTriangle;
[ab1932]4433 class BoundaryPointSet *TrianglePoints[3];
[71b20e]4434 size_t NoOfWildcards = 0;
[ab1932]4435
4436 for (int i = 0; i < 3; i++) {
[71b20e]4437 if (Points[i] == NULL) {
4438 NoOfWildcards++;
[ab1932]4439 TrianglePoints[i] = NULL;
[71b20e]4440 } else {
4441 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr);
4442 if (FindPoint != PointsOnBoundary.end()) {
4443 TrianglePoints[i] = FindPoint->second;
4444 } else {
4445 TrianglePoints[i] = NULL;
4446 }
[ab1932]4447 }
4448 }
4449
[71b20e]4450 switch (NoOfWildcards) {
4451 case 0: // checks lines between the points in the Points for their adjacent triangles
4452 for (int i = 0; i < 3; i++) {
4453 if (TrianglePoints[i] != NULL) {
[6613ec]4454 for (int j = i + 1; j < 3; j++) {
[71b20e]4455 if (TrianglePoints[j] != NULL) {
4456 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap!
[6613ec]4457 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); FindLine++) {
4458 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
[71b20e]4459 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4460 result->push_back(FindTriangle->second);
4461 }
4462 }
[ab1932]4463 }
[71b20e]4464 // Is it sufficient to consider one of the triangle lines for this.
4465 return result;
[ab1932]4466 }
4467 }
4468 }
4469 }
[71b20e]4470 break;
4471 case 1: // copy all triangles of the respective line
4472 {
[6613ec]4473 int i = 0;
[71b20e]4474 for (; i < 3; i++)
4475 if (TrianglePoints[i] == NULL)
4476 break;
[6613ec]4477 for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->nr); // is a multimap!
4478 (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->nr); FindLine++) {
4479 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
[71b20e]4480 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4481 result->push_back(FindTriangle->second);
4482 }
4483 }
4484 }
4485 break;
4486 }
4487 case 2: // copy all triangles of the respective point
4488 {
[6613ec]4489 int i = 0;
[71b20e]4490 for (; i < 3; i++)
4491 if (TrianglePoints[i] != NULL)
4492 break;
4493 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
4494 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
4495 result->push_back(triangle->second);
4496 result->sort();
4497 result->unique();
4498 break;
4499 }
4500 case 3: // copy all triangles
4501 {
4502 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
4503 result->push_back(triangle->second);
4504 break;
[ab1932]4505 }
[71b20e]4506 default:
[6613ec]4507 DoeLog(0) && (eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl);
[71b20e]4508 performCriticalExit();
4509 break;
[ab1932]4510 }
4511
4512 return result;
4513}
4514
[6613ec]4515struct BoundaryLineSetCompare
4516{
4517 bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b)
4518 {
[856098]4519 int lowerNra = -1;
4520 int lowerNrb = -1;
4521
4522 if (a->endpoints[0] < a->endpoints[1])
4523 lowerNra = 0;
4524 else
4525 lowerNra = 1;
4526
4527 if (b->endpoints[0] < b->endpoints[1])
4528 lowerNrb = 0;
4529 else
4530 lowerNrb = 1;
4531
4532 if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
4533 return true;
4534 else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
4535 return false;
[6613ec]4536 else { // both lower-numbered endpoints are the same ...
4537 if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2])
4538 return true;
4539 else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2])
4540 return false;
[856098]4541 }
4542 return false;
[6613ec]4543 }
4544 ;
[856098]4545};
4546
4547#define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
4548
[7c14ec]4549/**
[57066a]4550 * Finds all degenerated lines within the tesselation structure.
[7c14ec]4551 *
[57066a]4552 * @return map of keys of degenerated line pairs, each line occurs twice
[7c14ec]4553 * in the list, once as key and once as value
4554 */
[c15ca2]4555IndexToIndex * Tesselation::FindAllDegeneratedLines()
[7c14ec]4556{
[6613ec]4557 Info FunctionInfo(__func__);
4558 UniqueLines AllLines;
[c15ca2]4559 IndexToIndex * DegeneratedLines = new IndexToIndex;
[7c14ec]4560
4561 // sanity check
4562 if (LinesOnBoundary.empty()) {
[6613ec]4563 DoeLog(2) && (eLog() << Verbose(2) << "FindAllDegeneratedTriangles() was called without any tesselation structure.");
[57066a]4564 return DegeneratedLines;
[7c14ec]4565 }
[57066a]4566 LineMap::iterator LineRunner1;
[6613ec]4567 pair<UniqueLines::iterator, bool> tester;
[7c14ec]4568 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
[6613ec]4569 tester = AllLines.insert(LineRunner1->second);
[856098]4570 if (!tester.second) { // found degenerated line
[6613ec]4571 DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));
4572 DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));
[57066a]4573 }
4574 }
4575
4576 AllLines.clear();
4577
[a67d19]4578 DoLog(0) && (Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl);
[c15ca2]4579 IndexToIndex::iterator it;
[856098]4580 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
4581 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
4582 const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
4583 if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
[a67d19]4584 DoLog(0) && (Log() << Verbose(0) << *Line1->second << " => " << *Line2->second << endl);
[856098]4585 else
[6613ec]4586 DoeLog(1) && (eLog() << Verbose(1) << "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!" << endl);
[856098]4587 }
[57066a]4588
4589 return DegeneratedLines;
4590}
4591
4592/**
4593 * Finds all degenerated triangles within the tesselation structure.
4594 *
4595 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
4596 * in the list, once as key and once as value
4597 */
[c15ca2]4598IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
[57066a]4599{
[6613ec]4600 Info FunctionInfo(__func__);
[c15ca2]4601 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
4602 IndexToIndex * DegeneratedTriangles = new IndexToIndex;
[57066a]4603 TriangleMap::iterator TriangleRunner1, TriangleRunner2;
4604 LineMap::iterator Liner;
4605 class BoundaryLineSet *line1 = NULL, *line2 = NULL;
4606
[c15ca2]4607 for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
[57066a]4608 // run over both lines' triangles
4609 Liner = LinesOnBoundary.find(LineRunner->first);
4610 if (Liner != LinesOnBoundary.end())
4611 line1 = Liner->second;
4612 Liner = LinesOnBoundary.find(LineRunner->second);
4613 if (Liner != LinesOnBoundary.end())
4614 line2 = Liner->second;
4615 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
4616 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
[6613ec]4617 if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
4618 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr));
4619 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr));
[7c14ec]4620 }
4621 }
4622 }
4623 }
[6613ec]4624 delete (DegeneratedLines);
[7c14ec]4625
[a67d19]4626 DoLog(0) && (Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl);
[c15ca2]4627 IndexToIndex::iterator it;
[57066a]4628 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
[a67d19]4629 DoLog(0) && (Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl);
[7c14ec]4630
4631 return DegeneratedTriangles;
4632}
4633
4634/**
4635 * Purges degenerated triangles from the tesselation structure if they are not
4636 * necessary to keep a single point within the structure.
4637 */
4638void Tesselation::RemoveDegeneratedTriangles()
4639{
[6613ec]4640 Info FunctionInfo(__func__);
[c15ca2]4641 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
[57066a]4642 TriangleMap::iterator finder;
4643 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
[6613ec]4644 int count = 0;
[7c14ec]4645
[6613ec]4646 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner) {
[57066a]4647 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
4648 if (finder != TrianglesOnBoundary.end())
4649 triangle = finder->second;
4650 else
4651 break;
4652 finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
4653 if (finder != TrianglesOnBoundary.end())
4654 partnerTriangle = finder->second;
4655 else
4656 break;
[7c14ec]4657
4658 bool trianglesShareLine = false;
4659 for (int i = 0; i < 3; ++i)
4660 for (int j = 0; j < 3; ++j)
4661 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
4662
[6613ec]4663 if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) {
[57066a]4664 // check whether we have to fix lines
4665 BoundaryTriangleSet *Othertriangle = NULL;
4666 BoundaryTriangleSet *OtherpartnerTriangle = NULL;
4667 TriangleMap::iterator TriangleRunner;
4668 for (int i = 0; i < 3; ++i)
4669 for (int j = 0; j < 3; ++j)
4670 if (triangle->lines[i] != partnerTriangle->lines[j]) {
4671 // get the other two triangles
4672 for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
4673 if (TriangleRunner->second != triangle) {
4674 Othertriangle = TriangleRunner->second;
4675 }
4676 for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
4677 if (TriangleRunner->second != partnerTriangle) {
4678 OtherpartnerTriangle = TriangleRunner->second;
4679 }
4680 /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
4681 // the line of triangle receives the degenerated ones
4682 triangle->lines[i]->triangles.erase(Othertriangle->Nr);
[6613ec]4683 triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle));
4684 for (int k = 0; k < 3; k++)
[57066a]4685 if (triangle->lines[i] == Othertriangle->lines[k]) {
4686 Othertriangle->lines[k] = partnerTriangle->lines[j];
4687 break;
4688 }
4689 // the line of partnerTriangle receives the non-degenerated ones
[6613ec]4690 partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr);
4691 partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle));
[57066a]4692 partnerTriangle->lines[j] = triangle->lines[i];
4693 }
4694
4695 // erase the pair
4696 count += (int) DegeneratedTriangles->erase(triangle->Nr);
[a67d19]4697 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl);
[7c14ec]4698 RemoveTesselationTriangle(triangle);
[57066a]4699 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
[a67d19]4700 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl);
[7c14ec]4701 RemoveTesselationTriangle(partnerTriangle);
4702 } else {
[a67d19]4703 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure." << endl);
[7c14ec]4704 }
4705 }
[6613ec]4706 delete (DegeneratedTriangles);
[6a7f78c]4707 if (count > 0)
4708 LastTriangle = NULL;
[57066a]4709
[a67d19]4710 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl);
[7c14ec]4711}
4712
[57066a]4713/** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
4714 * We look for the closest point on the boundary, we look through its connected boundary lines and
4715 * seek the one with the minimum angle between its center point and the new point and this base line.
4716 * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
4717 * \param *out output stream for debugging
4718 * \param *point point to add
4719 * \param *LC Linked Cell structure to find nearest point
[ab1932]4720 */
[e138de]4721void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC)
[ab1932]4722{
[6613ec]4723 Info FunctionInfo(__func__);
[57066a]4724 // find nearest boundary point
4725 class TesselPoint *BackupPoint = NULL;
[71b20e]4726 class TesselPoint *NearestPoint = FindClosestTesselPoint(point->node, BackupPoint, LC);
[57066a]4727 class BoundaryPointSet *NearestBoundaryPoint = NULL;
4728 PointMap::iterator PointRunner;
4729
4730 if (NearestPoint == point)
4731 NearestPoint = BackupPoint;
4732 PointRunner = PointsOnBoundary.find(NearestPoint->nr);
4733 if (PointRunner != PointsOnBoundary.end()) {
4734 NearestBoundaryPoint = PointRunner->second;
4735 } else {
[6613ec]4736 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find the boundary point." << endl);
[57066a]4737 return;
4738 }
[a67d19]4739 DoLog(0) && (Log() << Verbose(0) << "Nearest point on boundary is " << NearestPoint->Name << "." << endl);
[57066a]4740
4741 // go through its lines and find the best one to split
4742 Vector CenterToPoint;
4743 Vector BaseLine;
4744 double angle, BestAngle = 0.;
4745 class BoundaryLineSet *BestLine = NULL;
4746 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
4747 BaseLine.CopyVector(Runner->second->endpoints[0]->node->node);
4748 BaseLine.SubtractVector(Runner->second->endpoints[1]->node->node);
4749 CenterToPoint.CopyVector(Runner->second->endpoints[0]->node->node);
4750 CenterToPoint.AddVector(Runner->second->endpoints[1]->node->node);
4751 CenterToPoint.Scale(0.5);
4752 CenterToPoint.SubtractVector(point->node);
4753 angle = CenterToPoint.Angle(&BaseLine);
[6613ec]4754 if (fabs(angle - M_PI / 2.) < fabs(BestAngle - M_PI / 2.)) {
[57066a]4755 BestAngle = angle;
4756 BestLine = Runner->second;
4757 }
[ab1932]4758 }
4759
[57066a]4760 // remove one triangle from the chosen line
4761 class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
4762 BestLine->triangles.erase(TempTriangle->Nr);
4763 int nr = -1;
[6613ec]4764 for (int i = 0; i < 3; i++) {
[57066a]4765 if (TempTriangle->lines[i] == BestLine) {
4766 nr = i;
4767 break;
4768 }
4769 }
[ab1932]4770
[57066a]4771 // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
[a67d19]4772 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle points." << endl);
[57066a]4773 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4774 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4775 AddTesselationPoint(point, 2);
[a67d19]4776 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle lines." << endl);
[f07f86d]4777 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4778 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4779 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[57066a]4780 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4781 BTS->GetNormalVector(TempTriangle->NormalVector);
4782 BTS->NormalVector.Scale(-1.);
[a67d19]4783 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl);
[57066a]4784 AddTesselationTriangle();
4785
4786 // create other side of this triangle and close both new sides of the first created triangle
[a67d19]4787 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle points." << endl);
[57066a]4788 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4789 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4790 AddTesselationPoint(point, 2);
[a67d19]4791 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle lines." << endl);
[f07f86d]4792 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4793 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4794 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[57066a]4795 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4796 BTS->GetNormalVector(TempTriangle->NormalVector);
[a67d19]4797 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl);
[57066a]4798 AddTesselationTriangle();
4799
4800 // add removed triangle to the last open line of the second triangle
[6613ec]4801 for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion)
[57066a]4802 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
[6613ec]4803 if (BestLine == BTS->lines[i]) {
4804 DoeLog(0) && (eLog() << Verbose(0) << "BestLine is same as found line, something's wrong here!" << endl);
[f67b6e]4805 performCriticalExit();
[57066a]4806 }
[6613ec]4807 BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));
[57066a]4808 TempTriangle->lines[nr] = BTS->lines[i];
4809 break;
4810 }
4811 }
[6613ec]4812}
4813;
[57066a]4814
4815/** Writes the envelope to file.
4816 * \param *out otuput stream for debugging
4817 * \param *filename basename of output file
4818 * \param *cloud PointCloud structure with all nodes
4819 */
[e138de]4820void Tesselation::Output(const char *filename, const PointCloud * const cloud)
[57066a]4821{
[6613ec]4822 Info FunctionInfo(__func__);
[57066a]4823 ofstream *tempstream = NULL;
4824 string NameofTempFile;
4825 char NumberName[255];
4826
4827 if (LastTriangle != NULL) {
[6613ec]4828 sprintf(NumberName, "-%04d-%s_%s_%s", (int) TrianglesOnBoundary.size(), LastTriangle->endpoints[0]->node->Name, LastTriangle->endpoints[1]->node->Name, LastTriangle->endpoints[2]->node->Name);
[57066a]4829 if (DoTecplotOutput) {
4830 string NameofTempFile(filename);
4831 NameofTempFile.append(NumberName);
[6613ec]4832 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4833 NameofTempFile.erase(npos, 1);
[57066a]4834 NameofTempFile.append(TecplotSuffix);
[a67d19]4835 DoLog(0) && (Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n");
[57066a]4836 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
[e138de]4837 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
[57066a]4838 tempstream->close();
4839 tempstream->flush();
[6613ec]4840 delete (tempstream);
[57066a]4841 }
4842
4843 if (DoRaster3DOutput) {
4844 string NameofTempFile(filename);
4845 NameofTempFile.append(NumberName);
[6613ec]4846 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4847 NameofTempFile.erase(npos, 1);
[57066a]4848 NameofTempFile.append(Raster3DSuffix);
[a67d19]4849 DoLog(0) && (Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n");
[57066a]4850 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
[e138de]4851 WriteRaster3dFile(tempstream, this, cloud);
4852 IncludeSphereinRaster3D(tempstream, this, cloud);
[57066a]4853 tempstream->close();
4854 tempstream->flush();
[6613ec]4855 delete (tempstream);
[57066a]4856 }
4857 }
4858 if (DoTecplotOutput || DoRaster3DOutput)
4859 TriangleFilesWritten++;
[6613ec]4860}
4861;
[262bae]4862
[6613ec]4863struct BoundaryPolygonSetCompare
4864{
4865 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const
4866 {
[856098]4867 if (s1->endpoints.size() < s2->endpoints.size())
4868 return true;
4869 else if (s1->endpoints.size() > s2->endpoints.size())
4870 return false;
4871 else { // equality of number of endpoints
4872 PointSet::const_iterator Walker1 = s1->endpoints.begin();
4873 PointSet::const_iterator Walker2 = s2->endpoints.begin();
4874 while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
4875 if ((*Walker1)->Nr < (*Walker2)->Nr)
4876 return true;
4877 else if ((*Walker1)->Nr > (*Walker2)->Nr)
4878 return false;
4879 Walker1++;
4880 Walker2++;
4881 }
4882 return false;
4883 }
4884 }
4885};
4886
4887#define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
4888
[262bae]4889/** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
4890 * \return number of polygons found
4891 */
4892int Tesselation::CorrectAllDegeneratedPolygons()
4893{
4894 Info FunctionInfo(__func__);
[fad93c]4895 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
[c15ca2]4896 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
[6613ec]4897 set<BoundaryPointSet *> EndpointCandidateList;
4898 pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester;
4899 pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester;
[fad93c]4900 for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
[a67d19]4901 DoLog(0) && (Log() << Verbose(0) << "Current point is " << *Runner->second << "." << endl);
[6613ec]4902 map<int, Vector *> TriangleVectors;
[fad93c]4903 // gather all NormalVectors
[a67d19]4904 DoLog(1) && (Log() << Verbose(1) << "Gathering triangles ..." << endl);
[fad93c]4905 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
4906 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
[b998c3]4907 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
[6613ec]4908 TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));
[b998c3]4909 if (TriangleInsertionTester.second)
[a67d19]4910 DoLog(1) && (Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl);
[b998c3]4911 } else {
[a67d19]4912 DoLog(1) && (Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl);
[b998c3]4913 }
[fad93c]4914 }
4915 // check whether there are two that are parallel
[a67d19]4916 DoLog(1) && (Log() << Verbose(1) << "Finding two parallel triangles ..." << endl);
[6613ec]4917 for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
4918 for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
[fad93c]4919 if (VectorWalker != VectorRunner) { // skip equals
[6613ec]4920 const double SCP = VectorWalker->second->ScalarProduct(VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
[a67d19]4921 DoLog(1) && (Log() << Verbose(1) << "Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP << endl);
[fad93c]4922 if (fabs(SCP + 1.) < ParallelEpsilon) {
4923 InsertionTester = EndpointCandidateList.insert((Runner->second));
4924 if (InsertionTester.second)
[a67d19]4925 DoLog(0) && (Log() << Verbose(0) << " Adding " << *Runner->second << " to endpoint candidate list." << endl);
[fad93c]4926 // and break out of both loops
4927 VectorWalker = TriangleVectors.end();
4928 VectorRunner = TriangleVectors.end();
4929 break;
4930 }
4931 }
4932 }
[6613ec]4933 delete (DegeneratedTriangles);
[fad93c]4934 /// 3. Find connected endpoint candidates and put them into a polygon
4935 UniquePolygonSet ListofDegeneratedPolygons;
4936 BoundaryPointSet *Walker = NULL;
4937 BoundaryPointSet *OtherWalker = NULL;
4938 BoundaryPolygonSet *Current = NULL;
[6613ec]4939 stack<BoundaryPointSet*> ToCheckConnecteds;
[fad93c]4940 while (!EndpointCandidateList.empty()) {
4941 Walker = *(EndpointCandidateList.begin());
[6613ec]4942 if (Current == NULL) { // create a new polygon with current candidate
[a67d19]4943 DoLog(0) && (Log() << Verbose(0) << "Starting new polygon set at point " << *Walker << endl);
[fad93c]4944 Current = new BoundaryPolygonSet;
4945 Current->endpoints.insert(Walker);
4946 EndpointCandidateList.erase(Walker);
4947 ToCheckConnecteds.push(Walker);
[856098]4948 }
[262bae]4949
[fad93c]4950 // go through to-check stack
4951 while (!ToCheckConnecteds.empty()) {
4952 Walker = ToCheckConnecteds.top(); // fetch ...
4953 ToCheckConnecteds.pop(); // ... and remove
4954 for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
4955 OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
[a67d19]4956 DoLog(1) && (Log() << Verbose(1) << "Checking " << *OtherWalker << endl);
[6613ec]4957 set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
4958 if (Finder != EndpointCandidateList.end()) { // found a connected partner
[a67d19]4959 DoLog(1) && (Log() << Verbose(1) << " Adding to polygon." << endl);
[fad93c]4960 Current->endpoints.insert(OtherWalker);
[6613ec]4961 EndpointCandidateList.erase(Finder); // remove from candidates
4962 ToCheckConnecteds.push(OtherWalker); // but check its partners too
[856098]4963 } else {
[a67d19]4964 DoLog(1) && (Log() << Verbose(1) << " is not connected to " << *Walker << endl);
[856098]4965 }
4966 }
4967 }
[262bae]4968
[a67d19]4969 DoLog(0) && (Log() << Verbose(0) << "Final polygon is " << *Current << endl);
[fad93c]4970 ListofDegeneratedPolygons.insert(Current);
4971 Current = NULL;
[262bae]4972 }
4973
[fad93c]4974 const int counter = ListofDegeneratedPolygons.size();
[262bae]4975
[a67d19]4976 DoLog(0) && (Log() << Verbose(0) << "The following " << counter << " degenerated polygons have been found: " << endl);
[fad93c]4977 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
[a67d19]4978 DoLog(0) && (Log() << Verbose(0) << " " << **PolygonRunner << endl);
[856098]4979
[262bae]4980 /// 4. Go through all these degenerated polygons
[fad93c]4981 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
[6613ec]4982 stack<int> TriangleNrs;
[856098]4983 Vector NormalVector;
[262bae]4984 /// 4a. Gather all triangles of this polygon
[856098]4985 TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
[262bae]4986
[125b3c]4987 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
[b998c3]4988 if (T->size() == 2) {
[a67d19]4989 DoLog(1) && (Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl);
[6613ec]4990 delete (T);
[b998c3]4991 continue;
4992 }
4993
[125b3c]4994 // check whether number is even
4995 // If this case occurs, we have to think about it!
4996 // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
4997 // connections to either polygon ...
4998 if (T->size() % 2 != 0) {
[6613ec]4999 DoeLog(0) && (eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl);
[125b3c]5000 performCriticalExit();
5001 }
[6613ec]5002 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
[262bae]5003 /// 4a. Get NormalVector for one side (this is "front")
[856098]5004 NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
[a67d19]5005 DoLog(1) && (Log() << Verbose(1) << "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector << endl);
[856098]5006 TriangleWalker++;
5007 TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
[262bae]5008 /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
[856098]5009 BoundaryTriangleSet *triangle = NULL;
5010 while (TriangleSprinter != T->end()) {
5011 TriangleWalker = TriangleSprinter;
5012 triangle = *TriangleWalker;
5013 TriangleSprinter++;
[a67d19]5014 DoLog(1) && (Log() << Verbose(1) << "Current triangle to test for removal: " << *triangle << endl);
[856098]5015 if (triangle->NormalVector.ScalarProduct(&NormalVector) < 0) { // if from other side, then delete and remove from list
[a67d19]5016 DoLog(1) && (Log() << Verbose(1) << " Removing ... " << endl);
[856098]5017 TriangleNrs.push(triangle->Nr);
[262bae]5018 T->erase(TriangleWalker);
[856098]5019 RemoveTesselationTriangle(triangle);
5020 } else
[a67d19]5021 DoLog(1) && (Log() << Verbose(1) << " Keeping ... " << endl);
[262bae]5022 }
5023 /// 4c. Copy all "front" triangles but with inverse NormalVector
5024 TriangleWalker = T->begin();
[6613ec]5025 while (TriangleWalker != T->end()) { // go through all front triangles
[a67d19]5026 DoLog(1) && (Log() << Verbose(1) << " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector << endl);
[856098]5027 for (int i = 0; i < 3; i++)
5028 AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
[f07f86d]5029 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
5030 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
5031 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[fad93c]5032 if (TriangleNrs.empty())
[6613ec]5033 DoeLog(0) && (eLog() << Verbose(0) << "No more free triangle numbers!" << endl);
[856098]5034 BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
5035 AddTesselationTriangle(); // ... and add
5036 TriangleNrs.pop();
5037 BTS->NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
5038 BTS->NormalVector.Scale(-1.);
[262bae]5039 TriangleWalker++;
5040 }
[856098]5041 if (!TriangleNrs.empty()) {
[6613ec]5042 DoeLog(0) && (eLog() << Verbose(0) << "There have been less triangles created than removed!" << endl);
[856098]5043 }
[6613ec]5044 delete (T); // remove the triangleset
[262bae]5045 }
[c15ca2]5046 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
[a67d19]5047 DoLog(0) && (Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl);
[c15ca2]5048 IndexToIndex::iterator it;
[856098]5049 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
[a67d19]5050 DoLog(0) && (Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl);
[6613ec]5051 delete (SimplyDegeneratedTriangles);
[262bae]5052 /// 5. exit
[856098]5053 UniquePolygonSet::iterator PolygonRunner;
[fad93c]5054 while (!ListofDegeneratedPolygons.empty()) {
5055 PolygonRunner = ListofDegeneratedPolygons.begin();
[6613ec]5056 delete (*PolygonRunner);
[fad93c]5057 ListofDegeneratedPolygons.erase(PolygonRunner);
[262bae]5058 }
5059
5060 return counter;
[6613ec]5061}
5062;
Note: See TracBrowser for help on using the repository browser.