source: src/molecules.cpp@ 183f35

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 183f35 was 183f35, checked in by Frederik Heber <heber@…>, 17 years ago

FragmentMolecule(): Adjacency store/check and parsing of KeySetFile incorporated

  • Property mode set to 100644
File size: 184.4 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188 *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198 *out << Verbose(4) << "InBondVector is: ";
199 InBondVector.Output(out);
200 *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213 *out << Verbose(4) << "Corrected InBondVector is now: ";
214 InBondVector.Output(out);
215 *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247 FirstOtherAtom->x.Output(out);
248 *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273 *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311 *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329 FirstOtherAtom->x.Output(out);
330 *out << endl;
331 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332 SecondOtherAtom->x.Output(out);
333 *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361 *out << Verbose(3) << "Orthovector1: ";
362 OrthoVector1.Output(out);
363 *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365 *out << Verbose(3) << "Orthovector2: ";
366 OrthoVector2.Output(out);
367 *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376 *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377 *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403 FirstOtherAtom->x.Output(out);
404 *out << endl;
405 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406 SecondOtherAtom->x.Output(out);
407 *out << endl;
408 *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409 ThirdOtherAtom->x.Output(out);
410 *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427 *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608 *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623 *out << Verbose(4) << "Maximum is ";
624 max->Output(out);
625 *out << ", Minimum is ";
626 min->Output(out);
627 *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636 *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Output of element before the actual coordination list.
1061 * \param *out stream pointer
1062 */
1063bool molecule::Checkout(ofstream *out) const
1064{
1065 return elemente->Checkout(out, ElementsInMolecule);
1066};
1067
1068/** Prints molecule to *out as xyz file.
1069 * \param *out output stream
1070 */
1071bool molecule::OutputXYZ(ofstream *out) const
1072{
1073 atom *walker = NULL;
1074 int No = 0;
1075 time_t now;
1076
1077 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1078 walker = start;
1079 while (walker->next != end) { // go through every atom and count
1080 walker = walker->next;
1081 No++;
1082 }
1083 if (out != NULL) {
1084 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1085 walker = start;
1086 while (walker->next != end) { // go through every atom of this element
1087 walker = walker->next;
1088 walker->OutputXYZLine(out);
1089 }
1090 return true;
1091 } else
1092 return false;
1093};
1094
1095/** Brings molecule::AtomCount and atom::*Name up-to-date.
1096 * \param *out output stream for debugging
1097 */
1098void molecule::CountAtoms(ofstream *out)
1099{
1100 int i = 0;
1101 atom *Walker = start;
1102 while (Walker->next != end) {
1103 Walker = Walker->next;
1104 i++;
1105 }
1106 if ((AtomCount == 0) || (i != AtomCount)) {
1107 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1108 AtomCount = i;
1109
1110 // count NonHydrogen atoms and give each atom a unique name
1111 if (AtomCount != 0) {
1112 i=0;
1113 NoNonHydrogen = 0;
1114 Walker = start;
1115 while (Walker->next != end) {
1116 Walker = Walker->next;
1117 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1118 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1119 NoNonHydrogen++;
1120 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1121 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1122 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1123 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1124 i++;
1125 }
1126 } else
1127 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1128 }
1129};
1130
1131/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1132 */
1133void molecule::CountElements()
1134{
1135 int i = 0;
1136 for(i=0;i<MAX_ELEMENTS;i++)
1137 ElementsInMolecule[i] = 0;
1138 ElementCount = 0;
1139
1140 atom *walker = start;
1141 while (walker->next != end) {
1142 walker = walker->next;
1143 ElementsInMolecule[walker->type->Z]++;
1144 i++;
1145 }
1146 for(i=0;i<MAX_ELEMENTS;i++)
1147 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1148};
1149
1150/** Counts all cyclic bonds and returns their number.
1151 * \note Hydrogen bonds can never by cyclic, thus no check for that
1152 * \param *out output stream for debugging
1153 * \return number opf cyclic bonds
1154 */
1155int molecule::CountCyclicBonds(ofstream *out)
1156{
1157 int No = 0;
1158 int MinimumRingSize;
1159 MoleculeLeafClass *Subgraphs = NULL;
1160 bond *Binder = first;
1161 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1162 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1163 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1164 while (Subgraphs->next != NULL) {
1165 Subgraphs = Subgraphs->next;
1166 delete(Subgraphs->previous);
1167 }
1168 delete(Subgraphs);
1169 }
1170 while(Binder->next != last) {
1171 Binder = Binder->next;
1172 if (Binder->Cyclic)
1173 No++;
1174 }
1175 return No;
1176};
1177
1178/** Returns Shading as a char string.
1179 * \param color the Shading
1180 * \return string of the flag
1181 */
1182char * molecule::GetColor(enum Shading color)
1183{
1184 switch(color) {
1185 case white:
1186 return "white";
1187 break;
1188 case lightgray:
1189 return "lightgray";
1190 break;
1191 case darkgray:
1192 return "darkgray";
1193 break;
1194 case black:
1195 return "black";
1196 break;
1197 default:
1198 return "uncolored";
1199 break;
1200 };
1201};
1202
1203
1204/** Counts necessary number of valence electrons and returns number and SpinType.
1205 * \param configuration containing everything
1206 */
1207void molecule::CalculateOrbitals(class config &configuration)
1208{
1209 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1210 for(int i=0;i<MAX_ELEMENTS;i++) {
1211 if (ElementsInMolecule[i] != 0) {
1212 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1213 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1214 }
1215 }
1216 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1217 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1218 configuration.MaxPsiDouble /= 2;
1219 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1220 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1221 configuration.ProcPEGamma /= 2;
1222 configuration.ProcPEPsi *= 2;
1223 } else {
1224 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1225 configuration.ProcPEPsi = 1;
1226 }
1227 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1228};
1229
1230/** Creates an adjacency list of the molecule.
1231 * Generally, we use the CSD approach to bond recognition, that is the the distance
1232 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1233 * a threshold t = 0.4 Angstroem.
1234 * To make it O(N log N) the function uses the linked-cell technique as follows:
1235 * The procedure is step-wise:
1236 * -# Remove every bond in list
1237 * -# Count the atoms in the molecule with CountAtoms()
1238 * -# partition cell into smaller linked cells of size \a bonddistance
1239 * -# put each atom into its corresponding cell
1240 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1241 * -# create the list of bonds via CreateListOfBondsPerAtom()
1242 * -# correct the bond degree iteratively (single->double->triple bond)
1243 * -# finally print the bond list to \a *out if desired
1244 * \param *out out stream for printing the matrix, NULL if no output
1245 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1246 */
1247void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1248{
1249 atom *Walker = NULL, *OtherWalker = NULL;
1250 int No, NoBonds;
1251 bond *Binder = NULL;
1252 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1253 molecule **CellList;
1254 double distance, MinDistance, MaxDistance;
1255 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1256 vector x;
1257
1258 BondDistance = bonddistance;
1259 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1260 // remove every bond from the list
1261 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1262 cleanup(first,last);
1263 }
1264
1265 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1266 CountAtoms(out);
1267 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1268
1269 if (AtomCount != 0) {
1270 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1271 j=-1;
1272 for (int i=0;i<NDIM;i++) {
1273 j += i+1;
1274 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1275 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1276 }
1277 // 2a. allocate memory for the cell list
1278 NumberCells = divisor[0]*divisor[1]*divisor[2];
1279 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1280 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1281 for (int i=0;i<NumberCells;i++)
1282 CellList[i] = NULL;
1283
1284 // 2b. put all atoms into its corresponding list
1285 Walker = start;
1286 while(Walker->next != end) {
1287 Walker = Walker->next;
1288 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1289 //Walker->x.Output(out);
1290 //*out << "." << endl;
1291 // compute the cell by the atom's coordinates
1292 j=-1;
1293 for (int i=0;i<NDIM;i++) {
1294 j += i+1;
1295 x.CopyVector(&(Walker->x));
1296 x.KeepPeriodic(out, matrix);
1297 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1298 }
1299 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1300 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1301 // add copy atom to this cell
1302 if (CellList[index] == NULL) // allocate molecule if not done
1303 CellList[index] = new molecule(elemente);
1304 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1305 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1306 }
1307 //for (int i=0;i<NumberCells;i++)
1308 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1309
1310 // 3a. go through every cell
1311 for (N[0]=0;N[0]<divisor[0];N[0]++)
1312 for (N[1]=0;N[1]<divisor[1];N[1]++)
1313 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1314 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1315 if (CellList[Index] != NULL) { // if there atoms in this cell
1316 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1317 // 3b. for every atom therein
1318 Walker = CellList[Index]->start;
1319 while (Walker->next != CellList[Index]->end) { // go through every atom
1320 Walker = Walker->next;
1321 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1322 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1323 for (n[0]=-1;n[0]<=1;n[0]++)
1324 for (n[1]=-1;n[1]<=1;n[1]++)
1325 for (n[2]=-1;n[2]<=1;n[2]++) {
1326 // compute the index of this comparison cell and make it periodic
1327 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1328 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1329 if (CellList[index] != NULL) { // if there are any atoms in this cell
1330 OtherWalker = CellList[index]->start;
1331 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1332 OtherWalker = OtherWalker->next;
1333 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1334 /// \todo periodic check is missing here!
1335 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1336 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1337 MaxDistance = MinDistance + BONDTHRESHOLD;
1338 MinDistance -= BONDTHRESHOLD;
1339 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1340 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1341 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1342 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1343 } else {
1344 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1345 }
1346 }
1347 }
1348 }
1349 }
1350 }
1351 }
1352 // 4. free the cell again
1353 for (int i=0;i<NumberCells;i++)
1354 if (CellList[i] != NULL) {
1355 delete(CellList[i]);
1356 }
1357 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1358
1359 // create the adjacency list per atom
1360 CreateListOfBondsPerAtom(out);
1361
1362 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1363 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1364 // a rather symmetric distribution of higher bond degrees
1365 if (BondCount != 0) {
1366 NoCyclicBonds = 0;
1367 *out << Verbose(1) << "correct Bond degree of each bond" << endl;
1368 do {
1369 No = 0; // No acts as breakup flag (if 1 we still continue)
1370 Walker = start;
1371 while (Walker->next != end) { // go through every atom
1372 Walker = Walker->next;
1373 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1374 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1375 // count valence of first partner (updated!), might have changed during last bond partner
1376 NoBonds = 0;
1377 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1378 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1379 *out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1380 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1381 // count valence of second partner
1382 NoBonds = 0;
1383 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1384 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1385 *out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1386 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1387 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1388 }
1389 }
1390 }
1391 } while (No);
1392
1393 } else
1394 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1395 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1396
1397 // output bonds for debugging (if bond chain list was correctly installed)
1398 *out << Verbose(1) << endl << "From contents of bond chain list:";
1399 Binder = first;
1400 while(Binder->next != last) {
1401 Binder = Binder->next;
1402 *out << *Binder << "\t" << endl;
1403 }
1404 *out << endl;
1405 } else
1406 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1407 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1408 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1409};
1410
1411/** Performs a Depth-First search on this molecule.
1412 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1413 * articulations points, ...
1414 * We use the algorithm from [Even, Graph Algorithms, p.62].
1415 * \param *out output stream for debugging
1416 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1417 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1418 * \return list of each disconnected subgraph as an individual molecule class structure
1419 */
1420MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1421{
1422 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1423 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1424 MoleculeLeafClass *LeafWalker = SubGraphs;
1425 int CurrentGraphNr = 0, OldGraphNr;
1426 int CyclicBonds;
1427 int ComponentNumber = 0;
1428 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1429 bond *Binder = NULL;
1430 bool BackStepping = false;
1431
1432 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1433
1434 ResetAllBondsToUnused();
1435 ResetAllAtomNumbers();
1436 InitComponentNumbers();
1437 while (Root != end) { // if there any atoms at all
1438 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1439 AtomStack->ClearStack();
1440
1441 // put into new subgraph molecule and add this to list of subgraphs
1442 LeafWalker = new MoleculeLeafClass(LeafWalker);
1443 LeafWalker->Leaf = new molecule(elemente);
1444 LeafWalker->Leaf->AddCopyAtom(Root);
1445
1446 OldGraphNr = CurrentGraphNr;
1447 Walker = Root;
1448 do { // (10)
1449 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1450 if (!BackStepping) { // if we don't just return from (8)
1451 Walker->GraphNr = CurrentGraphNr;
1452 Walker->LowpointNr = CurrentGraphNr;
1453 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1454 AtomStack->Push(Walker);
1455 CurrentGraphNr++;
1456 }
1457 do { // (3) if Walker has no unused egdes, go to (5)
1458 BackStepping = false; // reset backstepping flag for (8)
1459 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1460 Binder = FindNextUnused(Walker);
1461 if (Binder == NULL)
1462 break;
1463 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1464 // (4) Mark Binder used, ...
1465 Binder->MarkUsed(black);
1466 OtherAtom = Binder->GetOtherAtom(Walker);
1467 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1468 if (OtherAtom->GraphNr != -1) {
1469 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1470 Binder->Type = BackEdge;
1471 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1472 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1473 } else {
1474 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1475 Binder->Type = TreeEdge;
1476 OtherAtom->Ancestor = Walker;
1477 Walker = OtherAtom;
1478 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1479 break;
1480 }
1481 Binder = NULL;
1482 } while (1); // (3)
1483 if (Binder == NULL) {
1484 *out << Verbose(2) << "No more Unused Bonds." << endl;
1485 break;
1486 } else
1487 Binder = NULL;
1488 } while (1); // (2)
1489
1490 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1491 if ((Walker == Root) && (Binder == NULL))
1492 break;
1493
1494 // (5) if Ancestor of Walker is ...
1495 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1496 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1497 // (6) (Ancestor of Walker is not Root)
1498 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1499 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1500 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1501 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1502 } else {
1503 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1504 Walker->Ancestor->SeparationVertex = true;
1505 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1506 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1507 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1508 SetNextComponentNumber(Walker, ComponentNumber);
1509 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1510 do {
1511 OtherAtom = AtomStack->PopLast();
1512 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1513 SetNextComponentNumber(OtherAtom, ComponentNumber);
1514 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1515 } while (OtherAtom != Walker);
1516 ComponentNumber++;
1517 }
1518 // (8) Walker becomes its Ancestor, go to (3)
1519 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1520 Walker = Walker->Ancestor;
1521 BackStepping = true;
1522 }
1523 if (!BackStepping) { // coming from (8) want to go to (3)
1524 // (9) remove all from stack till Walker (including), these and Root form a component
1525 AtomStack->Output(out);
1526 SetNextComponentNumber(Root, ComponentNumber);
1527 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1528 SetNextComponentNumber(Walker, ComponentNumber);
1529 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1530 do {
1531 OtherAtom = AtomStack->PopLast();
1532 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1533 SetNextComponentNumber(OtherAtom, ComponentNumber);
1534 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 } while (OtherAtom != Walker);
1536 ComponentNumber++;
1537
1538 // (11) Root is separation vertex, set Walker to Root and go to (4)
1539 Walker = Root;
1540 Binder = FindNextUnused(Walker);
1541 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1542 if (Binder != NULL) { // Root is separation vertex
1543 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1544 Walker->SeparationVertex = true;
1545 }
1546 }
1547 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1548
1549 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1550 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1551 LeafWalker->Leaf->Output(out);
1552 *out << endl;
1553
1554 // step on to next root
1555 while ((Root != end) && (Root->GraphNr != -1)) {
1556 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1557 if (Root->GraphNr != -1) // if already discovered, step on
1558 Root = Root->next;
1559 }
1560 }
1561 // set cyclic bond criterium on "same LP" basis
1562 Binder = first;
1563 while(Binder->next != last) {
1564 Binder = Binder->next;
1565 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1566 Binder->Cyclic = true;
1567 NoCyclicBonds++;
1568 }
1569 }
1570
1571 // correct cyclic bonds that are not included in "same LP" argument
1572 Binder = first;
1573 while (Binder->next != last) {
1574 Binder = Binder->next;
1575 Walker = Binder->leftatom;
1576 OtherAtom = Binder->rightatom;
1577 // now check whether both have a cyclic bond in their list
1578 CyclicBonds = 0; // counts cyclic bonds;
1579 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1580 if ((CyclicBonds == 0) && (ListOfBondsPerAtom[Walker->nr][i]->Cyclic))
1581 CyclicBonds = 1;
1582 for(int i=0;i<NumberOfBondsPerAtom[OtherAtom->nr];i++)
1583 if ((CyclicBonds == 1) && (ListOfBondsPerAtom[OtherAtom->nr][i]->Cyclic))
1584 CyclicBonds = 2;
1585 Binder->Cyclic = (Binder->Cyclic) || (CyclicBonds == 2); // set the Cyclic criterium either or ...
1586 }
1587
1588 // further analysis of the found cycles (print rings, get minimum cycle length)
1589 CyclicStructureAnalysis(out, MinimumRingSize);
1590 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1591 Walker = start;
1592 while (Walker->next != end) {
1593 Walker = Walker->next;
1594 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1595 OutputComponentNumber(out, Walker);
1596 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1597 }
1598
1599 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1600 Binder = first;
1601 while(Binder->next != last) {
1602 Binder = Binder->next;
1603 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1604 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1605 OutputComponentNumber(out, Binder->leftatom);
1606 *out << " === ";
1607 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1608 OutputComponentNumber(out, Binder->rightatom);
1609 *out << ">." << endl;
1610 if (Binder->Cyclic) // cyclic ??
1611 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1612 }
1613
1614 // further analysis of the found cycles (print rings, get minimum cycle length)
1615 CyclicStructureAnalysis(out, MinimumRingSize);
1616
1617 // free all and exit
1618 delete(AtomStack);
1619 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1620 return SubGraphs;
1621};
1622
1623/** Analyses the cycles found and returns minimum of all cycle lengths.
1624 * \param *out output stream for debugging
1625 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1626 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1627 */
1628void molecule::CyclicStructureAnalysis(ofstream *out, int &MinimumRingSize)
1629{
1630 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1631 int LP;
1632 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Runner = NULL;
1633 bond *Binder = NULL;
1634 int RingSize, NumCycles;
1635
1636 // go through every atom
1637 AtomStack->ClearStack();
1638 int *NoCyclicBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1639 Walker = start;
1640 while (Walker->next != end) {
1641 Walker = Walker->next;
1642 NoCyclicBondsPerAtom[Walker->nr] = 0;
1643 // check whether it's connected to cyclic bonds and count per atom
1644 // 0 means not part of a cycle, 2 means in a cycle, 3 or more means interconnection site of cycles
1645 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
1646 Binder = ListOfBondsPerAtom[Walker->nr][i];
1647 NoCyclicBondsPerAtom[Walker->nr] += (int) Binder->Cyclic;
1648 if (NoCyclicBondsPerAtom[Walker->nr] == 3) //push all intersections
1649 AtomStack->Push(Walker);
1650 }
1651 }
1652 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1653 for(int i=0;i<AtomCount;i++) {
1654 *out << NoCyclicBondsPerAtom[i] << " ";
1655 }
1656 *out << endl;
1657 *out << Verbose(1) << "Analysing cycles ... " << endl;
1658 MinimumRingSize = -1;
1659 NumCycles = 0;
1660 while (!AtomStack->IsEmpty()) {
1661 Walker = AtomStack->PopFirst();
1662 if (NoCyclicBondsPerAtom[Walker->nr] > 1) {
1663 NoCyclicBondsPerAtom[Walker->nr]--; // remove one for being intersection
1664 RingSize = 0;
1665 *out << Verbose(2) << "Current intersection is " << *Walker << ", expect to find " << NoCyclicBondsPerAtom[Walker->nr] << " cycles." << endl;
1666 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1667 Binder = ListOfBondsPerAtom[Walker->nr][i];
1668 OtherAtom = Binder->GetOtherAtom(Walker);
1669 // note down the LowPoint number of this cycle
1670 if (NoCyclicBondsPerAtom[OtherAtom->nr] > 1) {
1671 LP = OtherAtom->LowpointNr;
1672 NoCyclicBondsPerAtom[Walker->nr]--; // walker is start of cycle
1673 if (LP != Walker->LowpointNr)
1674 *out << Verbose(2) << "Tributary cycle: ... <-> " << Walker->Name;
1675 else
1676 *out << Verbose(2) << "Main cycle: ... <-> " << Walker->Name;
1677 Root = Walker; // root acts as predecessor marker so that we don't step back accidentally
1678 RingSize = 1;
1679 do {
1680 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++) { // search among its bonds for next in cycle (same lowpoint nr)
1681 Runner = ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom);
1682 if (((Runner->LowpointNr == LP) || (Runner->LowpointNr == Walker->LowpointNr)) && (Runner != Root)) {
1683 // first check is to stay in the cycle
1684 // middle check is allow for getting back into main cycle briefly from tributary cycle (just one step, then while further down stops)
1685 // last check is not step back
1686 *out << " <-> " << OtherAtom->Name;
1687 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1688 Root = OtherAtom;
1689 OtherAtom = Runner;
1690 NoCyclicBondsPerAtom[Root->nr]--;
1691 RingSize++;
1692 break;
1693 }
1694 }
1695 } while ((OtherAtom->LowpointNr == LP) && (Walker != OtherAtom) && (Root->LowpointNr == OtherAtom->LowpointNr));
1696 // now check if the LP is different from Walker's, as then there is one more bond to follow
1697 if (LP != Walker->LowpointNr) {
1698 // find last bond to home base
1699 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++)
1700 if (ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom) == Root) {
1701 *out << " <-> " << OtherAtom->Name;
1702 RingSize++;
1703 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1704 }
1705 } else {
1706 // we have made the complete cycle
1707 }
1708 *out << " <-> ... with cycle length of " << RingSize << "." << endl;
1709 NumCycles++;
1710 if ((RingSize < MinimumRingSize) || (MinimumRingSize == -1))
1711 MinimumRingSize = RingSize;
1712 }
1713 }
1714 }
1715 }
1716
1717 // print NoCyclicBondsPerAtom to visually check of all are zero
1718 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1719 for(int i=0;i<AtomCount;i++) {
1720 if (NoCyclicBondsPerAtom[i] > 0)
1721 cerr << "There was an error in molecule::CyclicStructureAnalysis!" << endl;
1722 *out << NoCyclicBondsPerAtom[i] << " ";
1723 }
1724 *out << endl;
1725
1726 if (MinimumRingSize != -1)
1727 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1728 else
1729 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1730
1731 Free((void **)&NoCyclicBondsPerAtom, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1732 delete(AtomStack);
1733};
1734
1735/** Sets the next component number.
1736 * This is O(N) as the number of bonds per atom is bound.
1737 * \param *vertex atom whose next atom::*ComponentNr is to be set
1738 * \param nr number to use
1739 */
1740void molecule::SetNextComponentNumber(atom *vertex, int nr)
1741{
1742 int i=0;
1743 if (vertex != NULL) {
1744 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1745 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1746 vertex->ComponentNr[i] = nr;
1747 break;
1748 }
1749 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1750 break; // breaking here will not cause error!
1751 }
1752 if (i == NumberOfBondsPerAtom[vertex->nr])
1753 cerr << "Error: All Component entries are already occupied!" << endl;
1754 } else
1755 cerr << "Error: Given vertex is NULL!" << endl;
1756};
1757
1758/** Output a list of flags, stating whether the bond was visited or not.
1759 * \param *out output stream for debugging
1760 */
1761void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1762{
1763 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1764 *out << vertex->ComponentNr[i] << " ";
1765};
1766
1767/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1768 */
1769void molecule::InitComponentNumbers()
1770{
1771 atom *Walker = start;
1772 while(Walker->next != end) {
1773 Walker = Walker->next;
1774 if (Walker->ComponentNr != NULL)
1775 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1776 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1777 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1778 Walker->ComponentNr[i] = -1;
1779 }
1780};
1781
1782/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1783 * \param *vertex atom to regard
1784 * \return bond class or NULL
1785 */
1786bond * molecule::FindNextUnused(atom *vertex)
1787{
1788 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1789 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1790 return(ListOfBondsPerAtom[vertex->nr][i]);
1791 return NULL;
1792};
1793
1794/** Resets bond::Used flag of all bonds in this molecule.
1795 * \return true - success, false - -failure
1796 */
1797void molecule::ResetAllBondsToUnused()
1798{
1799 bond *Binder = first;
1800 while (Binder->next != last) {
1801 Binder = Binder->next;
1802 Binder->ResetUsed();
1803 }
1804};
1805
1806/** Resets atom::nr to -1 of all atoms in this molecule.
1807 */
1808void molecule::ResetAllAtomNumbers()
1809{
1810 atom *Walker = start;
1811 while (Walker->next != end) {
1812 Walker = Walker->next;
1813 Walker->GraphNr = -1;
1814 }
1815};
1816
1817/** Output a list of flags, stating whether the bond was visited or not.
1818 * \param *out output stream for debugging
1819 * \param *list
1820 */
1821void OutputAlreadyVisited(ofstream *out, int *list)
1822{
1823 *out << Verbose(4) << "Already Visited Bonds:\t";
1824 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1825 *out << endl;
1826};
1827
1828/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1829 * The upper limit is
1830 * \f[
1831 * n = N \cdot C^k
1832 * \f]
1833 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1834 * \param *out output stream for debugging
1835 * \param order bond order k
1836 * \return number n of fragments
1837 */
1838int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1839{
1840 int c = 0;
1841 int FragmentCount;
1842 // get maximum bond degree
1843 atom *Walker = start;
1844 while (Walker->next != end) {
1845 Walker = Walker->next;
1846 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1847 }
1848 FragmentCount = NoNonHydrogen*(1 << (c*order));
1849 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1850 return FragmentCount;
1851};
1852
1853/** Scans a single line for number and puts them into \a KeySet.
1854 * \param *out output stream for debugging
1855 * \param *buffer buffer to scan
1856 * \param &CurrentSet filled KeySet on return
1857 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1858 */
1859bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1860{
1861 stringstream line;
1862 int AtomNr;
1863 int status = 0;
1864
1865 line.str(buffer);
1866 while (!line.eof()) {
1867 line >> AtomNr;
1868 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1869 CurrentSet.insert(AtomNr);
1870 status++;
1871 } // else it's "-1" or else and thus must not be added
1872 }
1873 return (status != 0);
1874};
1875
1876/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1877 * \param *out output stream for debugging
1878 * \param *filename name of KeySet file
1879 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1880 * \param *FragmentList NULL, filled on return
1881 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1882 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1883 */
1884bool molecule::ParseKeySetFile(ofstream *out, char *filename, atom **ListOfAtoms, MoleculeListClass *&FragmentList, bool IsAngstroem)
1885{
1886 bool status = true;
1887 ifstream KeySetFile;
1888 stringstream line;
1889
1890 if (FragmentList != NULL) { // check list pointer
1891 cerr << "Error: FragmentList was not NULL as supposed to be, already atoms present therein?" << endl;
1892 return false;
1893 }
1894 cout << Verbose(1) << "Parsing the KeySet file ... ";
1895 // open file and read
1896 KeySetFile.open(filename);
1897 if (KeySetFile != NULL) {
1898 // each line represents a new fragment
1899 int NumberOfFragments = 0;
1900 char *buffer = (char *) Malloc(sizeof(char)*255, "molecule::ParseKeySetFile - *buffer");
1901 // 1. scan through file to know number of fragments
1902 while (!KeySetFile.eof()) {
1903 KeySetFile.getline(buffer, 255);
1904 if (strlen(buffer) > 0) // there is at least on possible number on the parsed line
1905 NumberOfFragments++;
1906 }
1907 // 2. allocate the MoleculeListClass accordingly
1908 FragmentList = new MoleculeListClass(NumberOfFragments, AtomCount);
1909 // 3. Clear File, go to beginning and parse again, now adding found ids to each keyset and converting into molecules
1910 KeySetFile.clear();
1911 KeySetFile.seekg(ios::beg);
1912 NumberOfFragments = 0;
1913 while ((!KeySetFile.eof()) && (FragmentList->NumberOfMolecules > NumberOfFragments)) {
1914 KeySetFile.getline(buffer, 255);
1915 KeySet CurrentSet;
1916 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) // if at least one valid atom was added, write config
1917 FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1918 }
1919 // 4. Free and done
1920 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1921 cout << "done." << endl;
1922 } else {
1923 cout << "File not found." << endl;
1924 status = false;
1925 }
1926
1927 return status;
1928};
1929
1930/** Performs a many-body bond order analysis for a given bond order.
1931 * Writes for each fragment a config file.
1932 * \param *out output stream for debugging
1933 * \param BottomUpOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
1934 * \param TopDownOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::TopDown scheme
1935 * \param Scheme which BondOrderScheme to use for the fragmentation
1936 * \param *configuration configuration for writing config files for each fragment
1937 * \param CutCyclic whether to add cut cyclic bond or to saturate
1938 */
1939void molecule::FragmentMolecule(ofstream *out, int BottomUpOrder, int TopDownOrder, enum BondOrderScheme Scheme, config *configuration, enum CutCyclicBond CutCyclic)
1940{
1941 MoleculeListClass **BondFragments = NULL;
1942 MoleculeListClass *FragmentList = NULL;
1943 atom *Walker = NULL;
1944 int *SortIndex = NULL;
1945 element *runner = NULL;
1946 int AtomNo;
1947 int MinimumRingSize;
1948 int TotalFragmentCounter = 0;
1949 int FragmentCounter = 0;
1950 MoleculeLeafClass *MolecularWalker = NULL;
1951 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
1952 fstream File;
1953 char *filename = NULL;
1954 bool status = true;
1955
1956 cout << endl;
1957#ifdef ADDHYDROGEN
1958 cout << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
1959#else
1960 cout << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
1961#endif
1962
1963 // fill the adjacency list
1964 CreateListOfBondsPerAtom(out);
1965
1966 // === open and compare adjacency file ===
1967 filename = (char *) Malloc(sizeof(char)*255, "molecule::FragmentMolecule - filename");
1968 sprintf(filename, "%s/%s%s", configuration->GetDefaultPath(), "BondFragment", "Adjacency.dat");
1969 File.open(filename, ios::in);
1970 cout << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ...";
1971 if (File != NULL) {
1972 // allocate storage structure
1973 atom **ListOfAtoms = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMolecule - ListOfAtoms"); // will contain the atom ids whose bond partners differ
1974 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1975 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::FragmentMolecule - CurrentBonds"); // contains parsed bonds of current atom
1976 int CurrentBondsOfAtom;
1977 Walker = start;
1978 while (Walker->next != end) {
1979 Walker = Walker->next;
1980 if ((Walker->nr >= 0) && (Walker->nr < AtomCount)) {
1981 ListOfAtoms[Walker->nr] = Walker;
1982 } else
1983 break;
1984 }
1985 if (Walker->next == end) { // everything went alright
1986 // Parse the file line by line and count the bonds
1987 while (!File.eof()) {
1988 File.getline(filename, 255);
1989 stringstream line;
1990 line.str(filename);
1991 int AtomNr = -1;
1992 line >> AtomNr;
1993 CurrentBondsOfAtom = -1; // we count one too far due to line end
1994 // parse into structure
1995 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1996 while (!line.eof())
1997 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
1998 // compare against present bonds
1999 Walker = ListOfAtoms[AtomNr];
2000 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2001 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2002 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2003 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(Walker)->nr;
2004 int j = 0;
2005 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2006 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2007 ListOfAtoms[AtomNr] = NULL;
2008 NonMatchNumber++;
2009 status = false;
2010 //cout << "[" << id << "]\t";
2011 } else {
2012 //cout << id << "\t";
2013 }
2014 }
2015 //cout << endl;
2016 } else {
2017 cout << "Number of bonds for Atom " << *Walker << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2018 status = false;
2019 }
2020 }
2021 }
2022 File.close();
2023 File.clear();
2024 if (status) { // if equal we parse the KeySetFile
2025 cout << " done: Equal." << endl;
2026 sprintf(filename, "%s/%s%s", configuration->GetDefaultPath(), "BondFragment", "KeySets.dat");
2027 status = ParseKeySetFile(out, filename, ListOfAtoms, FragmentList, configuration->GetIsAngstroem());
2028 } else
2029 cout << " done: Not equal by " << NonMatchNumber << " atoms." << endl;
2030 } else {
2031 cout << " range of nuclear ids exceeded [0, AtomCount)." << endl;
2032 status = false;
2033 }
2034 Free((void **)&CurrentBonds, "molecule::FragmentMolecule - **CurrentBonds");
2035 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - *ListOfAtoms");
2036 } else {
2037 cout << " Adjacency file not found." << endl;
2038 status = false;
2039 }
2040
2041 // =================================== Begin of FRAGMENTATION ===============================
2042 if (!status) {
2043 // === store Adjacency file ===
2044 sprintf(filename, "%s/%s%s", configuration->GetDefaultPath(), "BondFragment", "Adjacency.dat");
2045 File.open(filename, ios::out);
2046 cout << Verbose(1) << "Saving adjacency list ... ";
2047 if (File != NULL) {
2048 Walker = start;
2049 while(Walker->next != end) {
2050 Walker = Walker->next;
2051 File << Walker->nr << "\t";
2052 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2053 File << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2054 File << endl;
2055 }
2056 File.close();
2057 cout << "done." << endl;
2058 } else {
2059 cout << "failed." << endl;
2060 }
2061 Free((void **)&filename, "molecule::FragmentMolecule - filename");
2062
2063 // === first perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs ===
2064 Subgraphs = DepthFirstSearchAnalysis((ofstream *)&cout, false, MinimumRingSize);
2065 MolecularWalker = Subgraphs;
2066 // fill the bond structure of the individually stored subgraphs
2067 while (MolecularWalker->next != NULL) {
2068 MolecularWalker = MolecularWalker->next;
2069 cout << Verbose(1) << "Creating adjacency list for subgraph " << MolecularWalker << "." << endl;
2070 MolecularWalker->Leaf->CreateAdjacencyList((ofstream *)&cout, BondDistance);
2071 MolecularWalker->Leaf->CreateListOfBondsPerAtom((ofstream *)&cout);
2072 }
2073
2074 // === fragment all subgraphs ===
2075 if ((MinimumRingSize != -1) && ((BottomUpOrder >= MinimumRingSize) || (TopDownOrder >= MinimumRingSize))) {
2076 cout << Verbose(0) << "Bond order greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2077 } else {
2078 FragmentCounter = 0;
2079 MolecularWalker = Subgraphs;
2080 // count subgraphs
2081 while (MolecularWalker->next != NULL) {
2082 MolecularWalker = MolecularWalker->next;
2083 FragmentCounter++;
2084 }
2085 BondFragments = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*FragmentCounter, "molecule::FragmentMolecule - **BondFragments");
2086 // fill the bond fragment list
2087 FragmentCounter = 0;
2088 MolecularWalker = Subgraphs;
2089 while (MolecularWalker->next != NULL) {
2090 MolecularWalker = MolecularWalker->next;
2091 cout << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2092 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2093 // output ListOfBondsPerAtom for debugging
2094 *out << Verbose(0) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
2095 Walker = MolecularWalker->Leaf->start;
2096 while (Walker->next != MolecularWalker->Leaf->end) {
2097 Walker = Walker->next;
2098 #ifdef ADDHYDROGEN
2099 if (Walker->type->Z != 1) { // regard only non-hydrogen
2100 #endif
2101 *out << Verbose(0) << "Atom " << Walker->Name << " has Bonds: "<<endl;
2102 for(int j=0;j<MolecularWalker->Leaf->NumberOfBondsPerAtom[Walker->nr];j++) {
2103 *out << Verbose(1) << *(MolecularWalker->Leaf->ListOfBondsPerAtom)[Walker->nr][j] << endl;
2104 }
2105 #ifdef ADDHYDROGEN
2106 }
2107 #endif
2108 }
2109 *out << endl;
2110
2111 *out << Verbose(0) << endl << " ========== BOND ENERGY ========================= " << endl;
2112 *out << Verbose(0) << "Begin of bond fragmentation." << endl;
2113 BondFragments[FragmentCounter] = NULL;
2114 if (Scheme == ANOVA) {
2115 BondFragments[FragmentCounter] = MolecularWalker->Leaf->FragmentBOSSANOVA(out,BottomUpOrder,configuration);
2116 }
2117 if ((Scheme == BottomUp) || (Scheme == Combined)) { // get overlapping subgraphs
2118 BondFragments[FragmentCounter] = FragmentList = MolecularWalker->Leaf->FragmentBottomUp(out, BottomUpOrder, configuration, CutCyclic);
2119 }
2120 if (Scheme == TopDown) { // initialise top level with whole molecule
2121 *out << Verbose(2) << "Initial memory allocating and initialising for whole molecule." << endl;
2122 FragmentList = new MoleculeListClass(1, MolecularWalker->Leaf->AtomCount);
2123 FragmentList->ListOfMolecules[0] = MolecularWalker->Leaf->CopyMolecule();
2124 FragmentList->TEList[0] = 1.;
2125 }
2126 if ((Scheme == Combined) || (Scheme == TopDown)) {
2127 *out << Verbose(1) << "Calling TopDown." << endl;
2128 BondFragments[FragmentCounter] = FragmentList->FragmentTopDown(out, TopDownOrder, BondDistance, configuration, CutCyclic);
2129 // remove this molecule from list again and free wrapper list
2130 delete(FragmentList);
2131 FragmentList = NULL;
2132 }
2133 } else {
2134 cout << Verbose(0) << "Connection matrix has not yet been generated!" << endl;
2135 }
2136 TotalFragmentCounter += BondFragments[FragmentCounter]->NumberOfMolecules;
2137 FragmentCounter++; // next fragment list
2138 }
2139 }
2140
2141 // === combine bond fragments list into a single one ===
2142 FragmentList = new MoleculeListClass(TotalFragmentCounter, AtomCount);
2143 TotalFragmentCounter = 0;
2144 for (int i=0;i<FragmentCounter;i++) {
2145 for(int j=0;j<BondFragments[i]->NumberOfMolecules;j++) {
2146 FragmentList->ListOfMolecules[TotalFragmentCounter] = BondFragments[i]->ListOfMolecules[j];
2147 BondFragments[i]->ListOfMolecules[j] = NULL;
2148 FragmentList->TEList[TotalFragmentCounter++] = BondFragments[i]->TEList[j];
2149 }
2150 delete(BondFragments[i]);
2151 }
2152 Free((void **)&BondFragments, "molecule::FragmentMolecule - **BondFragments");
2153 } else
2154 cout << Verbose(0) << "Using fragments reconstructed from the KeySetFile." << endl;
2155 // ==================================== End of FRAGMENTATION ================================
2156
2157 // === Save fragments' configuration to disk ===
2158 if (FragmentList != NULL) {
2159 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2160 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2161 for(int i=0;i<AtomCount;i++)
2162 SortIndex[i] = -1;
2163 runner = elemente->start;
2164 AtomNo = 0;
2165 while (runner->next != elemente->end) { // go through every element
2166 runner = runner->next;
2167 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2168 Walker = start;
2169 while (Walker->next != end) { // go through every atom of this element
2170 Walker = Walker->next;
2171 if (Walker->type->Z == runner->Z) // if this atom fits to element
2172 SortIndex[Walker->nr] = AtomNo++;
2173 }
2174 }
2175 }
2176 *out << Verbose(1) << "Writing " << FragmentList->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2177 if (FragmentList->OutputConfigForListOfFragments("BondFragment", configuration, SortIndex))
2178 *out << Verbose(1) << "All configs written." << endl;
2179 else
2180 *out << Verbose(1) << "Some configs' writing failed." << endl;
2181 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2182
2183 // restore orbital and Stop values
2184 CalculateOrbitals(*configuration);
2185
2186 // free memory for bond part
2187 *out << Verbose(1) << "Freeing bond memory" << endl;
2188 delete(FragmentList); // remove bond molecule from memory
2189 FragmentList = NULL;
2190 } else
2191 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2192 // free subgraph memory again
2193 if (Subgraphs != NULL) {
2194 while (Subgraphs->next != NULL) {
2195 Subgraphs = Subgraphs->next;
2196 delete(Subgraphs->previous);
2197 }
2198 delete(Subgraphs);
2199 }
2200
2201 *out << Verbose(0) << "End of bond fragmentation." << endl;
2202};
2203
2204/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2205 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2206 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2207 * Allocates memory, fills the array and exits
2208 * \param *out output stream for debugging
2209 */
2210void molecule::CreateListOfBondsPerAtom(ofstream *out)
2211{
2212 bond *Binder = NULL;
2213 atom *Walker = NULL;
2214 int TotalDegree;
2215 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2216
2217 // re-allocate memory
2218 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2219 if (ListOfBondsPerAtom != NULL) {
2220 for(int i=0;i<AtomCount;i++)
2221 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2222 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2223 }
2224 if (NumberOfBondsPerAtom != NULL)
2225 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2226 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2227 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2228
2229 // reset bond counts per atom
2230 for(int i=0;i<AtomCount;i++)
2231 NumberOfBondsPerAtom[i] = 0;
2232 // count bonds per atom
2233 Binder = first;
2234 while (Binder->next != last) {
2235 Binder = Binder->next;
2236 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2237 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2238 }
2239 // allocate list of bonds per atom
2240 for(int i=0;i<AtomCount;i++)
2241 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2242 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2243 for(int i=0;i<AtomCount;i++)
2244 NumberOfBondsPerAtom[i] = 0;
2245 // fill the list
2246 Binder = first;
2247 while (Binder->next != last) {
2248 Binder = Binder->next;
2249 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2250 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2251 }
2252
2253 // output list for debugging
2254 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2255 Walker = start;
2256 while (Walker->next != end) {
2257 Walker = Walker->next;
2258 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2259 TotalDegree = 0;
2260 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2261 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2262 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2263 }
2264 *out << " -- TotalDegree: " << TotalDegree << endl;
2265 }
2266 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2267};
2268
2269/** Splits up a molecule into atomic, non-hydrogen, hydrogen-saturated fragments.
2270 * \param *out output stream for debugging
2271 * \param NumberOfTopAtoms number to initialise second parameter of MoleculeListClass with
2272 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2273 * \param factor additional factor TE and forces factors are multiplied with
2274 * \param CutCyclic whether to add cut cyclic bond or to saturate
2275 * \return MoleculelistClass of pointer to each atomic fragment.
2276 */
2277MoleculeListClass * molecule::GetAtomicFragments(ofstream *out, int NumberOfTopAtoms, bool IsAngstroem, double factor, enum CutCyclicBond CutCyclic)
2278{
2279 atom *TopAtom = NULL, *BottomAtom = NULL; // Top = this, Bottom = AtomicFragment->ListOfMolecules[No]
2280 atom *Walker = NULL;
2281 MoleculeListClass *AtomicFragments = NULL;
2282 atom **AtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetAtomicFragments: **AtomList");
2283 for (int i=0;i<AtomCount;i++)
2284 AtomList[i] = NULL;
2285 bond **BondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetAtomicFragments: **AtomList");
2286 for (int i=0;i<BondCount;i++)
2287 BondList[i] = NULL;
2288 int No = 0, Cyclic;
2289
2290 *out << Verbose(0) << "Begin of GetAtomicFragments." << endl;
2291
2292 *out << Verbose(1) << "Atoms in Molecule: ";
2293 Walker = start;
2294 while (Walker->next != end) {
2295 Walker = Walker->next;
2296 *out << Walker << "\t";
2297 }
2298 *out << endl;
2299#ifdef ADDHYDROGEN
2300 if (NoNonHydrogen != 0) {
2301 AtomicFragments = new MoleculeListClass(NoNonHydrogen, NumberOfTopAtoms);
2302 } else {
2303 *out << Verbose(1) << "NoNonHydrogen is " << NoNonHydrogen << ", can't allocated MoleculeListClass." << endl;
2304#else
2305 if (AtomCount != 0) {
2306 AtomicFragments = new MoleculeListClass(AtomCount, NumberOfTopAtoms);
2307 } else {
2308 *out << Verbose(1) << "AtomCount is " << AtomCount << ", can't allocated MoleculeListClass." << endl;
2309#endif
2310 return (AtomicFragments);
2311 }
2312
2313 TopAtom = start;
2314 while (TopAtom->next != end) {
2315 TopAtom = TopAtom->next;
2316 //for(int i=0;i<AtomCount;i++) {
2317#ifdef ADDHYDROGEN
2318 if (TopAtom->type->Z != 1) { // regard only non-hydrogen
2319#endif
2320 //TopAtom = AtomsInMolecule[i];
2321 *out << Verbose(1) << "Current non-Hydrogen Atom: " << TopAtom->Name << endl;
2322
2323 // go through all bonds to check if cyclic
2324 Cyclic = 0;
2325 for(int i=0;i<NumberOfBondsPerAtom[TopAtom->nr];i++)
2326 Cyclic += (ListOfBondsPerAtom[TopAtom->nr][i]->Cyclic) ? 1 : 0;
2327
2328#ifdef ADDHYDROGEN
2329 if (No > NoNonHydrogen) {
2330#else
2331 if (No > AtomCount) {
2332#endif
2333 *out << Verbose(1) << "Access on created AtomicFragmentsListOfMolecules[" << No << "] beyond NumberOfMolecules " << AtomicFragments->NumberOfMolecules << "." << endl;
2334 break;
2335 }
2336 if (AtomList[TopAtom->nr] == NULL) {
2337 // create new molecule
2338 AtomicFragments->ListOfMolecules[No] = new molecule(elemente); // allocate memory
2339 AtomicFragments->TEList[No] = factor;
2340 AtomicFragments->ListOfMolecules[No]->BondDistance = BondDistance;
2341
2342 // add central atom
2343 BottomAtom = AtomicFragments->ListOfMolecules[No]->AddCopyAtom(TopAtom); // add this central atom to molecule
2344 AtomList[TopAtom->nr] = BottomAtom; // mark down in list
2345
2346 // create fragment
2347 *out << Verbose(1) << "New fragment around atom: " << TopAtom->Name << endl;
2348 BreadthFirstSearchAdd(out,AtomicFragments->ListOfMolecules[No], AtomList, BondList, TopAtom, NULL, 0, IsAngstroem, (Cyclic == 0) ? SaturateBond : CutCyclic);
2349 AtomicFragments->ListOfMolecules[No]->CountAtoms(out);
2350 // actually we now have to reset both arrays to NULL again, but BFS is overkill anyway for getting the atomic fragments
2351 // thus we do it in O(1) and avoid the O(n) which would make this routine O(N^2)!
2352 AtomList[TopAtom->nr] = NULL; // remove this fragment's central atom again from the list
2353
2354 *out << Verbose(1) << "Atoms in Fragment " << TopAtom->nr << ": ";
2355 Walker = AtomicFragments->ListOfMolecules[No]->start;
2356 while (Walker->next != AtomicFragments->ListOfMolecules[No]->end) {
2357 Walker = Walker->next;
2358 //for(int k=0;k<AtomicFragments->ListOfMolecules[No]->AtomCount;k++)
2359 *out << Walker << "(" << Walker->father << ")\t";
2360 }
2361 *out << endl;
2362 No++;
2363 }
2364#ifdef ADDHYDROGEN
2365 } else
2366 *out << Verbose(1) << "Current Hydrogen Atom: " << TopAtom->Name << endl;
2367#endif
2368 }
2369
2370 // output of full list before reduction
2371 if (AtomicFragments != NULL) {
2372 *out << "AtomicFragments: ";
2373 AtomicFragments->Output(out);
2374 *out << endl;
2375 } else
2376 *out << Verbose(1) << "AtomicFragments is zero on return, splitting failed." << endl;
2377
2378 // Reducing the atomic fragments
2379 if (AtomicFragments != NULL) {
2380 // check whether there are equal fragments by GetMappingToUniqueFragments
2381 AtomicFragments->ReduceToUniqueList(out, &cell_size[0], BondDistance);
2382 } else
2383 *out << Verbose(1) << "AtomicFragments is zero, reducing failed." << endl;
2384 Free((void **)&BondList, "molecule::GetAtomicFragments: **BondList");
2385 Free((void **)&AtomList, "molecule::GetAtomicFragments: **AtomList");
2386 *out << Verbose(0) << "End of GetAtomicFragments." << endl;
2387 return (AtomicFragments);
2388};
2389
2390/** Splits up the bond in a molecule into a left and a right fragment.
2391 * \param *out output stream for debugging
2392 * \param *Bond bond to broken up into getting allocated ...
2393 * \param *LeftFragment ... left fragment molecule ... (ptr to the memory cell wherein the adress for the Fragment is to be stored)
2394 * \param *RightFragment ... and right fragment molecule to be returned.(ptr to the memory cell wherein the adress for the Fragment is to be stored)
2395 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2396 * \param CutCyclic whether to add cut cyclic bond or not
2397 * \sa FragmentTopDown()
2398 */
2399void molecule::FragmentMoleculeByBond(ofstream *out, bond *Bond, molecule **LeftFragment, molecule **RightFragment, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2400{
2401 *out << Verbose(0) << "Begin of FragmentMoleculeByBond." << endl;
2402#ifdef ADDHYDROGEN
2403 if ((Bond->leftatom->type->Z != 1) && (Bond->rightatom->type->Z != 1)) { // if both bond partners aren't hydrogen ...
2404#endif
2405 *out << Verbose(1) << "Current Non-Hydrogen Bond: " << Bond->leftatom->Name << " and " << Bond->rightatom->Name << endl;
2406 *LeftFragment = new molecule(elemente);
2407 *RightFragment = new molecule(elemente);
2408 // initialise marker list for all atoms
2409 atom **AddedAtomListLeft = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2410 atom **AddedAtomListRight = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2411 for (int i=0;i<AtomCount;i++) {
2412 AddedAtomListLeft[i] = NULL;
2413 AddedAtomListRight[i] = NULL;
2414 }
2415 bond **AddedBondListLeft = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2416 bond **AddedBondListRight = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2417 for (int i=0;i<BondCount;i++) {
2418 AddedBondListLeft[i] = NULL;
2419 AddedBondListRight[i] = NULL;
2420 }
2421
2422 // tag and add all atoms that have to be included
2423 *out << Verbose(1) << "Adding BFS-wise on left hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2424 AddedAtomListLeft[Bond->leftatom->nr] = (*LeftFragment)->AddCopyAtom(Bond->leftatom);
2425 BreadthFirstSearchAdd(out, *LeftFragment, AddedAtomListLeft, AddedBondListLeft, Bond->leftatom, Bond,
2426#ifdef ADDHYDROGEN
2427 NoNonBonds
2428#else
2429 BondCount
2430#endif
2431 , IsAngstroem, CutCyclic);
2432 *out << Verbose(1) << "Adding BFS-wise on right hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2433 AddedAtomListRight[Bond->rightatom->nr] = (*RightFragment)->AddCopyAtom(Bond->rightatom);
2434 BreadthFirstSearchAdd(out, *RightFragment, AddedAtomListRight, AddedBondListRight, Bond->rightatom, Bond,
2435#ifdef ADDHYDROGEN
2436 NoNonBonds
2437#else
2438 BondCount
2439#endif
2440 , IsAngstroem, CutCyclic);
2441
2442 // count atoms
2443 (*LeftFragment)->CountAtoms(out);
2444 (*RightFragment)->CountAtoms(out);
2445 // free all and exit
2446 Free((void **)&AddedAtomListLeft, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2447 Free((void **)&AddedAtomListRight, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2448 Free((void **)&AddedBondListLeft, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2449 Free((void **)&AddedBondListRight, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2450#ifdef ADDHYDROGEN
2451 }
2452#endif
2453 *out << Verbose(0) << "End of FragmentMoleculeByBond." << endl;
2454};
2455
2456/** Returns the given \a **FragmentList filled with molecules around each bond including up to \a BondDegree neighbours.
2457 * \param *out output stream for debugging
2458 * \param BondOrder neighbours on each side to be ...
2459 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2460 * \param CutCyclic whether to add cut cyclic bond or to saturate
2461 * \sa FragmentBottomUp(), molecule::AddBondOrdertoMolecule()
2462 */
2463MoleculeListClass * molecule::GetEachBondFragmentOfOrder(ofstream *out, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2464{
2465 /// Allocate memory for Bond list and go through each bond and fragment molecule up to bond order and fill the list to be returned.
2466 MoleculeListClass *FragmentList = NULL;
2467 atom **AddedAtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2468 bond **AddedBondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2469 bond *Binder = NULL;
2470
2471 *out << Verbose(0) << "Begin of GetEachBondFragmentOfOrder." << endl;
2472#ifdef ADDHYDROGEN
2473 if (NoNonBonds != 0) {
2474 FragmentList = new MoleculeListClass(NoNonBonds, AtomCount);
2475 } else {
2476 *out << Verbose(1) << "NoNonBonds is " << NoNonBonds << ", can't allocate list." << endl;
2477#else
2478 if (BondCount != 0) {
2479 FragmentList = new MoleculeListClass(BondCount, AtomCount);
2480 } else {
2481 *out << Verbose(1) << "BondCount is " << BondCount << ", can't allocate list." << endl;
2482#endif
2483 }
2484 int No = 0;
2485 Binder = first;
2486 while (Binder->next != last) { // get each bond, NULL is returned if it is a H-H bond
2487 Binder = Binder->next;
2488#ifdef ADDHYDROGEN
2489 if ((Binder->leftatom->type->Z != 1) && (Binder->rightatom->type->Z != 1)) // if both bond partners aren't hydrogen ...
2490#endif
2491 if ((CutCyclic == SaturateBond) || (!Binder->Cyclic)) {
2492 *out << Verbose(1) << "Getting Fragment for Non-Hydrogen Bond: " << Binder->leftatom->Name << " and " << Binder->rightatom->Name << endl;
2493 FragmentList->ListOfMolecules[No] = new molecule(elemente);
2494 // initialise marker list for all atoms
2495 for (int i=0;i<AtomCount;i++)
2496 AddedAtomList[i] = NULL;
2497 for (int i=0;i<BondCount;i++)
2498 AddedBondList[i] = NULL;
2499
2500 // add root bond as first bond (this is needed later on fragmenting)
2501 *out << Verbose(1) << "Adding Root Bond " << *Binder << " and its atom." << endl;
2502 AddedAtomList[Binder->leftatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->leftatom);
2503 AddedAtomList[Binder->rightatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->rightatom);
2504 AddedBondList[Binder->nr] = FragmentList->ListOfMolecules[No]->AddBond(AddedAtomList[Binder->leftatom->nr], AddedAtomList[Binder->rightatom->nr], Binder->BondDegree);
2505
2506 // tag and add all atoms that have to be included
2507 *out << Verbose(1) << "Adding BFS-wise on left hand side." << endl;
2508 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->leftatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2509 *out << Verbose(1) << "Adding BFS-wise on right hand side." << endl;
2510 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->rightatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2511
2512 // count atoms
2513 FragmentList->ListOfMolecules[No]->CountAtoms(out);
2514 FragmentList->TEList[No] = 1.;
2515 *out << Verbose(1) << "GetBondFragmentOfOrder: " << Binder->nr << "th Fragment: " << FragmentList->ListOfMolecules[No] << "." << endl;
2516 No++;
2517 }
2518 }
2519 // free all lists
2520 Free((void **)&AddedAtomList, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2521 Free((void **)&AddedBondList, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2522 // output and exit
2523 FragmentList->Output(out);
2524 *out << Verbose(0) << "End of GetEachBondFragmentOfOrder." << endl;
2525 return (FragmentList);
2526};
2527
2528/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2529 * Gray vertices are always enqueued in an AtomStackClass FIFO queue, the rest is usual BFS with adding vertices found was
2530 * white and putting into queue.
2531 * \param *out output stream for debugging
2532 * \param *Mol Molecule class to add atoms to
2533 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2534 * \param **AddedBondList list with added bond pointers, index is bond father's number
2535 * \param *Root root vertex for BFS
2536 * \param *Bond bond not to look beyond
2537 * \param BondOrder maximum distance for vertices to add
2538 * \param IsAngstroem lengths are in angstroem or bohrradii
2539 * \param CutCyclic whether to cut cyclic bonds (means saturate on need with hydrogen) or to always add
2540 */
2541void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2542{
2543 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2544 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2545 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2546 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
2547 atom *Walker = NULL, *OtherAtom = NULL;
2548 bond *Binder = NULL;
2549
2550 // add Root if not done yet
2551 AtomStack->ClearStack();
2552 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2553 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2554 AtomStack->Push(Root);
2555
2556 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2557 for (int i=0;i<AtomCount;i++) {
2558 PredecessorList[i] = NULL;
2559 ShortestPathList[i] = -1;
2560 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2561 ColorList[i] = lightgray;
2562 else
2563 ColorList[i] = white;
2564 }
2565 ShortestPathList[Root->nr] = 0;
2566
2567 // and go on ... Queue always contains all lightgray vertices
2568 while (!AtomStack->IsEmpty()) {
2569 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2570 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2571 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2572 // followed by n+1 till top of stack.
2573 Walker = AtomStack->PopFirst(); // pop oldest added
2574 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2575 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2576 Binder = ListOfBondsPerAtom[Walker->nr][i];
2577 if (Binder != NULL) { // don't look at bond equal NULL
2578 OtherAtom = Binder->GetOtherAtom(Walker);
2579 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2580 if (ColorList[OtherAtom->nr] == white) {
2581 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2582 ColorList[OtherAtom->nr] = lightgray;
2583 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2584 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2585 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2586 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond)) || (Binder->Cyclic && (CutCyclic == KeepBond))) ) { // Check for maximum distance
2587 *out << Verbose(3);
2588 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2589 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2590 *out << "Added OtherAtom " << OtherAtom->Name;
2591 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2592 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2593 AddedBondList[Binder->nr]->Type = Binder->Type;
2594 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2595 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2596 *out << "Not adding OtherAtom " << OtherAtom->Name;
2597 if (AddedBondList[Binder->nr] == NULL) {
2598 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2599 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2600 AddedBondList[Binder->nr]->Type = Binder->Type;
2601 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2602 } else
2603 *out << ", not added Bond ";
2604 }
2605 *out << ", putting OtherAtom into queue." << endl;
2606 AtomStack->Push(OtherAtom);
2607 } else { // out of bond order, then replace
2608 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2609 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2610 if (Binder == Bond)
2611 *out << Verbose(3) << "Not Queueing, is the Root bond";
2612 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2613 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2614 if ((Binder->Cyclic && (CutCyclic != KeepBond)))
2615 *out << ", is part of a cyclic bond yet we don't keep them, saturating bond with Hydrogen." << endl;
2616 if (!Binder->Cyclic)
2617 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2618 if (AddedBondList[Binder->nr] == NULL) {
2619 if ((AddedAtomList[OtherAtom->nr] != NULL) && (CutCyclic == KeepBond)) { // .. whether we add or saturate
2620 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2621 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2622 AddedBondList[Binder->nr]->Type = Binder->Type;
2623 } else {
2624#ifdef ADDHYDROGEN
2625 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2626#endif
2627 }
2628 }
2629 }
2630 } else {
2631 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2632 // This has to be a cyclic bond, check whether it's present ...
2633 if (AddedBondList[Binder->nr] == NULL) {
2634 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder) || (CutCyclic == KeepBond))) {
2635 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2636 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2637 AddedBondList[Binder->nr]->Type = Binder->Type;
2638 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2639#ifdef ADDHYDROGEN
2640 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2641#endif
2642 }
2643 }
2644 }
2645 }
2646 }
2647 ColorList[Walker->nr] = black;
2648 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2649 }
2650 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2651 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2652 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2653 delete(AtomStack);
2654};
2655
2656/** Adds bond structure to this molecule from \a Father molecule.
2657 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2658 * with end points present in this molecule, bond is created in this molecule.
2659 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2660 * \param *out output stream for debugging
2661 * \param *Father father molecule
2662 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2663 * \todo not checked, not fully working probably
2664 */
2665bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2666{
2667 atom *Walker = NULL, *OtherAtom = NULL;
2668 bool status = true;
2669 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2670
2671 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2672
2673 // reset parent list
2674 *out << Verbose(3) << "Resetting ParentList." << endl;
2675 for (int i=0;i<Father->AtomCount;i++)
2676 ParentList[i] = NULL;
2677
2678 // fill parent list with sons
2679 *out << Verbose(3) << "Filling Parent List." << endl;
2680 Walker = start;
2681 while (Walker->next != end) {
2682 Walker = Walker->next;
2683 ParentList[Walker->father->nr] = Walker;
2684 // Outputting List for debugging
2685 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2686 }
2687
2688 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2689 *out << Verbose(3) << "Creating bonds." << endl;
2690 Walker = Father->start;
2691 while (Walker->next != Father->end) {
2692 Walker = Walker->next;
2693 if (ParentList[Walker->nr] != NULL) {
2694 if (ParentList[Walker->nr]->father != Walker) {
2695 status = false;
2696 } else {
2697 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2698 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2699 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2700 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2701 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2702 }
2703 }
2704 }
2705 }
2706 }
2707
2708 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2709 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2710 return status;
2711};
2712
2713
2714/** Looks through a AtomStackClass and returns the likeliest removal candiate.
2715 * \param *out output stream for debugging messages
2716 * \param *&Leaf KeySet to look through
2717 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2718 * \param index of the atom suggested for removal
2719 */
2720int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2721{
2722 atom *Runner = NULL;
2723 int SP, Removal;
2724
2725 *out << Verbose(2) << "Looking for removal candidate." << endl;
2726 SP = -1; //0; // not -1, so that Root is never removed
2727 Removal = -1;
2728 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2729 Runner = FindAtom((*runner));
2730 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2731 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2732 SP = ShortestPathList[(*runner)];
2733 Removal = (*runner);
2734 }
2735 }
2736 }
2737 return Removal;
2738};
2739
2740/** Stores a fragment from \a KeySet into \a molecule.
2741 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2742 * molecule and adds missing hydrogen where bonds were cut.
2743 * \param *out output stream for debugging messages
2744 * \param &Leaflet pointer to KeySet structure
2745 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2746 * \return pointer to constructed molecule
2747 */
2748molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2749{
2750 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2751 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2752 molecule *Leaf = new molecule(elemente);
2753
2754 *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2755
2756 Leaf->BondDistance = BondDistance;
2757 for(int i=0;i<NDIM*2;i++)
2758 Leaf->cell_size[i] = cell_size[i];
2759
2760 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2761 for(int i=0;i<AtomCount;i++)
2762 SonList[i] = NULL;
2763
2764 // first create the minimal set of atoms from the KeySet
2765 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2766 FatherOfRunner = FindAtom((*runner));
2767 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2768 }
2769
2770 // create the bonds between all: Make it an induced subgraph and add hydrogen
2771 *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2772 Runner = Leaf->start;
2773 while (Runner->next != Leaf->end) {
2774 Runner = Runner->next;
2775 FatherOfRunner = Runner->father;
2776 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2777 // create all bonds
2778 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2779 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2780 *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2781 if (SonList[OtherFather->nr] != NULL) {
2782 *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2783 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2784 *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2785 //NumBonds[Runner->nr]++;
2786 } else {
2787 *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2788 }
2789 } else {
2790 *out << ", who has no son in this fragment molecule." << endl;
2791#ifdef ADDHYDROGEN
2792 *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2793 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2794#endif
2795 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2796 }
2797 }
2798 } else {
2799 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2800 }
2801#ifdef ADDHYDROGEN
2802 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2803 Runner = Runner->next;
2804#endif
2805 }
2806 Leaf->CreateListOfBondsPerAtom(out);
2807 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2808 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2809 *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2810 return Leaf;
2811};
2812
2813/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2814 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2815 * computer game, that winds through the connected graph representing the molecule. Color (white,
2816 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2817 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2818 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2819 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2820 * stepping.
2821 * \param *out output stream for debugging
2822 * \param Order number of atoms in each fragment
2823 * \param *configuration configuration for writing config files for each fragment
2824 * \return List of all unique fragments with \a Order atoms
2825 */
2826/*
2827MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2828{
2829 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2830 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2831 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2832 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2833 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2834 AtomStackClass *RootStack = new AtomStackClass(AtomCount);
2835 AtomStackClass *TouchedStack = new AtomStackClass((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2836 AtomStackClass *SnakeStack = new AtomStackClass(Order+1); // equal to Order is not possible, as then the AtomStackClass cannot discern between full and empty stack!
2837 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2838 MoleculeListClass *FragmentList = NULL;
2839 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2840 bond *Binder = NULL;
2841 int RunningIndex = 0, FragmentCounter = 0;
2842
2843 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2844
2845 // reset parent list
2846 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2847 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2848 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2849 Labels[i] = -1;
2850 SonList[i] = NULL;
2851 PredecessorList[i] = NULL;
2852 ColorVertexList[i] = white;
2853 ShortestPathList[i] = -1;
2854 }
2855 for (int i=0;i<BondCount;i++)
2856 ColorEdgeList[i] = white;
2857 RootStack->ClearStack(); // clearstack and push first atom if exists
2858 TouchedStack->ClearStack();
2859 Walker = start->next;
2860 while ((Walker != end)
2861#ifdef ADDHYDROGEN
2862 && (Walker->type->Z == 1)
2863#endif
2864 ) { // search for first non-hydrogen atom
2865 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2866 Walker = Walker->next;
2867 }
2868 if (Walker != end)
2869 RootStack->Push(Walker);
2870 else
2871 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2872 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2873
2874 ///// OUTER LOOP ////////////
2875 while (!RootStack->IsEmpty()) {
2876 // get new root vertex from atom stack
2877 Root = RootStack->PopFirst();
2878 ShortestPathList[Root->nr] = 0;
2879 if (Labels[Root->nr] == -1)
2880 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2881 PredecessorList[Root->nr] = Root;
2882 TouchedStack->Push(Root);
2883 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2884
2885 // clear snake stack
2886 SnakeStack->ClearStack();
2887 //SnakeStack->TestImplementation(out, start->next);
2888
2889 ///// INNER LOOP ////////////
2890 // Problems:
2891 // - what about cyclic bonds?
2892 Walker = Root;
2893 do {
2894 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2895 // initial setting of the new Walker: label, color, shortest path and put on stacks
2896 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2897 Labels[Walker->nr] = RunningIndex++;
2898 RootStack->Push(Walker);
2899 }
2900 *out << ", has label " << Labels[Walker->nr];
2901 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2902 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2903 // Binder ought to be set still from last neighbour search
2904 *out << ", coloring bond " << *Binder << " black";
2905 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2906 }
2907 if (ShortestPathList[Walker->nr] == -1) {
2908 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2909 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2910 }
2911 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2912 SnakeStack->Push(Walker);
2913 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2914 }
2915 }
2916 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2917
2918 // then check the stack for a newly stumbled upon fragment
2919 if (SnakeStack->ItemCount() == Order) { // is stack full?
2920 // store the fragment if it is one and get a removal candidate
2921 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2922 // remove the candidate if one was found
2923 if (Removal != NULL) {
2924 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2925 SnakeStack->RemoveItem(Removal);
2926 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2927 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2928 Walker = PredecessorList[Removal->nr];
2929 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2930 }
2931 }
2932 } else
2933 Removal = NULL;
2934
2935 // finally, look for a white neighbour as the next Walker
2936 Binder = NULL;
2937 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2938 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2939 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2940 if (ShortestPathList[Walker->nr] < Order) {
2941 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2942 Binder = ListOfBondsPerAtom[Walker->nr][i];
2943 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2944 OtherAtom = Binder->GetOtherAtom(Walker);
2945 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2946 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2947 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2948 } else { // otherwise check its colour and element
2949 if (
2950#ifdef ADDHYDROGEN
2951 (OtherAtom->type->Z != 1) &&
2952#endif
2953 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2954 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2955 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2956 //if (PredecessorList[OtherAtom->nr] == NULL) {
2957 PredecessorList[OtherAtom->nr] = Walker;
2958 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2959 //} else {
2960 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2961 //}
2962 Walker = OtherAtom;
2963 break;
2964 } else {
2965 if (OtherAtom->type->Z == 1)
2966 *out << "Links to a hydrogen atom." << endl;
2967 else
2968 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
2969 }
2970 }
2971 }
2972 } else { // means we have stepped beyond the horizon: Return!
2973 Walker = PredecessorList[Walker->nr];
2974 OtherAtom = Walker;
2975 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
2976 }
2977 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
2978 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
2979 ColorVertexList[Walker->nr] = black;
2980 Walker = PredecessorList[Walker->nr];
2981 }
2982 }
2983 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
2984 *out << Verbose(2) << "Inner Looping is finished." << endl;
2985
2986 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
2987 *out << Verbose(2) << "Resetting lists." << endl;
2988 Walker = NULL;
2989 Binder = NULL;
2990 while (!TouchedStack->IsEmpty()) {
2991 Walker = TouchedStack->PopLast();
2992 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
2993 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2994 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
2995 PredecessorList[Walker->nr] = NULL;
2996 ColorVertexList[Walker->nr] = white;
2997 ShortestPathList[Walker->nr] = -1;
2998 }
2999 }
3000 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3001
3002 // copy together
3003 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3004 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3005 RunningIndex = 0;
3006 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3007 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3008 Leaflet->Leaf = NULL; // prevent molecule from being removed
3009 TempLeaf = Leaflet;
3010 Leaflet = Leaflet->previous;
3011 delete(TempLeaf);
3012 };
3013
3014 // free memory and exit
3015 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3016 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3017 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3018 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3019 delete(RootStack);
3020 delete(TouchedStack);
3021 delete(SnakeStack);
3022
3023 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3024 return FragmentList;
3025};
3026*/
3027
3028/** Structure containing all values in power set combination generation.
3029 */
3030struct UniqueFragments {
3031 config *configuration;
3032 atom *Root;
3033 Graph *Leaflet;
3034 KeySet *FragmentSet;
3035 int ANOVAOrder;
3036 int FragmentCounter;
3037 int CurrentIndex;
3038 int *Labels;
3039 int *ShortestPathList;
3040 bool **UsedList;
3041 bond **BondsPerSPList;
3042 double TEFactor;
3043 int *BondsPerSPCount;
3044};
3045
3046/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3047 * This basically involves recursion to create all power set combinations.
3048 * \param *out output stream for debugging
3049 * \param FragmentSearch UniqueFragments structure with all values needed
3050 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3051 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3052 * \param SubOrder remaining number of allowed vertices to add
3053 */
3054void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3055{
3056 atom *OtherWalker = NULL;
3057 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3058 int NumCombinations;
3059 bool bit;
3060 int bits, TouchedIndex, SubSetDimension, SP;
3061 int Removal;
3062 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3063 bond *Binder = NULL;
3064 bond **BondsList = NULL;
3065
3066 NumCombinations = 1 << SetDimension;
3067
3068 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3069 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
3070 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
3071
3072 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3073 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3074
3075 // initialised touched list (stores added atoms on this level)
3076 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3077 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
3078 TouchedList[TouchedIndex] = -1;
3079 TouchedIndex = 0;
3080
3081 // create every possible combination of the endpieces
3082 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3083 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3084 // count the set bit of i
3085 bits = 0;
3086 for (int j=0;j<SetDimension;j++)
3087 bits += (i & (1 << j)) >> j;
3088
3089 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3090 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3091 // --1-- add this set of the power set of bond partners to the snake stack
3092 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3093 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3094 if (bit) { // if bit is set, we add this bond partner
3095 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3096 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3097 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3098 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3099 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << "." << endl;
3100 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3101 FragmentSearch->FragmentSet->insert( FragmentSearch->FragmentSet->end(), OtherWalker->nr);
3102 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3103 //}
3104 } else {
3105 *out << Verbose(2+verbosity) << "Not adding." << endl;
3106 }
3107 }
3108
3109 if (bits < SubOrder) {
3110 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3111 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3112 SP = RootDistance+1; // this is the next level
3113 // first count the members in the subset
3114 SubSetDimension = 0;
3115 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3116 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3117 Binder = Binder->next;
3118 for (int k=0;k<TouchedIndex;k++) {
3119 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3120 SubSetDimension++;
3121 }
3122 }
3123 // then allocate and fill the list
3124 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3125 SubSetDimension = 0;
3126 Binder = FragmentSearch->BondsPerSPList[2*SP];
3127 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3128 Binder = Binder->next;
3129 for (int k=0;k<TouchedIndex;k++) {
3130 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3131 BondsList[SubSetDimension++] = Binder;
3132 }
3133 }
3134 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3135 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3136 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3137 } else {
3138 // --2-- otherwise store the complete fragment
3139 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3140 // store fragment as a KeySet
3141 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], indices are: ";
3142 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++) {
3143 *out << (*runner)+1 << " ";
3144 }
3145 InsertFragmentIntoGraph(out, FragmentSearch);
3146 Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3147 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3148 }
3149
3150 // --3-- remove all added items in this level from snake stack
3151 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3152 for(int j=0;j<TouchedIndex;j++) {
3153 Removal = TouchedList[j];
3154 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal+1 << " from snake stack." << endl;
3155 FragmentSearch->FragmentSet->erase(Removal);
3156 TouchedList[j] = -1;
3157 }
3158 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3159 } else {
3160 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3161 }
3162 }
3163 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3164 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3165};
3166
3167/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment in the context of \a this molecule.
3168 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3169 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3170 * \param *out output stream for debugging
3171 * \param Order number of vertices
3172 * \param *ListOfGraph Graph structure to insert found fragments into
3173 * \param Fragment Restricted vertex set to use in context of molecule
3174 * \param TEFactor TEFactor to store in graphlist in the end
3175 * \param *configuration configuration needed for IsAngstroem
3176 * \return number of inserted fragments
3177 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3178 */
3179int molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, Graph *ListOfGraph, KeySet Fragment, double TEFactor, config *configuration)
3180{
3181 int SP, UniqueIndex, RootKeyNr, AtomKeyNr;
3182 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3183 atom *Walker = NULL, *OtherWalker = NULL;
3184 bond *Binder = NULL;
3185 bond **BondsList = NULL;
3186 KeyStack RootStack;
3187 KeyStack AtomStack;
3188 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3189 KeySet::iterator runner;
3190
3191 // initialise the fragments structure
3192 struct UniqueFragments FragmentSearch;
3193 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3194 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3195 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3196 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3197 FragmentSearch.FragmentCounter = 0;
3198 FragmentSearch.FragmentSet = new KeySet;
3199 FragmentSearch.configuration = configuration;
3200 FragmentSearch.TEFactor = TEFactor;
3201 FragmentSearch.Leaflet = ListOfGraph; // set to insertion graph
3202 for (int i=0;i<AtomCount;i++) {
3203 FragmentSearch.Labels[i] = -1;
3204 FragmentSearch.ShortestPathList[i] = -1;
3205 PredecessorList[i] = NULL;
3206 }
3207 for (int i=0;i<Order;i++) {
3208 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3209 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3210 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3211 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3212 FragmentSearch.BondsPerSPCount[i] = 0;
3213 }
3214
3215 *out << endl;
3216 *out << Verbose(0) << "Begin of CreateListOfUniqueFragmentsOfOrder with order " << Order << "." << endl;
3217
3218 RootStack.clear();
3219 // find first root candidates
3220 runner = Fragment.begin();
3221 Walker = NULL;
3222 while ((Walker == NULL) && (runner != Fragment.end())) { // search for first non-hydrogen atom
3223 Walker = FindAtom((*runner));
3224 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3225#ifdef ADDHYDROGEN
3226 if (Walker->type->Z == 1) // skip hydrogen
3227 Walker = NULL;
3228#endif
3229 runner++;
3230 }
3231 if (Walker != NULL)
3232 RootStack.push_back(Walker->nr);
3233 else
3234 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3235
3236 UniqueIndex = 0;
3237 while (!RootStack.empty()) {
3238 // Get Root and prepare
3239 RootKeyNr = RootStack.front();
3240 RootStack.pop_front();
3241 FragmentSearch.Root = FindAtom(RootKeyNr);
3242 if (FragmentSearch.Labels[RootKeyNr] == -1)
3243 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3244 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3245 // prepare the atom stack counters (number of atoms with certain SP on stack)
3246 for (int i=0;i<Order;i++)
3247 NumberOfAtomsSPLevel[i] = 0;
3248 NumberOfAtomsSPLevel[0] = 1; // for root
3249 SP = -1;
3250 *out << endl;
3251 *out << Verbose(0) << "Starting BFS analysis with current Root: " << *FragmentSearch.Root << "." << endl;
3252 // push as first on atom stack and goooo ...
3253 AtomStack.clear();
3254 AtomStack.push_back(RootKeyNr);
3255 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3256 // do a BFS search to fill the SP lists and label the found vertices
3257 while (!AtomStack.empty()) {
3258 // pop next atom
3259 AtomKeyNr = AtomStack.front();
3260 AtomStack.pop_front();
3261 if (SP != -1)
3262 NumberOfAtomsSPLevel[SP]--;
3263 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3264 ////if (SP < FragmentSearch.ShortestPathList[AtomKeyNr]) { // bfs has reached new SP level, hence allocate for new list
3265 SP++;
3266 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3267 ////SP = FragmentSearch.ShortestPathList[AtomKeyNr];
3268 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3269 if (SP > 0)
3270 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3271 else
3272 *out << "." << endl;
3273 FragmentSearch.BondsPerSPCount[SP] = 0;
3274 } else {
3275 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3276 }
3277 Walker = FindAtom(AtomKeyNr);
3278 *out << Verbose(0) << "Current Walker is: " << *Walker << " with label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3279 // check for new sp level
3280 // go through all its bonds
3281 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3282 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3283 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3284 OtherWalker = Binder->GetOtherAtom(Walker);
3285 if ((Fragment.find(OtherWalker->nr) != Fragment.end())
3286#ifdef ADDHYDROGEN
3287 && (OtherWalker->type->Z != 1)
3288#endif
3289 ) { // skip hydrogens and restrict to fragment
3290 *out << Verbose(2) << "Current partner is " << *OtherWalker << " in bond " << *Binder << "." << endl;
3291 // set the label if not set (and push on root stack as well)
3292 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3293 RootStack.push_back(OtherWalker->nr);
3294 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3295 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3296 } else {
3297 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3298 }
3299 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (FragmentSearch.Labels[OtherWalker->nr] > FragmentSearch.Labels[RootKeyNr])) { // only pass through those with label bigger than Root's
3300 // set shortest path if not set or longer
3301 //if ((FragmentSearch.ShortestPathList[OtherWalker->nr] == -1) || (FragmentSearch.ShortestPathList[OtherWalker->nr] > FragmentSearch.ShortestPathList[AtomKeyNr])) {
3302 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3303 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3304 //} else {
3305 // *out << Verbose(3) << "Shortest Path is already " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3306 //}
3307 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3308 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3309 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3310 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3311 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3312 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3313 AtomStack.push_back(OtherWalker->nr);
3314 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3315 } else {
3316 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3317 }
3318 // add the bond in between to the SP list
3319 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3320 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3321 FragmentSearch.BondsPerSPCount[SP]++;
3322 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3323 } else {
3324 *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3325 }
3326 } else {
3327 *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3328 }
3329 } else {
3330 *out << Verbose(3) << "Not passing on, as label of " << *OtherWalker << " " << FragmentSearch.Labels[OtherWalker->nr] << " is smaller than that of Root " << FragmentSearch.Labels[RootKeyNr] << " or this is my predecessor." << endl;
3331 }
3332 } else {
3333 *out << Verbose(2) << "Is not in the Fragment or skipping hydrogen " << *OtherWalker << "." << endl;
3334 }
3335 }
3336 }
3337 // reset predecessor list
3338 for(int i=0;i<Order;i++) {
3339 Binder = FragmentSearch.BondsPerSPList[2*i];
3340 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3341 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3342 Binder = Binder->next;
3343 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3344 }
3345 }
3346 *out << endl;
3347 *out << Verbose(0) << "Printing all found lists." << endl;
3348 // outputting all list for debugging
3349 for(int i=0;i<Order;i++) {
3350 Binder = FragmentSearch.BondsPerSPList[2*i];
3351 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3352 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3353 Binder = Binder->next;
3354 *out << Verbose(2) << *Binder << endl;
3355 }
3356 }
3357
3358 // creating fragments with the found edge sets
3359 SP = 0;
3360 for(int i=0;i<Order;i++) { // sum up all found edges
3361 Binder = FragmentSearch.BondsPerSPList[2*i];
3362 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3363 Binder = Binder->next;
3364 SP ++;
3365 }
3366 }
3367 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3368 if (SP >= (Order-1)) {
3369 // start with root (push on fragment stack)
3370 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << "." << endl;
3371 FragmentSearch.FragmentSet->clear();
3372 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3373
3374 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3375 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3376 // store fragment as a KeySet
3377 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], indices are: ";
3378 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3379 *out << (*runner)+1 << " ";
3380 }
3381 *out << endl;
3382 InsertFragmentIntoGraph(out, &FragmentSearch);
3383 //StoreFragmentFromStack(out, FragmentSearch.Root, FragmentSearch.Leaflet, FragmentSearch.FragmentStack, FragmentSearch.ShortestPathList,FragmentSearch.Labels, &FragmentSearch.FragmentCounter, FragmentSearch.configuration);
3384 } else {
3385 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3386 // prepare the subset and call the generator
3387 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3388 Binder = FragmentSearch.BondsPerSPList[0];
3389 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3390 Binder = Binder->next;
3391 BondsList[i] = Binder;
3392 }
3393 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3394 Free((void **)&BondsList, "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3395 }
3396 } else {
3397 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3398 }
3399
3400 // remove root from stack
3401 *out << Verbose(0) << "Removing root again from stack." << endl;
3402 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3403
3404 // free'ing the bonds lists
3405 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3406 for(int i=0;i<Order;i++) {
3407 *out << Verbose(1) << "Current SP level is " << i << ": ";
3408 Binder = FragmentSearch.BondsPerSPList[2*i];
3409 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3410 Binder = Binder->next;
3411 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3412 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3413 }
3414 // delete added bonds
3415 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3416 // also start and end node
3417 *out << "cleaned." << endl;
3418 }
3419 }
3420
3421 // free allocated memory
3422 Free((void **)&NumberOfAtomsSPLevel, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3423 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3424 for(int i=0;i<Order;i++) { // delete start and end of each list
3425 delete(FragmentSearch.BondsPerSPList[2*i]);
3426 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3427 }
3428 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3429 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3430 Free((void **)&FragmentSearch.ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3431 Free((void **)&FragmentSearch.Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3432 delete(FragmentSearch.FragmentSet);
3433
3434// // gather all the leaves together
3435// *out << Verbose(0) << "Copying all fragments into MoleculeList structure." << endl;
3436// FragmentList = new Graph;
3437// UniqueIndex = 0;
3438// while ((FragmentSearch.Leaflet != NULL) && (UniqueIndex < FragmentSearch.FragmentCounter)) {
3439// FragmentList->insert();
3440// FragmentList->ListOfMolecules[UniqueIndex++] = FragmentSearch.Leaflet->Leaf;
3441// FragmentSearch.Leaflet->Leaf = NULL; // prevent molecule from being removed
3442// TempLeaf = FragmentSearch.Leaflet;
3443// FragmentSearch.Leaflet = FragmentSearch.Leaflet->previous;
3444// delete(TempLeaf);
3445// };
3446
3447 // return list
3448 *out << Verbose(0) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3449 return FragmentSearch.FragmentCounter;
3450};
3451
3452/** Corrects the nuclei position if the fragment was created over the cell borders.
3453 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3454 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3455 * and re-add the bond. Looping on the distance check.
3456 * \param *out ofstream for debugging messages
3457 */
3458void molecule::ScanForPeriodicCorrection(ofstream *out)
3459{
3460 bond *Binder = NULL;
3461 bond *OtherBinder = NULL;
3462 atom *Walker = NULL;
3463 atom *OtherWalker = NULL;
3464 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3465 enum Shading *ColorList = NULL;
3466 double tmp;
3467 vector TranslationVector;
3468 //AtomStackClass *CompStack = NULL;
3469 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
3470 bool flag = true;
3471
3472 *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3473
3474 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3475 while (flag) {
3476 // remove bonds that are beyond bonddistance
3477 for(int i=0;i<NDIM;i++)
3478 TranslationVector.x[i] = 0.;
3479 // scan all bonds
3480 Binder = first;
3481 flag = false;
3482 while ((!flag) && (Binder->next != last)) {
3483 Binder = Binder->next;
3484 for (int i=0;i<NDIM;i++) {
3485 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3486 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3487 if (tmp > BondDistance) {
3488 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3489 unlink(Binder); // unlink bond
3490 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3491 flag = true;
3492 break;
3493 }
3494 }
3495 }
3496 if (flag) {
3497 // create translation vector from their periodically modified distance
3498 for (int i=0;i<NDIM;i++) {
3499 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3500 if (fabs(tmp) > BondDistance)
3501 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3502 }
3503 TranslationVector.MatrixMultiplication(matrix);
3504 //*out << "Translation vector is ";
3505 //TranslationVector.Output(out);
3506 //*out << endl;
3507 // apply to all atoms of first component via BFS
3508 for (int i=0;i<AtomCount;i++)
3509 ColorList[i] = white;
3510 AtomStack->Push(Binder->leftatom);
3511 while (!AtomStack->IsEmpty()) {
3512 Walker = AtomStack->PopFirst();
3513 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3514 ColorList[Walker->nr] = black; // mark as explored
3515 Walker->x.AddVector(&TranslationVector); // translate
3516 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3517 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3518 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3519 if (ColorList[OtherWalker->nr] == white) {
3520 AtomStack->Push(OtherWalker); // push if yet unexplored
3521 }
3522 }
3523 }
3524 }
3525 // re-add bond
3526 link(Binder, OtherBinder);
3527 } else {
3528 *out << Verbose(2) << "No corrections for this fragment." << endl;
3529 }
3530 //delete(CompStack);
3531 }
3532
3533 // free allocated space from ReturnFullMatrixforSymmetric()
3534 delete(AtomStack);
3535 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3536 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3537 *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3538};
3539
3540/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3541 * \param *symm 6-dim array of unique symmetric matrix components
3542 * \return allocated NDIM*NDIM array with the symmetric matrix
3543 */
3544double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3545{
3546 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3547 matrix[0] = symm[0];
3548 matrix[1] = symm[1];
3549 matrix[2] = symm[3];
3550 matrix[3] = symm[1];
3551 matrix[4] = symm[2];
3552 matrix[5] = symm[4];
3553 matrix[6] = symm[3];
3554 matrix[7] = symm[4];
3555 matrix[8] = symm[5];
3556 return matrix;
3557};
3558
3559bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3560{
3561 //cout << "my check is used." << endl;
3562 if (SubgraphA.size() < SubgraphB.size()) {
3563 return true;
3564 } else {
3565 if (SubgraphA.size() > SubgraphB.size()) {
3566 return false;
3567 } else {
3568 KeySet::iterator IteratorA = SubgraphA.begin();
3569 KeySet::iterator IteratorB = SubgraphB.begin();
3570 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3571 if ((*IteratorA) < (*IteratorB))
3572 return true;
3573 else if ((*IteratorA) > (*IteratorB)) {
3574 return false;
3575 } // else, go on to next index
3576 IteratorA++;
3577 IteratorB++;
3578 } // end of while loop
3579 }// end of check in case of equal sizes
3580 }
3581 return false; // if we reach this point, they are equal
3582};
3583
3584//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3585//{
3586// return KeyCompare(SubgraphA, SubgraphB);
3587//};
3588
3589/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3590 * \param *out output stream for debugging
3591 * \param &set KeySet to insert
3592 * \param &graph Graph to insert into
3593 * \param *counter pointer to unique fragment count
3594 * \param factor energy factor for the fragment
3595 */
3596inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3597{
3598 GraphTestPair testGraphInsert;
3599
3600 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3601 if (testGraphInsert.second) {
3602 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3603 Fragment->FragmentCounter++;
3604 } else {
3605 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3606 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor;
3607 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3608 }
3609};
3610//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3611//{
3612// // copy stack contents to set and call overloaded function again
3613// KeySet set;
3614// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3615// set.insert((*runner));
3616// InsertIntoGraph(out, set, graph, counter, factor);
3617//};
3618
3619/** Inserts each KeySet in \a graph2 into \a graph1.
3620 * \param *out output stream for debugging
3621 * \param graph1 first (dest) graph
3622 * \param graph2 second (source) graph
3623 */
3624inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3625{
3626 GraphTestPair testGraphInsert;
3627
3628 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3629 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3630 if (testGraphInsert.second) {
3631 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3632 } else {
3633 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3634 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3635 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3636 }
3637 }
3638};
3639
3640
3641/** Creates truncated BOSSANOVA expansion up to order \a k.
3642 * \param *out output stream for debugging
3643 * \param ANOVAOrder ANOVA expansion is truncated above this order
3644 * \param *configuration configuration for writing config files for each fragment
3645 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3646 */
3647MoleculeListClass * molecule::FragmentBOSSANOVA(ofstream *out, int ANOVAOrder, config *configuration)
3648{
3649 Graph *FragmentList = NULL, ***FragmentLowerOrdersList = NULL;
3650 MoleculeListClass *FragmentMoleculeList = NULL;
3651 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3652 int counter = 0;
3653
3654 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3655
3656 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3657 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3658 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*ANOVAOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3659 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*ANOVAOrder, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3660
3661 // Construct the complete KeySet
3662 atom *Walker = start;
3663 KeySet CompleteMolecule;
3664 while (Walker->next != end) {
3665 Walker = Walker->next;
3666 CompleteMolecule.insert(Walker->nr);
3667 }
3668
3669 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3670 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3671 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3672 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3673 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3674 NumLevels = 1 << (BondOrder-1); // (int)pow(2,BondOrder-1);
3675 *out << Verbose(0) << "BondOrder is (" << BondOrder << "/" << ANOVAOrder << ") and NumLevels is " << NumLevels << "." << endl;
3676
3677 // allocate memory for all lower level orders in this 1D-array of ptrs
3678 FragmentLowerOrdersList[BondOrder-1] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3679
3680 // create top order where nothing is reduced
3681 *out << Verbose(0) << "==============================================================================================================" << endl;
3682 *out << Verbose(0) << "Creating list of unique fragments of Bond Order " << BondOrder << " itself." << endl;
3683 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3684 FragmentLowerOrdersList[BondOrder-1][0] = new Graph;
3685 NumMoleculesOfOrder[BondOrder-1] = CreateListOfUniqueFragmentsOfOrder(out, BondOrder, FragmentLowerOrdersList[BondOrder-1][0], CompleteMolecule, 1., configuration);
3686 *out << Verbose(1) << "Number of resulting molecules is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3687 NumMolecules = 0;
3688
3689 // create lower order fragments
3690 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3691 Order = BondOrder;
3692 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3693
3694 // step down to next order at (virtual) boundary of powers of 2 in array
3695 while (source >= (1 << (BondOrder-Order))) // (int)pow(2,BondOrder-Order))
3696 Order--;
3697 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3698 for (int SubOrder=Order;SubOrder>1;SubOrder--) {
3699 int dest = source + (1 << (BondOrder-SubOrder));
3700 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3701 *out << Verbose(0) << "Current SubOrder is: " << SubOrder-1 << " with source " << source << " to destination " << dest << "." << endl;
3702
3703 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3704 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[BondOrder-1][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3705 //NumMolecules = 0;
3706 FragmentLowerOrdersList[BondOrder-1][dest] = new Graph;
3707 for(Graph::iterator runner = (*FragmentLowerOrdersList[BondOrder-1][source]).begin();runner != (*FragmentLowerOrdersList[BondOrder-1][source]).end(); runner++) {
3708 NumMolecules += CreateListOfUniqueFragmentsOfOrder(out,SubOrder-1, FragmentLowerOrdersList[BondOrder-1][dest], (*runner).first, -(*runner).second.second, configuration);
3709 }
3710 *out << Verbose(1) << "Number of resulting molecules is: " << NumMolecules << "." << endl;
3711 }
3712 }
3713 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current BondOrder
3714 //NumMoleculesOfOrder[BondOrder-1] = NumMolecules;
3715 TotalNumMolecules += NumMoleculesOfOrder[BondOrder-1];
3716 *out << Verbose(1) << "Number of resulting molecules for Order " << BondOrder << " is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3717 }
3718 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3719 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3720 // 5433222211111111
3721 // 43221111
3722 // 3211
3723 // 21
3724 // 1
3725 // Subsequently, we combine same orders into a single list (FragmentByOrderList) and reduce these by order
3726
3727 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3728 FragmentList = new Graph;
3729 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3730 NumLevels = 1 << (BondOrder-1);
3731 for(int i=0;i<NumLevels;i++) {
3732 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[BondOrder-1][i]), &counter);
3733 delete(FragmentLowerOrdersList[BondOrder-1][i]);
3734 }
3735 Free((void **)&FragmentLowerOrdersList[BondOrder-1], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3736 }
3737 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3738 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3739 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3740 FragmentMoleculeList = new MoleculeListClass(TotalNumMolecules, AtomCount);
3741 int k=0;
3742 for(Graph::iterator runner = FragmentList->begin(); runner != FragmentList->end(); runner++) {
3743 KeySet test = (*runner).first;
3744 FragmentMoleculeList->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3745 FragmentMoleculeList->TEList[k] = ((*runner).second).second;
3746 k++;
3747 }
3748
3749 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3750 delete(FragmentList);
3751 return FragmentMoleculeList;
3752};
3753
3754/** Fragments a molecule, taking \a BondDegree neighbours into accent.
3755 * First of all, we have to split up the molecule into bonds ranging out till \a BondDegree.
3756 * These fragments serve in the following as the basis the calculate the bond energy of the bond
3757 * they originated from. Thus, they are split up in a left and a right part, each calculated for
3758 * the total energy, including the fragment as a whole and then we get:
3759 * E(fragment) - E(left) - E(right) = E(bond)
3760 * The splitting up is done via Breadth-First-Search, \sa BreadthFirstSearchAdd().
3761 * \param *out output stream for debugging
3762 * \param BondOrder up to how many neighbouring bonds a fragment contains
3763 * \param *configuration configuration for writing config files for each fragment
3764 * \param CutCyclic whether to add cut cyclic bond or to saturate
3765 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3766 */
3767MoleculeListClass * molecule::FragmentBottomUp(ofstream *out, int BondOrder, config *configuration, enum CutCyclicBond CutCyclic)
3768{
3769 int Num;
3770 MoleculeListClass *FragmentList = NULL, **FragmentsList = NULL;
3771 bond *Bond = NULL;
3772
3773 *out << Verbose(0) << "Begin of FragmentBottomUp." << endl;
3774 FragmentsList = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*2, "molecule::FragmentBottomUp: **FragmentsList");
3775 *out << Verbose(0) << "Getting Atomic fragments." << endl;
3776 FragmentsList[0] = GetAtomicFragments(out, AtomCount, configuration->GetIsAngstroem(), 1., CutCyclic);
3777
3778 // create the fragments including each one bond of the original molecule and up to \a BondDegree neighbours
3779 *out << Verbose(0) << "Getting " <<
3780#ifdef ADDHYDROGEN
3781 NoNonBonds
3782#else
3783 BondCount
3784#endif
3785 << " Bond fragments." << endl;
3786 FragmentList = GetEachBondFragmentOfOrder(out, BondOrder, configuration->GetIsAngstroem(), CutCyclic);
3787
3788 // check whether there are equal fragments by ReduceToUniqueOnes
3789 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3790
3791 *out << Verbose(0) << "Begin of Separating " << FragmentList->NumberOfMolecules << " Fragments into Bond pieces." << endl;
3792 // as we have the list, we have to take each fragment split it relative to its originating
3793 // bond into left and right and store these in a new list
3794 *out << Verbose(2) << endl << "Allocating MoleculeListClass" << endl;
3795 FragmentsList[1] = new MoleculeListClass(3*FragmentList->NumberOfMolecules, AtomCount); // for each molecule the whole and its left and right part
3796 *out << Verbose(2) << "Creating TEList." << endl;
3797 // and create TE summation for these bond energy approximations (bond = whole - left - right)
3798 for(int i=0;i<FragmentList->NumberOfMolecules;i++) {
3799 // make up factors to regain total energy of whole molecule
3800 FragmentsList[1]->TEList[3*i] = FragmentList->TEList[i]; // bond energy is 1 * whole
3801 FragmentsList[1]->TEList[3*i+1] = -FragmentList->TEList[i]; // - 1. * left part
3802 FragmentsList[1]->TEList[3*i+2] = -FragmentList->TEList[i]; // - 1. * right part
3803
3804 // shift the pointer on whole molecule to new list in order to avoid that this molecule is deleted on deconstructing FragmentList
3805 FragmentsList[1]->ListOfMolecules[3*i] = FragmentList->ListOfMolecules[i];
3806 *out << Verbose(2) << "shifting whole fragment pointer for fragment " << FragmentList->ListOfMolecules[i] << " -> " << FragmentsList[1]->ListOfMolecules[3*i] << "." << endl;
3807 // create bond matrix and count bonds
3808 *out << Verbose(2) << "Updating bond list for fragment " << i << " [" << FragmentList << "]: " << FragmentList->ListOfMolecules[i] << endl;
3809 // create list of bonds per atom for this fragment (atoms were counted above)
3810 FragmentsList[1]->ListOfMolecules[3*i]->CreateListOfBondsPerAtom(out);
3811
3812 *out << Verbose(0) << "Getting left & right fragments for fragment " << i << "." << endl;
3813 // the bond around which the fragment has been setup is always the first by construction (bond partners are first added atoms)
3814 Bond = FragmentsList[1]->ListOfMolecules[3*i]->first->next; // is the bond between atom 0 and another in the middle
3815 FragmentsList[1]->ListOfMolecules[3*i]->FragmentMoleculeByBond(out, Bond, &(FragmentsList[1]->ListOfMolecules[3*i+1]), &(FragmentsList[1]->ListOfMolecules[3*i+2]), configuration->GetIsAngstroem(), CutCyclic);
3816 if ((FragmentsList[1]->ListOfMolecules[3*i+1] == NULL) || (FragmentsList[1]->ListOfMolecules[3*i+2] == NULL)) {
3817 *out << Verbose(2) << "Left and/or Right Fragment is NULL!" << endl;
3818 } else {
3819 *out << Verbose(3) << "Left Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+1] << ": " << endl;
3820 FragmentsList[1]->ListOfMolecules[3*i+1]->Output(out);
3821 *out << Verbose(3) << "Right Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+2] << ": " << endl;
3822 FragmentsList[1]->ListOfMolecules[3*i+2]->Output(out);
3823 *out << endl;
3824 }
3825 // remove in old list, so that memory for this molecule is not free'd on final delete of this list
3826 FragmentList->ListOfMolecules[i] = NULL;
3827 }
3828 *out << Verbose(0) << "End of Separating Fragments into Bond pieces." << endl;
3829 delete(FragmentList);
3830 FragmentList = NULL;
3831
3832 // combine atomic and bond list
3833 FragmentList = new MoleculeListClass(FragmentsList[0]->NumberOfMolecules + FragmentsList[1]->NumberOfMolecules, AtomCount);
3834 Num = 0;
3835 for(int i=0;i<2;i++) {
3836 for(int j=0;j<FragmentsList[i]->NumberOfMolecules;j++) {
3837 // transfer molecule
3838 FragmentList->ListOfMolecules[Num] = FragmentsList[i]->ListOfMolecules[j];
3839 FragmentsList[i]->ListOfMolecules[j] = NULL;
3840 // transfer TE factor
3841 FragmentList->TEList[Num] = FragmentsList[i]->TEList[j];
3842 Num++;
3843 }
3844 delete(FragmentsList[i]);
3845 FragmentsList[i] = NULL;
3846 }
3847 *out << Verbose(2) << "Memory cleanup and return with filled list." << endl;
3848 Free((void **)&FragmentsList, "molecule::FragmentBottomUp: **FragmentsList");
3849
3850 // reducing list
3851 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3852
3853 // write configs for all fragements (are written in FragmentMolecule)
3854 // free FragmentList
3855 *out << Verbose(0) << "End of FragmentBottomUp." << endl;
3856 return FragmentList;
3857};
3858
3859
3860/** Comparision function for GSL heapsort on distances in two molecules.
3861 * \param *a
3862 * \param *b
3863 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3864 */
3865int CompareDoubles (const void * a, const void * b)
3866{
3867 if (*(double *)a > *(double *)b)
3868 return -1;
3869 else if (*(double *)a < *(double *)b)
3870 return 1;
3871 else
3872 return 0;
3873};
3874
3875/** Determines whether two molecules actually contain the same atoms and coordination.
3876 * \param *out output stream for debugging
3877 * \param *OtherMolecule the molecule to compare this one to
3878 * \param threshold upper limit of difference when comparing the coordination.
3879 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3880 */
3881int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3882{
3883 int flag;
3884 double *Distances = NULL, *OtherDistances = NULL;
3885 vector CenterOfGravity, OtherCenterOfGravity;
3886 size_t *PermMap = NULL, *OtherPermMap = NULL;
3887 int *PermutationMap = NULL;
3888 atom *Walker = NULL;
3889 bool result = true; // status of comparison
3890
3891 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3892 /// first count both their atoms and elements and update lists thereby ...
3893 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3894 CountAtoms(out);
3895 OtherMolecule->CountAtoms(out);
3896 CountElements();
3897 OtherMolecule->CountElements();
3898
3899 /// ... and compare:
3900 /// -# AtomCount
3901 if (result) {
3902 if (AtomCount != OtherMolecule->AtomCount) {
3903 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3904 result = false;
3905 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3906 }
3907 /// -# ElementCount
3908 if (result) {
3909 if (ElementCount != OtherMolecule->ElementCount) {
3910 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3911 result = false;
3912 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3913 }
3914 /// -# ElementsInMolecule
3915 if (result) {
3916 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3917 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3918 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3919 break;
3920 }
3921 if (flag < MAX_ELEMENTS) {
3922 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3923 result = false;
3924 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3925 }
3926 /// then determine and compare center of gravity for each molecule ...
3927 if (result) {
3928 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3929 DetermineCenterOfGravity(CenterOfGravity);
3930 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3931 *out << Verbose(5) << "Center of Gravity: ";
3932 CenterOfGravity.Output(out);
3933 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3934 OtherCenterOfGravity.Output(out);
3935 *out << endl;
3936 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3937 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3938 result = false;
3939 }
3940 }
3941
3942 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3943 if (result) {
3944 *out << Verbose(5) << "Calculating distances" << endl;
3945 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3946 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3947 Walker = start;
3948 while (Walker->next != end) {
3949 Walker = Walker->next;
3950 //for (i=0;i<AtomCount;i++) {
3951 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3952 }
3953 Walker = OtherMolecule->start;
3954 while (Walker->next != OtherMolecule->end) {
3955 Walker = Walker->next;
3956 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3957 }
3958
3959 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3960 *out << Verbose(5) << "Sorting distances" << endl;
3961 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3962 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3963 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
3964 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
3965 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3966 *out << Verbose(5) << "Combining Permutation Maps" << endl;
3967 for(int i=0;i<AtomCount;i++)
3968 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
3969
3970 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
3971 *out << Verbose(4) << "Comparing distances" << endl;
3972 flag = 0;
3973 for (int i=0;i<AtomCount;i++) {
3974 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
3975 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
3976 flag = 1;
3977 }
3978 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
3979 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3980
3981 /// free memory
3982 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
3983 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
3984 if (flag) { // if not equal
3985 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3986 result = false;
3987 }
3988 }
3989 /// return pointer to map if all distances were below \a threshold
3990 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
3991 if (result) {
3992 *out << Verbose(3) << "Result: Equal." << endl;
3993 return PermutationMap;
3994 } else {
3995 *out << Verbose(3) << "Result: Not equal." << endl;
3996 return NULL;
3997 }
3998};
3999
4000/** Returns an index map for two father-son-molecules.
4001 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4002 * \param *out output stream for debugging
4003 * \param *OtherMolecule corresponding molecule with fathers
4004 * \return allocated map of size molecule::AtomCount with map
4005 * \todo make this with a good sort O(n), not O(n^2)
4006 */
4007int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4008{
4009 atom *Walker = NULL, *OtherWalker = NULL;
4010 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4011 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4012 for (int i=0;i<AtomCount;i++)
4013 AtomicMap[i] = -1;
4014 if (OtherMolecule == this) { // same molecule
4015 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
4016 AtomicMap[i] = i;
4017 *out << Verbose(4) << "Map is trivial." << endl;
4018 } else {
4019 *out << Verbose(4) << "Map is ";
4020 Walker = start;
4021 while (Walker->next != end) {
4022 Walker = Walker->next;
4023 if (Walker->father == NULL) {
4024 AtomicMap[Walker->nr] = -2;
4025 } else {
4026 OtherWalker = OtherMolecule->start;
4027 while (OtherWalker->next != OtherMolecule->end) {
4028 OtherWalker = OtherWalker->next;
4029 //for (int i=0;i<AtomCount;i++) { // search atom
4030 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4031 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4032 if (Walker->father == OtherWalker)
4033 AtomicMap[Walker->nr] = OtherWalker->nr;
4034 }
4035 }
4036 *out << AtomicMap[Walker->nr] << "\t";
4037 }
4038 *out << endl;
4039 }
4040 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4041 return AtomicMap;
4042};
4043
Note: See TracBrowser for help on using the repository browser.