source: src/moleculelist.cpp@ f74d08

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since f74d08 was f66195, checked in by Frederik Heber <heber@…>, 16 years ago

forward declarations used to untangle interdependet classes.

  • basically, everywhere in header files we removed '#include' lines were only pointer to the respective classes were used and the include line was moved to the implementation file.
  • as a sidenote, lots of funny errors happened because headers were included via a nesting over three other includes. Now, all should be declared directly as needed, as only very little include lines remain in header files.
  • Property mode set to 100755
File size: 40.0 KB
Line 
1/** \file MoleculeListClass.cpp
2 *
3 * Function implementations for the class MoleculeListClass.
4 *
5 */
6
7#include "atom.hpp"
8#include "bond.hpp"
9#include "boundary.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "helpers.hpp"
13#include "linkedcell.hpp"
14#include "molecule.hpp"
15#include "memoryallocator.hpp"
16#include "periodentafel.hpp"
17
18/*********************************** Functions for class MoleculeListClass *************************/
19
20/** Constructor for MoleculeListClass.
21 */
22MoleculeListClass::MoleculeListClass()
23{
24 // empty lists
25 ListOfMolecules.clear();
26 MaxIndex = 1;
27};
28
29/** Destructor for MoleculeListClass.
30 */
31MoleculeListClass::~MoleculeListClass()
32{
33 cout << Verbose(3) << this << ": Freeing ListOfMolcules." << endl;
34 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
35 cout << Verbose(4) << "ListOfMolecules: Freeing " << *ListRunner << "." << endl;
36 delete (*ListRunner);
37 }
38 cout << Verbose(4) << "Freeing ListOfMolecules." << endl;
39 ListOfMolecules.clear(); // empty list
40};
41
42/** Insert a new molecule into the list and set its number.
43 * \param *mol molecule to add to list.
44 * \return true - add successful
45 */
46void MoleculeListClass::insert(molecule *mol)
47{
48 mol->IndexNr = MaxIndex++;
49 ListOfMolecules.push_back(mol);
50};
51
52/** Compare whether two molecules are equal.
53 * \param *a molecule one
54 * \param *n molecule two
55 * \return lexical value (-1, 0, +1)
56 */
57int MolCompare(const void *a, const void *b)
58{
59 int *aList = NULL, *bList = NULL;
60 int Count, Counter, aCounter, bCounter;
61 int flag;
62 atom *aWalker = NULL;
63 atom *bWalker = NULL;
64
65 // sort each atom list and put the numbers into a list, then go through
66 //cout << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl;
67 if ((**(molecule **) a).AtomCount < (**(molecule **) b).AtomCount) {
68 return -1;
69 } else {
70 if ((**(molecule **) a).AtomCount > (**(molecule **) b).AtomCount)
71 return +1;
72 else {
73 Count = (**(molecule **) a).AtomCount;
74 aList = new int[Count];
75 bList = new int[Count];
76
77 // fill the lists
78 aWalker = (**(molecule **) a).start;
79 bWalker = (**(molecule **) b).start;
80 Counter = 0;
81 aCounter = 0;
82 bCounter = 0;
83 while ((aWalker->next != (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
84 aWalker = aWalker->next;
85 bWalker = bWalker->next;
86 if (aWalker->GetTrueFather() == NULL)
87 aList[Counter] = Count + (aCounter++);
88 else
89 aList[Counter] = aWalker->GetTrueFather()->nr;
90 if (bWalker->GetTrueFather() == NULL)
91 bList[Counter] = Count + (bCounter++);
92 else
93 bList[Counter] = bWalker->GetTrueFather()->nr;
94 Counter++;
95 }
96 // check if AtomCount was for real
97 flag = 0;
98 if ((aWalker->next == (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
99 flag = -1;
100 } else {
101 if ((aWalker->next != (**(molecule **) a).end) && (bWalker->next == (**(molecule **) b).end))
102 flag = 1;
103 }
104 if (flag == 0) {
105 // sort the lists
106 gsl_heapsort(aList, Count, sizeof(int), CompareDoubles);
107 gsl_heapsort(bList, Count, sizeof(int), CompareDoubles);
108 // compare the lists
109
110 flag = 0;
111 for (int i = 0; i < Count; i++) {
112 if (aList[i] < bList[i]) {
113 flag = -1;
114 } else {
115 if (aList[i] > bList[i])
116 flag = 1;
117 }
118 if (flag != 0)
119 break;
120 }
121 }
122 delete[] (aList);
123 delete[] (bList);
124 return flag;
125 }
126 }
127 return -1;
128};
129
130/** Output of a list of all molecules.
131 * \param *out output stream
132 */
133void MoleculeListClass::Enumerate(ofstream *out)
134{
135 element* Elemental = NULL;
136 atom *Walker = NULL;
137 int Counts[MAX_ELEMENTS];
138 double size=0;
139 Vector Origin;
140
141 // header
142 *out << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl;
143 cout << Verbose(0) << "-----------------------------------------------" << endl;
144 if (ListOfMolecules.size() == 0)
145 *out << "\tNone" << endl;
146 else {
147 Origin.Zero();
148 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
149 // reset element counts
150 for (int j = 0; j<MAX_ELEMENTS;j++)
151 Counts[j] = 0;
152 // count atoms per element and determine size of bounding sphere
153 size=0.;
154 Walker = (*ListRunner)->start;
155 while (Walker->next != (*ListRunner)->end) {
156 Walker = Walker->next;
157 Counts[Walker->type->Z]++;
158 if (Walker->x.DistanceSquared(&Origin) > size)
159 size = Walker->x.DistanceSquared(&Origin);
160 }
161 // output Index, Name, number of atoms, chemical formula
162 *out << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->AtomCount << "\t";
163 Elemental = (*ListRunner)->elemente->end;
164 while(Elemental->previous != (*ListRunner)->elemente->start) {
165 Elemental = Elemental->previous;
166 if (Counts[Elemental->Z] != 0)
167 *out << Elemental->symbol << Counts[Elemental->Z];
168 }
169 // Center and size
170 *out << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl;
171 }
172 }
173};
174
175/** Returns the molecule with the given index \a index.
176 * \param index index of the desired molecule
177 * \return pointer to molecule structure, NULL if not found
178 */
179molecule * MoleculeListClass::ReturnIndex(int index)
180{
181 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
182 if ((*ListRunner)->IndexNr == index)
183 return (*ListRunner);
184 return NULL;
185};
186
187/** Simple merge of two molecules into one.
188 * \param *mol destination molecule
189 * \param *srcmol source molecule
190 * \return true - merge successful, false - merge failed (probably due to non-existant indices
191 */
192bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol)
193{
194 if (srcmol == NULL)
195 return false;
196
197 // put all molecules of src into mol
198 atom *Walker = srcmol->start;
199 atom *NextAtom = Walker->next;
200 while (NextAtom != srcmol->end) {
201 Walker = NextAtom;
202 NextAtom = Walker->next;
203 srcmol->UnlinkAtom(Walker);
204 mol->AddAtom(Walker);
205 }
206
207 // remove src
208 ListOfMolecules.remove(srcmol);
209 delete(srcmol);
210 return true;
211};
212
213/** Simple add of one molecules into another.
214 * \param *mol destination molecule
215 * \param *srcmol source molecule
216 * \return true - merge successful, false - merge failed (probably due to non-existant indices
217 */
218bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol)
219{
220 if (srcmol == NULL)
221 return false;
222
223 // put all molecules of src into mol
224 atom *Walker = srcmol->start;
225 atom *NextAtom = Walker->next;
226 while (NextAtom != srcmol->end) {
227 Walker = NextAtom;
228 NextAtom = Walker->next;
229 Walker = mol->AddCopyAtom(Walker);
230 Walker->father = Walker;
231 }
232
233 return true;
234};
235
236/** Simple merge of a given set of molecules into one.
237 * \param *mol destination molecule
238 * \param *src index of set of source molecule
239 * \param N number of source molecules
240 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
241 */
242bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N)
243{
244 bool status = true;
245 // check presence of all source molecules
246 for (int i=0;i<N;i++) {
247 molecule *srcmol = ReturnIndex(src[i]);
248 status = status && SimpleMerge(mol, srcmol);
249 }
250 return status;
251};
252
253/** Simple add of a given set of molecules into one.
254 * \param *mol destination molecule
255 * \param *src index of set of source molecule
256 * \param N number of source molecules
257 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
258 */
259bool MoleculeListClass::SimpleMultiAdd(molecule *mol, int *src, int N)
260{
261 bool status = true;
262 // check presence of all source molecules
263 for (int i=0;i<N;i++) {
264 molecule *srcmol = ReturnIndex(src[i]);
265 status = status && SimpleAdd(mol, srcmol);
266 }
267 return status;
268};
269
270/** Scatter merge of a given set of molecules into one.
271 * Scatter merge distributes the molecules in such a manner that they don't overlap.
272 * \param *mol destination molecule
273 * \param *src index of set of source molecule
274 * \param N number of source molecules
275 * \return true - merge successful, false - merge failed (probably due to non-existant indices
276 * \TODO find scatter center for each src molecule
277 */
278bool MoleculeListClass::ScatterMerge(molecule *mol, int *src, int N)
279{
280 // check presence of all source molecules
281 for (int i=0;i<N;i++) {
282 // get pointer to src molecule
283 molecule *srcmol = ReturnIndex(src[i]);
284 if (srcmol == NULL)
285 return false;
286 }
287 // adapt each Center
288 for (int i=0;i<N;i++) {
289 // get pointer to src molecule
290 molecule *srcmol = ReturnIndex(src[i]);
291 //srcmol->Center.Zero();
292 srcmol->Translate(&srcmol->Center);
293 }
294 // perform a simple multi merge
295 SimpleMultiMerge(mol, src, N);
296 return true;
297};
298
299/** Embedding merge of a given set of molecules into one.
300 * Embedding merge inserts one molecule into the other.
301 * \param *mol destination molecule (fixed one)
302 * \param *srcmol source molecule (variable one, where atoms are taken from)
303 * \return true - merge successful, false - merge failed (probably due to non-existant indices)
304 * \TODO linked cell dimensions for boundary points has to be as big as inner diameter!
305 */
306bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol)
307{
308 if ((srcmol == NULL) || (mol == NULL)) {
309 cout << Verbose(1) << "ERROR: Either fixed or variable molecule is given as NULL." << endl;
310 return false;
311 }
312
313 // calculate envelope for *mol
314 LinkedCell *LCList = new LinkedCell(mol, 8.);
315 FindNonConvexBorder((ofstream *)&cout, mol, LCList, 4., NULL);
316 if (mol->TesselStruct == NULL) {
317 cout << Verbose(1) << "ERROR: Could not tesselate the fixed molecule." << endl;
318 return false;
319 }
320 delete(LCList);
321 LCList = new LinkedCell(mol->TesselStruct, 8.); // re-create with boundary points only!
322
323 // prepare index list for bonds
324 srcmol->CountAtoms((ofstream *)&cout);
325 atom ** CopyAtoms = new atom*[srcmol->AtomCount];
326 for(int i=0;i<srcmol->AtomCount;i++)
327 CopyAtoms[i] = NULL;
328
329 // for each of the source atoms check whether we are in- or outside and add copy atom
330 atom *Walker = srcmol->start;
331 int nr=0;
332 while (Walker->next != srcmol->end) {
333 Walker = Walker->next;
334 cout << Verbose(2) << "INFO: Current Walker is " << *Walker << "." << endl;
335 if (!mol->TesselStruct->IsInnerPoint((ofstream *)&cout, Walker->x, LCList)) {
336 CopyAtoms[Walker->nr] = new atom(Walker);
337 mol->AddAtom(CopyAtoms[Walker->nr]);
338 nr++;
339 } else {
340 // do nothing
341 }
342 }
343 cout << Verbose(1) << nr << " of " << srcmol->AtomCount << " atoms have been merged.";
344
345 // go through all bonds and add as well
346 bond *Binder = srcmol->first;
347 while(Binder->next != srcmol->last) {
348 Binder = Binder->next;
349 cout << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
350 mol->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
351 }
352 delete(LCList);
353 return true;
354};
355
356/** Simple output of the pointers in ListOfMolecules.
357 * \param *out output stream
358 */
359void MoleculeListClass::Output(ofstream *out)
360{
361 *out << Verbose(1) << "MoleculeList: ";
362 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
363 *out << *ListRunner << "\t";
364 *out << endl;
365};
366
367/** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones.
368 * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not
369 * bonded to the same atom, then we add for this pair a correction term constructed from a Morse
370 * potential function fit to QM calculations with respecting to the interatomic hydrogen distance.
371 * \param *out output stream for debugging
372 * \param *path path to file
373 */
374bool MoleculeListClass::AddHydrogenCorrection(ofstream *out, char *path)
375{
376 atom *Walker = NULL;
377 atom *Runner = NULL;
378 double ***FitConstant = NULL, **correction = NULL;
379 int a, b;
380 ofstream output;
381 ifstream input;
382 string line;
383 stringstream zeile;
384 double distance;
385 char ParsedLine[1023];
386 double tmp;
387 char *FragmentNumber = NULL;
388
389 cout << Verbose(1) << "Saving hydrogen saturation correction ... ";
390 // 0. parse in fit constant files that should have the same dimension as the final energy files
391 // 0a. find dimension of matrices with constants
392 line = path;
393 line.append("/");
394 line += FRAGMENTPREFIX;
395 line += "1";
396 line += FITCONSTANTSUFFIX;
397 input.open(line.c_str());
398 if (input == NULL) {
399 cerr << endl << "Unable to open " << line << ", is the directory correct?"
400 << endl;
401 return false;
402 }
403 a = 0;
404 b = -1; // we overcount by one
405 while (!input.eof()) {
406 input.getline(ParsedLine, 1023);
407 zeile.str(ParsedLine);
408 int i = 0;
409 while (!zeile.eof()) {
410 zeile >> distance;
411 i++;
412 }
413 if (i > a)
414 a = i;
415 b++;
416 }
417 cout << "I recognized " << a << " columns and " << b << " rows, ";
418 input.close();
419
420 // 0b. allocate memory for constants
421 FitConstant = Malloc<double**>(3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
422 for (int k = 0; k < 3; k++) {
423 FitConstant[k] = Malloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
424 for (int i = a; i--;) {
425 FitConstant[k][i] = Malloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
426 }
427 }
428 // 0c. parse in constants
429 for (int i = 0; i < 3; i++) {
430 line = path;
431 line.append("/");
432 line += FRAGMENTPREFIX;
433 sprintf(ParsedLine, "%d", i + 1);
434 line += ParsedLine;
435 line += FITCONSTANTSUFFIX;
436 input.open(line.c_str());
437 if (input == NULL) {
438 cerr << endl << "Unable to open " << line << ", is the directory correct?" << endl;
439 return false;
440 }
441 int k = 0, l;
442 while ((!input.eof()) && (k < b)) {
443 input.getline(ParsedLine, 1023);
444 //cout << "Current Line: " << ParsedLine << endl;
445 zeile.str(ParsedLine);
446 zeile.clear();
447 l = 0;
448 while ((!zeile.eof()) && (l < a)) {
449 zeile >> FitConstant[i][l][k];
450 //cout << FitConstant[i][l][k] << "\t";
451 l++;
452 }
453 //cout << endl;
454 k++;
455 }
456 input.close();
457 }
458 for (int k = 0; k < 3; k++) {
459 cout << "Constants " << k << ":" << endl;
460 for (int j = 0; j < b; j++) {
461 for (int i = 0; i < a; i++) {
462 cout << FitConstant[k][i][j] << "\t";
463 }
464 cout << endl;
465 }
466 cout << endl;
467 }
468
469 // 0d. allocate final correction matrix
470 correction = Malloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **correction");
471 for (int i = a; i--;)
472 correction[i] = Malloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *correction[]");
473
474 // 1a. go through every molecule in the list
475 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
476 // 1b. zero final correction matrix
477 for (int k = a; k--;)
478 for (int j = b; j--;)
479 correction[k][j] = 0.;
480 // 2. take every hydrogen that is a saturated one
481 Walker = (*ListRunner)->start;
482 while (Walker->next != (*ListRunner)->end) {
483 Walker = Walker->next;
484 //cout << Verbose(1) << "Walker: " << *Walker << " with first bond " << *(*Runner)->ListOfBondsPerAtom[Walker->nr][0] << "." << endl;
485 if ((Walker->type->Z == 1) && ((Walker->father == NULL)
486 || (Walker->father->type->Z != 1))) { // if it's a hydrogen
487 Runner = (*ListRunner)->start;
488 while (Runner->next != (*ListRunner)->end) {
489 Runner = Runner->next;
490 //cout << Verbose(2) << "Runner: " << *Runner << " with first bond " << *(*Runner)->ListOfBondsPerAtom[Runner->nr][0] << "." << endl;
491 // 3. take every other hydrogen that is the not the first and not bound to same bonding partner
492 if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && ((*ListRunner)->ListOfBondsPerAtom[Runner->nr][0]->GetOtherAtom(Runner) != (*ListRunner)->ListOfBondsPerAtom[Walker->nr][0]->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!)
493 // 4. evaluate the morse potential for each matrix component and add up
494 distance = Runner->x.Distance(&Walker->x);
495 //cout << "Fragment " << (*ListRunner)->name << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl;
496 for (int k = 0; k < a; k++) {
497 for (int j = 0; j < b; j++) {
498 switch (k) {
499 case 1:
500 case 7:
501 case 11:
502 tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2);
503 break;
504 default:
505 tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j];
506 };
507 correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction)
508 //cout << tmp << "\t";
509 }
510 //cout << endl;
511 }
512 //cout << endl;
513 }
514 }
515 }
516 }
517 // 5. write final matrix to file
518 line = path;
519 line.append("/");
520 line += FRAGMENTPREFIX;
521 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr);
522 line += FragmentNumber;
523 delete (FragmentNumber);
524 line += HCORRECTIONSUFFIX;
525 output.open(line.c_str());
526 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
527 for (int j = 0; j < b; j++) {
528 for (int i = 0; i < a; i++)
529 output << correction[i][j] << "\t";
530 output << endl;
531 }
532 output.close();
533 }
534 line = path;
535 line.append("/");
536 line += HCORRECTIONSUFFIX;
537 output.open(line.c_str());
538 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
539 for (int j = 0; j < b; j++) {
540 for (int i = 0; i < a; i++)
541 output << 0 << "\t";
542 output << endl;
543 }
544 output.close();
545 // 6. free memory of parsed matrices
546 FitConstant = Malloc<double**>(a, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
547 for (int k = 0; k < 3; k++) {
548 FitConstant[k] = Malloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
549 for (int i = a; i--;) {
550 FitConstant[k][i] = Malloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
551 }
552 }
553 cout << "done." << endl;
554 return true;
555};
556
557/** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config.
558 * \param *out output stream for debugging
559 * \param *path path to file
560 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
561 * \return true - file written successfully, false - writing failed
562 */
563bool MoleculeListClass::StoreForcesFile(ofstream *out, char *path,
564 int *SortIndex)
565{
566 bool status = true;
567 ofstream ForcesFile;
568 stringstream line;
569 atom *Walker = NULL;
570 element *runner = NULL;
571
572 // open file for the force factors
573 *out << Verbose(1) << "Saving force factors ... ";
574 line << path << "/" << FRAGMENTPREFIX << FORCESFILE;
575 ForcesFile.open(line.str().c_str(), ios::out);
576 if (ForcesFile != NULL) {
577 //cout << Verbose(1) << "Final AtomicForcesList: ";
578 //output << prefix << "Forces" << endl;
579 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
580 runner = (*ListRunner)->elemente->start;
581 while (runner->next != (*ListRunner)->elemente->end) { // go through every element
582 runner = runner->next;
583 if ((*ListRunner)->ElementsInMolecule[runner->Z]) { // if this element got atoms
584 Walker = (*ListRunner)->start;
585 while (Walker->next != (*ListRunner)->end) { // go through every atom of this element
586 Walker = Walker->next;
587 if (Walker->type->Z == runner->Z) {
588 if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea
589 //cout << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it
590 ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t";
591 } else
592 // otherwise a -1 to indicate an added saturation hydrogen
593 ForcesFile << "-1\t";
594 }
595 }
596 }
597 }
598 ForcesFile << endl;
599 }
600 ForcesFile.close();
601 *out << Verbose(1) << "done." << endl;
602 } else {
603 status = false;
604 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
605 }
606 ForcesFile.close();
607
608 return status;
609};
610
611/** Writes a config file for each molecule in the given \a **FragmentList.
612 * \param *out output stream for debugging
613 * \param *configuration standard configuration to attach atoms in fragment molecule to.
614 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
615 * \param DoPeriodic true - call ScanForPeriodicCorrection, false - don't
616 * \param DoCentering true - call molecule::CenterEdge(), false - don't
617 * \return true - success (each file was written), false - something went wrong.
618 */
619bool MoleculeListClass::OutputConfigForListOfFragments(ofstream *out, config *configuration, int *SortIndex)
620{
621 ofstream outputFragment;
622 char FragmentName[MAXSTRINGSIZE];
623 char PathBackup[MAXSTRINGSIZE];
624 bool result = true;
625 bool intermediateResult = true;
626 atom *Walker = NULL;
627 Vector BoxDimension;
628 char *FragmentNumber = NULL;
629 char *path = NULL;
630 int FragmentCounter = 0;
631 ofstream output;
632
633 // store the fragments as config and as xyz
634 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
635 // save default path as it is changed for each fragment
636 path = configuration->GetDefaultPath();
637 if (path != NULL)
638 strcpy(PathBackup, path);
639 else
640 cerr << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl;
641
642 // correct periodic
643 (*ListRunner)->ScanForPeriodicCorrection(out);
644
645 // output xyz file
646 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++);
647 sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
648 outputFragment.open(FragmentName, ios::out);
649 *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ...";
650 if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment)))
651 *out << " done." << endl;
652 else
653 *out << " failed." << endl;
654 result = result && intermediateResult;
655 outputFragment.close();
656 outputFragment.clear();
657
658 // list atoms in fragment for debugging
659 *out << Verbose(2) << "Contained atoms: ";
660 Walker = (*ListRunner)->start;
661 while (Walker->next != (*ListRunner)->end) {
662 Walker = Walker->next;
663 *out << Walker->Name << " ";
664 }
665 *out << endl;
666
667 // center on edge
668 (*ListRunner)->CenterEdge(out, &BoxDimension);
669 (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary
670 int j = -1;
671 for (int k = 0; k < NDIM; k++) {
672 j += k + 1;
673 BoxDimension.x[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem);
674 (*ListRunner)->cell_size[j] += BoxDimension.x[k] * 2.;
675 }
676 (*ListRunner)->Translate(&BoxDimension);
677
678 // also calculate necessary orbitals
679 (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment
680 (*ListRunner)->CalculateOrbitals(*configuration);
681
682 // change path in config
683 //strcpy(PathBackup, configuration->configpath);
684 sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber);
685 configuration->SetDefaultPath(FragmentName);
686
687 // and save as config
688 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
689 *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ...";
690 if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner))))
691 *out << " done." << endl;
692 else
693 *out << " failed." << endl;
694 result = result && intermediateResult;
695
696 // restore old config
697 configuration->SetDefaultPath(PathBackup);
698
699 // and save as mpqc input file
700 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
701 *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ...";
702 if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner))))
703 *out << " done." << endl;
704 else
705 *out << " failed." << endl;
706
707 result = result && intermediateResult;
708 //outputFragment.close();
709 //outputFragment.clear();
710 delete (FragmentNumber);
711 //Free(&FragmentNumber);
712 }
713 cout << " done." << endl;
714
715 // printing final number
716 *out << "Final number of fragments: " << FragmentCounter << "." << endl;
717
718 return result;
719};
720
721/** Counts the number of molecules with the molecule::ActiveFlag set.
722 * \return number of molecules with ActiveFlag set to true.
723 */
724int MoleculeListClass::NumberOfActiveMolecules()
725{
726 int count = 0;
727 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
728 count += ((*ListRunner)->ActiveFlag ? 1 : 0);
729 return count;
730};
731
732
733/******************************************* Class MoleculeLeafClass ************************************************/
734
735/** Constructor for MoleculeLeafClass root leaf.
736 * \param *Up Leaf on upper level
737 * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
738 */
739//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
740MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL)
741{
742 // if (Up != NULL)
743 // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
744 // Up->DownLeaf = this;
745 // UpLeaf = Up;
746 // DownLeaf = NULL;
747 Leaf = NULL;
748 previous = PreviousLeaf;
749 if (previous != NULL) {
750 MoleculeLeafClass *Walker = previous->next;
751 previous->next = this;
752 next = Walker;
753 } else {
754 next = NULL;
755 }
756};
757
758/** Destructor for MoleculeLeafClass.
759 */
760MoleculeLeafClass::~MoleculeLeafClass()
761{
762 // if (DownLeaf != NULL) {// drop leaves further down
763 // MoleculeLeafClass *Walker = DownLeaf;
764 // MoleculeLeafClass *Next;
765 // do {
766 // Next = Walker->NextLeaf;
767 // delete(Walker);
768 // Walker = Next;
769 // } while (Walker != NULL);
770 // // Last Walker sets DownLeaf automatically to NULL
771 // }
772 // remove the leaf itself
773 if (Leaf != NULL) {
774 delete (Leaf);
775 Leaf = NULL;
776 }
777 // remove this Leaf from level list
778 if (previous != NULL)
779 previous->next = next;
780 // } else { // we are first in list (connects to UpLeaf->DownLeaf)
781 // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
782 // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
783 // if (UpLeaf != NULL)
784 // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
785 // }
786 // UpLeaf = NULL;
787 if (next != NULL) // are we last in list
788 next->previous = previous;
789 next = NULL;
790 previous = NULL;
791};
792
793/** Adds \a molecule leaf to the tree.
794 * \param *ptr ptr to molecule to be added
795 * \param *Previous previous MoleculeLeafClass referencing level and which on the level
796 * \return true - success, false - something went wrong
797 */
798bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
799{
800 return false;
801};
802
803/** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule.
804 * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL.
805 * \param *out output stream for debugging
806 * \param *reference reference molecule with the bond structure to be copied
807 * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms
808 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled
809 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
810 * \return true - success, false - faoilure
811 */
812bool MoleculeLeafClass::FillBondStructureFromReference(ofstream *out, molecule *reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList)
813{
814 atom *Walker = NULL, *OtherWalker = NULL;
815 bond *Binder = NULL;
816 bool status = true;
817 int AtomNo;
818
819 *out << Verbose(1) << "Begin of FillBondStructureFromReference." << endl;
820 // fill ListOfLocalAtoms if NULL was given
821 if (!FillListOfLocalAtoms(out, ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
822 *out << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
823 return false;
824 }
825
826 if (status) {
827 *out << Verbose(1) << "Creating adjacency list for subgraph " << this
828 << "." << endl;
829 Walker = Leaf->start;
830 while (Walker->next != Leaf->end) {
831 Walker = Walker->next;
832 AtomNo = Walker->GetTrueFather()->nr; // global id of the current walker
833 for (int i = 0; i < reference->NumberOfBondsPerAtom[AtomNo]; i++) { // go through father's bonds and copy them all
834 Binder = reference->ListOfBondsPerAtom[AtomNo][i];
835 OtherWalker = ListOfLocalAtoms[FragmentCounter][Binder->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker
836 if (OtherWalker != NULL) {
837 if (OtherWalker->nr > Walker->nr)
838 Leaf->AddBond(Walker, OtherWalker, Binder->BondDegree);
839 } else {
840 *out << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << Binder->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl;
841 status = false;
842 }
843 }
844 }
845 Leaf->CreateListOfBondsPerAtom(out);
846 FragmentCounter++;
847 if (next != NULL)
848 status = next->FillBondStructureFromReference(out, reference, FragmentCounter, ListOfLocalAtoms);
849 FragmentCounter--;
850 }
851
852 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
853 // free the index lookup list
854 Free(&ListOfLocalAtoms[FragmentCounter]);
855 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
856 Free(&ListOfLocalAtoms);
857 }
858 FragmentCounter--;
859 *out << Verbose(1) << "End of FillBondStructureFromReference." << endl;
860 return status;
861};
862
863/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
864 * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
865 * \param *out output stream for debugging
866 * \param *&RootStack stack to be filled
867 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site
868 * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
869 * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
870 */
871bool MoleculeLeafClass::FillRootStackForSubgraphs(ofstream *out,
872 KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter)
873{
874 atom *Walker = NULL, *Father = NULL;
875
876 if (RootStack != NULL) {
877 // find first root candidates
878 if (&(RootStack[FragmentCounter]) != NULL) {
879 RootStack[FragmentCounter].clear();
880 Walker = Leaf->start;
881 while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms
882 Walker = Walker->next;
883 Father = Walker->GetTrueFather();
884 if (AtomMask[Father->nr]) // apply mask
885#ifdef ADDHYDROGEN
886 if (Walker->type->Z != 1) // skip hydrogen
887#endif
888 RootStack[FragmentCounter].push_front(Walker->nr);
889 }
890 if (next != NULL)
891 next->FillRootStackForSubgraphs(out, RootStack, AtomMask, ++FragmentCounter);
892 } else {
893 *out << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl;
894 return false;
895 }
896 FragmentCounter--;
897 return true;
898 } else {
899 *out << Verbose(1) << "Rootstack is NULL." << endl;
900 return false;
901 }
902};
903
904/** Fills a lookup list of father's Atom::nr -> atom for each subgraph.
905 * \param *out output stream fro debugging
906 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
907 * \param FragmentCounter counts the fragments as we move along the list
908 * \param GlobalAtomCount number of atoms in the complete molecule
909 * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
910 * \return true - succes, false - failure
911 */
912bool MoleculeLeafClass::FillListOfLocalAtoms(ofstream *out, atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList)
913{
914 bool status = true;
915
916 int Counter = Count();
917 if (ListOfLocalAtoms == NULL) { // allocated initial pointer
918 // allocate and set each field to NULL
919 ListOfLocalAtoms = Malloc<atom**>(Counter, "MoleculeLeafClass::FillBondStructureFromReference - ***ListOfLocalAtoms");
920 if (ListOfLocalAtoms != NULL) {
921 for (int i = Counter; i--;)
922 ListOfLocalAtoms[i] = NULL;
923 FreeList = FreeList && true;
924 } else
925 status = false;
926 }
927
928 if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph
929 status = status && CreateFatherLookupTable(out, Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount);
930 FreeList = FreeList && true;
931 }
932
933 return status;
934};
935
936/** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList.
937 * \param *out output stream fro debugging
938 * \param *reference reference molecule with the bond structure to be copied
939 * \param *KeySetList list with all keysets
940 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
941 * \param **&FragmentList list to be allocated and returned
942 * \param &FragmentCounter counts the fragments as we move along the list
943 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
944 * \retuen true - success, false - failure
945 */
946bool MoleculeLeafClass::AssignKeySetsToFragment(ofstream *out,
947 molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms,
948 Graph **&FragmentList, int &FragmentCounter, bool FreeList)
949{
950 bool status = true;
951 int KeySetCounter = 0;
952
953 *out << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl;
954 // fill ListOfLocalAtoms if NULL was given
955 if (!FillListOfLocalAtoms(out, ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
956 *out << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
957 return false;
958 }
959
960 // allocate fragment list
961 if (FragmentList == NULL) {
962 KeySetCounter = Count();
963 FragmentList = Malloc<Graph*>(KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList");
964 for (int i = KeySetCounter; i--;)
965 FragmentList[i] = NULL;
966 KeySetCounter = 0;
967 }
968
969 if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all
970 // assign scanned keysets
971 if (FragmentList[FragmentCounter] == NULL)
972 FragmentList[FragmentCounter] = new Graph;
973 KeySet *TempSet = new KeySet;
974 for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
975 if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
976 // translate keyset to local numbers
977 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
978 TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr);
979 // insert into FragmentList
980 FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair<int, double> (KeySetCounter++, (*runner).second.second)));
981 }
982 TempSet->clear();
983 }
984 delete (TempSet);
985 if (KeySetCounter == 0) {// if there are no keysets, delete the list
986 *out << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl;
987 delete (FragmentList[FragmentCounter]);
988 } else
989 *out << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl;
990 FragmentCounter++;
991 if (next != NULL)
992 next->AssignKeySetsToFragment(out, reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
993 FragmentCounter--;
994 } else
995 *out << Verbose(1) << "KeySetList is NULL or empty." << endl;
996
997 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
998 // free the index lookup list
999 Free(&ListOfLocalAtoms[FragmentCounter]);
1000 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1001 Free(&ListOfLocalAtoms);
1002 }
1003 *out << Verbose(1) << "End of AssignKeySetsToFragment." << endl;
1004 return status;
1005};
1006
1007/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
1008 * \param *out output stream for debugging
1009 * \param **FragmentList Graph with local numbers per fragment
1010 * \param &FragmentCounter counts the fragments as we move along the list
1011 * \param &TotalNumberOfKeySets global key set counter
1012 * \param &TotalGraph Graph to be filled with global numbers
1013 */
1014void MoleculeLeafClass::TranslateIndicesToGlobalIDs(ofstream *out,
1015 Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets,
1016 Graph &TotalGraph)
1017{
1018 *out << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl;
1019 KeySet *TempSet = new KeySet;
1020 if (FragmentList[FragmentCounter] != NULL) {
1021 for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
1022 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1023 TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
1024 TotalGraph.insert(GraphPair(*TempSet, pair<int, double> (TotalNumberOfKeySets++, (*runner).second.second)));
1025 TempSet->clear();
1026 }
1027 delete (TempSet);
1028 } else {
1029 *out << Verbose(1) << "FragmentList is NULL." << endl;
1030 }
1031 if (next != NULL)
1032 next->TranslateIndicesToGlobalIDs(out, FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
1033 FragmentCounter--;
1034 *out << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl;
1035};
1036
1037/** Simply counts the number of items in the list, from given MoleculeLeafClass.
1038 * \return number of items
1039 */
1040int MoleculeLeafClass::Count() const
1041{
1042 if (next != NULL)
1043 return next->Count() + 1;
1044 else
1045 return 1;
1046};
1047
Note: See TracBrowser for help on using the repository browser.