source: src/moleculelist.cpp@ c0f6c6

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since c0f6c6 was 776b64, checked in by Frederik Heber <heber@…>, 16 years ago

Huge refactoring to make const what is const (ticket #38), continued.

  • too many changes because of too many cross-references to be able to list them up here.
  • NOTE that "make check" runs fine and did catch several error.
  • note that we had to use const_iterator several times when the map, ... was declared const.
  • at times we changed an allocated LinkedCell LCList(...) into

const LinkedCell *LCList;
LCList = new LinkedCell(...);

  • also mutable (see ticket #5) was used, e.g. for molecule::InternalPointer (PointCloud changes are allowed, because they are just accounting).

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100755
File size: 40.0 KB
Line 
1/** \file MoleculeListClass.cpp
2 *
3 * Function implementations for the class MoleculeListClass.
4 *
5 */
6
7#include "atom.hpp"
8#include "bond.hpp"
9#include "boundary.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "helpers.hpp"
13#include "linkedcell.hpp"
14#include "molecule.hpp"
15#include "memoryallocator.hpp"
16#include "periodentafel.hpp"
17
18/*********************************** Functions for class MoleculeListClass *************************/
19
20/** Constructor for MoleculeListClass.
21 */
22MoleculeListClass::MoleculeListClass()
23{
24 // empty lists
25 ListOfMolecules.clear();
26 MaxIndex = 1;
27};
28
29/** Destructor for MoleculeListClass.
30 */
31MoleculeListClass::~MoleculeListClass()
32{
33 cout << Verbose(3) << this << ": Freeing ListOfMolcules." << endl;
34 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
35 cout << Verbose(4) << "ListOfMolecules: Freeing " << *ListRunner << "." << endl;
36 delete (*ListRunner);
37 }
38 cout << Verbose(4) << "Freeing ListOfMolecules." << endl;
39 ListOfMolecules.clear(); // empty list
40};
41
42/** Insert a new molecule into the list and set its number.
43 * \param *mol molecule to add to list.
44 * \return true - add successful
45 */
46void MoleculeListClass::insert(molecule *mol)
47{
48 mol->IndexNr = MaxIndex++;
49 ListOfMolecules.push_back(mol);
50};
51
52/** Compare whether two molecules are equal.
53 * \param *a molecule one
54 * \param *n molecule two
55 * \return lexical value (-1, 0, +1)
56 */
57int MolCompare(const void *a, const void *b)
58{
59 int *aList = NULL, *bList = NULL;
60 int Count, Counter, aCounter, bCounter;
61 int flag;
62 atom *aWalker = NULL;
63 atom *bWalker = NULL;
64
65 // sort each atom list and put the numbers into a list, then go through
66 //cout << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl;
67 if ((**(molecule **) a).AtomCount < (**(molecule **) b).AtomCount) {
68 return -1;
69 } else {
70 if ((**(molecule **) a).AtomCount > (**(molecule **) b).AtomCount)
71 return +1;
72 else {
73 Count = (**(molecule **) a).AtomCount;
74 aList = new int[Count];
75 bList = new int[Count];
76
77 // fill the lists
78 aWalker = (**(molecule **) a).start;
79 bWalker = (**(molecule **) b).start;
80 Counter = 0;
81 aCounter = 0;
82 bCounter = 0;
83 while ((aWalker->next != (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
84 aWalker = aWalker->next;
85 bWalker = bWalker->next;
86 if (aWalker->GetTrueFather() == NULL)
87 aList[Counter] = Count + (aCounter++);
88 else
89 aList[Counter] = aWalker->GetTrueFather()->nr;
90 if (bWalker->GetTrueFather() == NULL)
91 bList[Counter] = Count + (bCounter++);
92 else
93 bList[Counter] = bWalker->GetTrueFather()->nr;
94 Counter++;
95 }
96 // check if AtomCount was for real
97 flag = 0;
98 if ((aWalker->next == (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
99 flag = -1;
100 } else {
101 if ((aWalker->next != (**(molecule **) a).end) && (bWalker->next == (**(molecule **) b).end))
102 flag = 1;
103 }
104 if (flag == 0) {
105 // sort the lists
106 gsl_heapsort(aList, Count, sizeof(int), CompareDoubles);
107 gsl_heapsort(bList, Count, sizeof(int), CompareDoubles);
108 // compare the lists
109
110 flag = 0;
111 for (int i = 0; i < Count; i++) {
112 if (aList[i] < bList[i]) {
113 flag = -1;
114 } else {
115 if (aList[i] > bList[i])
116 flag = 1;
117 }
118 if (flag != 0)
119 break;
120 }
121 }
122 delete[] (aList);
123 delete[] (bList);
124 return flag;
125 }
126 }
127 return -1;
128};
129
130/** Output of a list of all molecules.
131 * \param *out output stream
132 */
133void MoleculeListClass::Enumerate(ofstream *out)
134{
135 element* Elemental = NULL;
136 atom *Walker = NULL;
137 int Counts[MAX_ELEMENTS];
138 double size=0;
139 Vector Origin;
140
141 // header
142 *out << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl;
143 cout << Verbose(0) << "-----------------------------------------------" << endl;
144 if (ListOfMolecules.size() == 0)
145 *out << "\tNone" << endl;
146 else {
147 Origin.Zero();
148 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
149 // reset element counts
150 for (int j = 0; j<MAX_ELEMENTS;j++)
151 Counts[j] = 0;
152 // count atoms per element and determine size of bounding sphere
153 size=0.;
154 Walker = (*ListRunner)->start;
155 while (Walker->next != (*ListRunner)->end) {
156 Walker = Walker->next;
157 Counts[Walker->type->Z]++;
158 if (Walker->x.DistanceSquared(&Origin) > size)
159 size = Walker->x.DistanceSquared(&Origin);
160 }
161 // output Index, Name, number of atoms, chemical formula
162 *out << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->AtomCount << "\t";
163 Elemental = (*ListRunner)->elemente->end;
164 while(Elemental->previous != (*ListRunner)->elemente->start) {
165 Elemental = Elemental->previous;
166 if (Counts[Elemental->Z] != 0)
167 *out << Elemental->symbol << Counts[Elemental->Z];
168 }
169 // Center and size
170 *out << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl;
171 }
172 }
173};
174
175/** Returns the molecule with the given index \a index.
176 * \param index index of the desired molecule
177 * \return pointer to molecule structure, NULL if not found
178 */
179molecule * MoleculeListClass::ReturnIndex(int index)
180{
181 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
182 if ((*ListRunner)->IndexNr == index)
183 return (*ListRunner);
184 return NULL;
185};
186
187/** Simple merge of two molecules into one.
188 * \param *mol destination molecule
189 * \param *srcmol source molecule
190 * \return true - merge successful, false - merge failed (probably due to non-existant indices
191 */
192bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol)
193{
194 if (srcmol == NULL)
195 return false;
196
197 // put all molecules of src into mol
198 atom *Walker = srcmol->start;
199 atom *NextAtom = Walker->next;
200 while (NextAtom != srcmol->end) {
201 Walker = NextAtom;
202 NextAtom = Walker->next;
203 srcmol->UnlinkAtom(Walker);
204 mol->AddAtom(Walker);
205 }
206
207 // remove src
208 ListOfMolecules.remove(srcmol);
209 delete(srcmol);
210 return true;
211};
212
213/** Simple add of one molecules into another.
214 * \param *mol destination molecule
215 * \param *srcmol source molecule
216 * \return true - merge successful, false - merge failed (probably due to non-existant indices
217 */
218bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol)
219{
220 if (srcmol == NULL)
221 return false;
222
223 // put all molecules of src into mol
224 atom *Walker = srcmol->start;
225 atom *NextAtom = Walker->next;
226 while (NextAtom != srcmol->end) {
227 Walker = NextAtom;
228 NextAtom = Walker->next;
229 Walker = mol->AddCopyAtom(Walker);
230 Walker->father = Walker;
231 }
232
233 return true;
234};
235
236/** Simple merge of a given set of molecules into one.
237 * \param *mol destination molecule
238 * \param *src index of set of source molecule
239 * \param N number of source molecules
240 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
241 */
242bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N)
243{
244 bool status = true;
245 // check presence of all source molecules
246 for (int i=0;i<N;i++) {
247 molecule *srcmol = ReturnIndex(src[i]);
248 status = status && SimpleMerge(mol, srcmol);
249 }
250 return status;
251};
252
253/** Simple add of a given set of molecules into one.
254 * \param *mol destination molecule
255 * \param *src index of set of source molecule
256 * \param N number of source molecules
257 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
258 */
259bool MoleculeListClass::SimpleMultiAdd(molecule *mol, int *src, int N)
260{
261 bool status = true;
262 // check presence of all source molecules
263 for (int i=0;i<N;i++) {
264 molecule *srcmol = ReturnIndex(src[i]);
265 status = status && SimpleAdd(mol, srcmol);
266 }
267 return status;
268};
269
270/** Scatter merge of a given set of molecules into one.
271 * Scatter merge distributes the molecules in such a manner that they don't overlap.
272 * \param *mol destination molecule
273 * \param *src index of set of source molecule
274 * \param N number of source molecules
275 * \return true - merge successful, false - merge failed (probably due to non-existant indices
276 * \TODO find scatter center for each src molecule
277 */
278bool MoleculeListClass::ScatterMerge(molecule *mol, int *src, int N)
279{
280 // check presence of all source molecules
281 for (int i=0;i<N;i++) {
282 // get pointer to src molecule
283 molecule *srcmol = ReturnIndex(src[i]);
284 if (srcmol == NULL)
285 return false;
286 }
287 // adapt each Center
288 for (int i=0;i<N;i++) {
289 // get pointer to src molecule
290 molecule *srcmol = ReturnIndex(src[i]);
291 //srcmol->Center.Zero();
292 srcmol->Translate(&srcmol->Center);
293 }
294 // perform a simple multi merge
295 SimpleMultiMerge(mol, src, N);
296 return true;
297};
298
299/** Embedding merge of a given set of molecules into one.
300 * Embedding merge inserts one molecule into the other.
301 * \param *mol destination molecule (fixed one)
302 * \param *srcmol source molecule (variable one, where atoms are taken from)
303 * \return true - merge successful, false - merge failed (probably due to non-existant indices)
304 * \TODO linked cell dimensions for boundary points has to be as big as inner diameter!
305 */
306bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol)
307{
308 LinkedCell *LCList = NULL;
309 Tesselation *TesselStruct = NULL;
310 if ((srcmol == NULL) || (mol == NULL)) {
311 cout << Verbose(1) << "ERROR: Either fixed or variable molecule is given as NULL." << endl;
312 return false;
313 }
314
315 // calculate envelope for *mol
316 LCList = new LinkedCell(mol, 8.);
317 FindNonConvexBorder((ofstream *)&cout, mol, TesselStruct, (const LinkedCell *&)LCList, 4., NULL);
318 if (TesselStruct == NULL) {
319 cout << Verbose(1) << "ERROR: Could not tesselate the fixed molecule." << endl;
320 return false;
321 }
322 delete(LCList);
323 LCList = new LinkedCell(TesselStruct, 8.); // re-create with boundary points only!
324
325 // prepare index list for bonds
326 srcmol->CountAtoms((ofstream *)&cout);
327 atom ** CopyAtoms = new atom*[srcmol->AtomCount];
328 for(int i=0;i<srcmol->AtomCount;i++)
329 CopyAtoms[i] = NULL;
330
331 // for each of the source atoms check whether we are in- or outside and add copy atom
332 atom *Walker = srcmol->start;
333 int nr=0;
334 while (Walker->next != srcmol->end) {
335 Walker = Walker->next;
336 cout << Verbose(2) << "INFO: Current Walker is " << *Walker << "." << endl;
337 if (!TesselStruct->IsInnerPoint((ofstream *)&cout, Walker->x, LCList)) {
338 CopyAtoms[Walker->nr] = new atom(Walker);
339 mol->AddAtom(CopyAtoms[Walker->nr]);
340 nr++;
341 } else {
342 // do nothing
343 }
344 }
345 cout << Verbose(1) << nr << " of " << srcmol->AtomCount << " atoms have been merged.";
346
347 // go through all bonds and add as well
348 bond *Binder = srcmol->first;
349 while(Binder->next != srcmol->last) {
350 Binder = Binder->next;
351 cout << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
352 mol->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
353 }
354 delete(LCList);
355 return true;
356};
357
358/** Simple output of the pointers in ListOfMolecules.
359 * \param *out output stream
360 */
361void MoleculeListClass::Output(ofstream *out)
362{
363 *out << Verbose(1) << "MoleculeList: ";
364 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
365 *out << *ListRunner << "\t";
366 *out << endl;
367};
368
369/** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones.
370 * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not
371 * bonded to the same atom, then we add for this pair a correction term constructed from a Morse
372 * potential function fit to QM calculations with respecting to the interatomic hydrogen distance.
373 * \param *out output stream for debugging
374 * \param *path path to file
375 */
376bool MoleculeListClass::AddHydrogenCorrection(ofstream *out, char *path)
377{
378 atom *Walker = NULL;
379 atom *Runner = NULL;
380 bond *Binder = NULL;
381 double ***FitConstant = NULL, **correction = NULL;
382 int a, b;
383 ofstream output;
384 ifstream input;
385 string line;
386 stringstream zeile;
387 double distance;
388 char ParsedLine[1023];
389 double tmp;
390 char *FragmentNumber = NULL;
391
392 cout << Verbose(1) << "Saving hydrogen saturation correction ... ";
393 // 0. parse in fit constant files that should have the same dimension as the final energy files
394 // 0a. find dimension of matrices with constants
395 line = path;
396 line.append("/");
397 line += FRAGMENTPREFIX;
398 line += "1";
399 line += FITCONSTANTSUFFIX;
400 input.open(line.c_str());
401 if (input == NULL) {
402 cerr << endl << "Unable to open " << line << ", is the directory correct?"
403 << endl;
404 return false;
405 }
406 a = 0;
407 b = -1; // we overcount by one
408 while (!input.eof()) {
409 input.getline(ParsedLine, 1023);
410 zeile.str(ParsedLine);
411 int i = 0;
412 while (!zeile.eof()) {
413 zeile >> distance;
414 i++;
415 }
416 if (i > a)
417 a = i;
418 b++;
419 }
420 cout << "I recognized " << a << " columns and " << b << " rows, ";
421 input.close();
422
423 // 0b. allocate memory for constants
424 FitConstant = Malloc<double**>(3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
425 for (int k = 0; k < 3; k++) {
426 FitConstant[k] = Malloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
427 for (int i = a; i--;) {
428 FitConstant[k][i] = Malloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
429 }
430 }
431 // 0c. parse in constants
432 for (int i = 0; i < 3; i++) {
433 line = path;
434 line.append("/");
435 line += FRAGMENTPREFIX;
436 sprintf(ParsedLine, "%d", i + 1);
437 line += ParsedLine;
438 line += FITCONSTANTSUFFIX;
439 input.open(line.c_str());
440 if (input == NULL) {
441 cerr << endl << "Unable to open " << line << ", is the directory correct?" << endl;
442 return false;
443 }
444 int k = 0, l;
445 while ((!input.eof()) && (k < b)) {
446 input.getline(ParsedLine, 1023);
447 //cout << "Current Line: " << ParsedLine << endl;
448 zeile.str(ParsedLine);
449 zeile.clear();
450 l = 0;
451 while ((!zeile.eof()) && (l < a)) {
452 zeile >> FitConstant[i][l][k];
453 //cout << FitConstant[i][l][k] << "\t";
454 l++;
455 }
456 //cout << endl;
457 k++;
458 }
459 input.close();
460 }
461 for (int k = 0; k < 3; k++) {
462 cout << "Constants " << k << ":" << endl;
463 for (int j = 0; j < b; j++) {
464 for (int i = 0; i < a; i++) {
465 cout << FitConstant[k][i][j] << "\t";
466 }
467 cout << endl;
468 }
469 cout << endl;
470 }
471
472 // 0d. allocate final correction matrix
473 correction = Malloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **correction");
474 for (int i = a; i--;)
475 correction[i] = Malloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *correction[]");
476
477 // 1a. go through every molecule in the list
478 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
479 // 1b. zero final correction matrix
480 for (int k = a; k--;)
481 for (int j = b; j--;)
482 correction[k][j] = 0.;
483 // 2. take every hydrogen that is a saturated one
484 Walker = (*ListRunner)->start;
485 while (Walker->next != (*ListRunner)->end) {
486 Walker = Walker->next;
487 //cout << Verbose(1) << "Walker: " << *Walker << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
488 if ((Walker->type->Z == 1) && ((Walker->father == NULL)
489 || (Walker->father->type->Z != 1))) { // if it's a hydrogen
490 Runner = (*ListRunner)->start;
491 while (Runner->next != (*ListRunner)->end) {
492 Runner = Runner->next;
493 //cout << Verbose(2) << "Runner: " << *Runner << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
494 // 3. take every other hydrogen that is the not the first and not bound to same bonding partner
495 Binder = *(Runner->ListOfBonds.begin());
496 if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && (Binder->GetOtherAtom(Runner) != Binder->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!)
497 // 4. evaluate the morse potential for each matrix component and add up
498 distance = Runner->x.Distance(&Walker->x);
499 //cout << "Fragment " << (*ListRunner)->name << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl;
500 for (int k = 0; k < a; k++) {
501 for (int j = 0; j < b; j++) {
502 switch (k) {
503 case 1:
504 case 7:
505 case 11:
506 tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2);
507 break;
508 default:
509 tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j];
510 };
511 correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction)
512 //cout << tmp << "\t";
513 }
514 //cout << endl;
515 }
516 //cout << endl;
517 }
518 }
519 }
520 }
521 // 5. write final matrix to file
522 line = path;
523 line.append("/");
524 line += FRAGMENTPREFIX;
525 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr);
526 line += FragmentNumber;
527 delete (FragmentNumber);
528 line += HCORRECTIONSUFFIX;
529 output.open(line.c_str());
530 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
531 for (int j = 0; j < b; j++) {
532 for (int i = 0; i < a; i++)
533 output << correction[i][j] << "\t";
534 output << endl;
535 }
536 output.close();
537 }
538 line = path;
539 line.append("/");
540 line += HCORRECTIONSUFFIX;
541 output.open(line.c_str());
542 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
543 for (int j = 0; j < b; j++) {
544 for (int i = 0; i < a; i++)
545 output << 0 << "\t";
546 output << endl;
547 }
548 output.close();
549 // 6. free memory of parsed matrices
550 FitConstant = Malloc<double**>(a, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
551 for (int k = 0; k < 3; k++) {
552 FitConstant[k] = Malloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
553 for (int i = a; i--;) {
554 FitConstant[k][i] = Malloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
555 }
556 }
557 cout << "done." << endl;
558 return true;
559};
560
561/** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config.
562 * \param *out output stream for debugging
563 * \param *path path to file
564 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
565 * \return true - file written successfully, false - writing failed
566 */
567bool MoleculeListClass::StoreForcesFile(ofstream *out, char *path,
568 int *SortIndex)
569{
570 bool status = true;
571 ofstream ForcesFile;
572 stringstream line;
573 atom *Walker = NULL;
574 element *runner = NULL;
575
576 // open file for the force factors
577 *out << Verbose(1) << "Saving force factors ... ";
578 line << path << "/" << FRAGMENTPREFIX << FORCESFILE;
579 ForcesFile.open(line.str().c_str(), ios::out);
580 if (ForcesFile != NULL) {
581 //cout << Verbose(1) << "Final AtomicForcesList: ";
582 //output << prefix << "Forces" << endl;
583 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
584 runner = (*ListRunner)->elemente->start;
585 while (runner->next != (*ListRunner)->elemente->end) { // go through every element
586 runner = runner->next;
587 if ((*ListRunner)->ElementsInMolecule[runner->Z]) { // if this element got atoms
588 Walker = (*ListRunner)->start;
589 while (Walker->next != (*ListRunner)->end) { // go through every atom of this element
590 Walker = Walker->next;
591 if (Walker->type->Z == runner->Z) {
592 if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea
593 //cout << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it
594 ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t";
595 } else
596 // otherwise a -1 to indicate an added saturation hydrogen
597 ForcesFile << "-1\t";
598 }
599 }
600 }
601 }
602 ForcesFile << endl;
603 }
604 ForcesFile.close();
605 *out << Verbose(1) << "done." << endl;
606 } else {
607 status = false;
608 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
609 }
610 ForcesFile.close();
611
612 return status;
613};
614
615/** Writes a config file for each molecule in the given \a **FragmentList.
616 * \param *out output stream for debugging
617 * \param *configuration standard configuration to attach atoms in fragment molecule to.
618 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
619 * \param DoPeriodic true - call ScanForPeriodicCorrection, false - don't
620 * \param DoCentering true - call molecule::CenterEdge(), false - don't
621 * \return true - success (each file was written), false - something went wrong.
622 */
623bool MoleculeListClass::OutputConfigForListOfFragments(ofstream *out, config *configuration, int *SortIndex)
624{
625 ofstream outputFragment;
626 char FragmentName[MAXSTRINGSIZE];
627 char PathBackup[MAXSTRINGSIZE];
628 bool result = true;
629 bool intermediateResult = true;
630 atom *Walker = NULL;
631 Vector BoxDimension;
632 char *FragmentNumber = NULL;
633 char *path = NULL;
634 int FragmentCounter = 0;
635 ofstream output;
636
637 // store the fragments as config and as xyz
638 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
639 // save default path as it is changed for each fragment
640 path = configuration->GetDefaultPath();
641 if (path != NULL)
642 strcpy(PathBackup, path);
643 else
644 cerr << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl;
645
646 // correct periodic
647 (*ListRunner)->ScanForPeriodicCorrection(out);
648
649 // output xyz file
650 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++);
651 sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
652 outputFragment.open(FragmentName, ios::out);
653 *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ...";
654 if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment)))
655 *out << " done." << endl;
656 else
657 *out << " failed." << endl;
658 result = result && intermediateResult;
659 outputFragment.close();
660 outputFragment.clear();
661
662 // list atoms in fragment for debugging
663 *out << Verbose(2) << "Contained atoms: ";
664 Walker = (*ListRunner)->start;
665 while (Walker->next != (*ListRunner)->end) {
666 Walker = Walker->next;
667 *out << Walker->Name << " ";
668 }
669 *out << endl;
670
671 // center on edge
672 (*ListRunner)->CenterEdge(out, &BoxDimension);
673 (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary
674 int j = -1;
675 for (int k = 0; k < NDIM; k++) {
676 j += k + 1;
677 BoxDimension.x[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem);
678 (*ListRunner)->cell_size[j] += BoxDimension.x[k] * 2.;
679 }
680 (*ListRunner)->Translate(&BoxDimension);
681
682 // also calculate necessary orbitals
683 (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment
684 (*ListRunner)->CalculateOrbitals(*configuration);
685
686 // change path in config
687 //strcpy(PathBackup, configuration->configpath);
688 sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber);
689 configuration->SetDefaultPath(FragmentName);
690
691 // and save as config
692 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
693 *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ...";
694 if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner))))
695 *out << " done." << endl;
696 else
697 *out << " failed." << endl;
698 result = result && intermediateResult;
699
700 // restore old config
701 configuration->SetDefaultPath(PathBackup);
702
703 // and save as mpqc input file
704 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
705 *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ...";
706 if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner))))
707 *out << " done." << endl;
708 else
709 *out << " failed." << endl;
710
711 result = result && intermediateResult;
712 //outputFragment.close();
713 //outputFragment.clear();
714 delete (FragmentNumber);
715 //Free(&FragmentNumber);
716 }
717 cout << " done." << endl;
718
719 // printing final number
720 *out << "Final number of fragments: " << FragmentCounter << "." << endl;
721
722 return result;
723};
724
725/** Counts the number of molecules with the molecule::ActiveFlag set.
726 * \return number of molecules with ActiveFlag set to true.
727 */
728int MoleculeListClass::NumberOfActiveMolecules()
729{
730 int count = 0;
731 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
732 count += ((*ListRunner)->ActiveFlag ? 1 : 0);
733 return count;
734};
735
736
737/******************************************* Class MoleculeLeafClass ************************************************/
738
739/** Constructor for MoleculeLeafClass root leaf.
740 * \param *Up Leaf on upper level
741 * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
742 */
743//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
744MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL)
745{
746 // if (Up != NULL)
747 // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
748 // Up->DownLeaf = this;
749 // UpLeaf = Up;
750 // DownLeaf = NULL;
751 Leaf = NULL;
752 previous = PreviousLeaf;
753 if (previous != NULL) {
754 MoleculeLeafClass *Walker = previous->next;
755 previous->next = this;
756 next = Walker;
757 } else {
758 next = NULL;
759 }
760};
761
762/** Destructor for MoleculeLeafClass.
763 */
764MoleculeLeafClass::~MoleculeLeafClass()
765{
766 // if (DownLeaf != NULL) {// drop leaves further down
767 // MoleculeLeafClass *Walker = DownLeaf;
768 // MoleculeLeafClass *Next;
769 // do {
770 // Next = Walker->NextLeaf;
771 // delete(Walker);
772 // Walker = Next;
773 // } while (Walker != NULL);
774 // // Last Walker sets DownLeaf automatically to NULL
775 // }
776 // remove the leaf itself
777 if (Leaf != NULL) {
778 delete (Leaf);
779 Leaf = NULL;
780 }
781 // remove this Leaf from level list
782 if (previous != NULL)
783 previous->next = next;
784 // } else { // we are first in list (connects to UpLeaf->DownLeaf)
785 // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
786 // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
787 // if (UpLeaf != NULL)
788 // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
789 // }
790 // UpLeaf = NULL;
791 if (next != NULL) // are we last in list
792 next->previous = previous;
793 next = NULL;
794 previous = NULL;
795};
796
797/** Adds \a molecule leaf to the tree.
798 * \param *ptr ptr to molecule to be added
799 * \param *Previous previous MoleculeLeafClass referencing level and which on the level
800 * \return true - success, false - something went wrong
801 */
802bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
803{
804 return false;
805};
806
807/** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule.
808 * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL.
809 * \param *out output stream for debugging
810 * \param *reference reference molecule with the bond structure to be copied
811 * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms
812 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled
813 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
814 * \return true - success, false - faoilure
815 */
816bool MoleculeLeafClass::FillBondStructureFromReference(ofstream *out, molecule *reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList)
817{
818 atom *Walker = NULL;
819 atom *OtherWalker = NULL;
820 atom *Father = NULL;
821 bool status = true;
822 int AtomNo;
823
824 *out << Verbose(1) << "Begin of FillBondStructureFromReference." << endl;
825 // fill ListOfLocalAtoms if NULL was given
826 if (!FillListOfLocalAtoms(out, ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
827 *out << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
828 return false;
829 }
830
831 if (status) {
832 *out << Verbose(1) << "Creating adjacency list for subgraph " << this
833 << "." << endl;
834 Walker = Leaf->start;
835 while (Walker->next != Leaf->end) {
836 Walker = Walker->next;
837 Father = Walker->GetTrueFather();
838 AtomNo = Father->nr; // global id of the current walker
839 for (BondList::const_iterator Runner = Father->ListOfBonds.begin(); Runner != Father->ListOfBonds.end(); (++Runner)) {
840 OtherWalker = ListOfLocalAtoms[FragmentCounter][(*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker
841 if (OtherWalker != NULL) {
842 if (OtherWalker->nr > Walker->nr)
843 Leaf->AddBond(Walker, OtherWalker, (*Runner)->BondDegree);
844 } else {
845 *out << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << (*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl;
846 status = false;
847 }
848 }
849 }
850 FragmentCounter++;
851 if (next != NULL)
852 status = next->FillBondStructureFromReference(out, reference, FragmentCounter, ListOfLocalAtoms);
853 FragmentCounter--;
854 }
855
856 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
857 // free the index lookup list
858 Free(&ListOfLocalAtoms[FragmentCounter]);
859 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
860 Free(&ListOfLocalAtoms);
861 }
862 FragmentCounter--;
863 *out << Verbose(1) << "End of FillBondStructureFromReference." << endl;
864 return status;
865};
866
867/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
868 * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
869 * \param *out output stream for debugging
870 * \param *&RootStack stack to be filled
871 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site
872 * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
873 * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
874 */
875bool MoleculeLeafClass::FillRootStackForSubgraphs(ofstream *out,
876 KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter)
877{
878 atom *Walker = NULL, *Father = NULL;
879
880 if (RootStack != NULL) {
881 // find first root candidates
882 if (&(RootStack[FragmentCounter]) != NULL) {
883 RootStack[FragmentCounter].clear();
884 Walker = Leaf->start;
885 while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms
886 Walker = Walker->next;
887 Father = Walker->GetTrueFather();
888 if (AtomMask[Father->nr]) // apply mask
889#ifdef ADDHYDROGEN
890 if (Walker->type->Z != 1) // skip hydrogen
891#endif
892 RootStack[FragmentCounter].push_front(Walker->nr);
893 }
894 if (next != NULL)
895 next->FillRootStackForSubgraphs(out, RootStack, AtomMask, ++FragmentCounter);
896 } else {
897 *out << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl;
898 return false;
899 }
900 FragmentCounter--;
901 return true;
902 } else {
903 *out << Verbose(1) << "Rootstack is NULL." << endl;
904 return false;
905 }
906};
907
908/** Fills a lookup list of father's Atom::nr -> atom for each subgraph.
909 * \param *out output stream fro debugging
910 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
911 * \param FragmentCounter counts the fragments as we move along the list
912 * \param GlobalAtomCount number of atoms in the complete molecule
913 * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
914 * \return true - succes, false - failure
915 */
916bool MoleculeLeafClass::FillListOfLocalAtoms(ofstream *out, atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList)
917{
918 bool status = true;
919
920 int Counter = Count();
921 if (ListOfLocalAtoms == NULL) { // allocated initial pointer
922 // allocate and set each field to NULL
923 ListOfLocalAtoms = Malloc<atom**>(Counter, "MoleculeLeafClass::FillBondStructureFromReference - ***ListOfLocalAtoms");
924 if (ListOfLocalAtoms != NULL) {
925 for (int i = Counter; i--;)
926 ListOfLocalAtoms[i] = NULL;
927 FreeList = FreeList && true;
928 } else
929 status = false;
930 }
931
932 if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph
933 status = status && CreateFatherLookupTable(out, Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount);
934 FreeList = FreeList && true;
935 }
936
937 return status;
938};
939
940/** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList.
941 * \param *out output stream fro debugging
942 * \param *reference reference molecule with the bond structure to be copied
943 * \param *KeySetList list with all keysets
944 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
945 * \param **&FragmentList list to be allocated and returned
946 * \param &FragmentCounter counts the fragments as we move along the list
947 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
948 * \retuen true - success, false - failure
949 */
950bool MoleculeLeafClass::AssignKeySetsToFragment(ofstream *out,
951 molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms,
952 Graph **&FragmentList, int &FragmentCounter, bool FreeList)
953{
954 bool status = true;
955 int KeySetCounter = 0;
956
957 *out << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl;
958 // fill ListOfLocalAtoms if NULL was given
959 if (!FillListOfLocalAtoms(out, ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
960 *out << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
961 return false;
962 }
963
964 // allocate fragment list
965 if (FragmentList == NULL) {
966 KeySetCounter = Count();
967 FragmentList = Malloc<Graph*>(KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList");
968 for (int i = KeySetCounter; i--;)
969 FragmentList[i] = NULL;
970 KeySetCounter = 0;
971 }
972
973 if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all
974 // assign scanned keysets
975 if (FragmentList[FragmentCounter] == NULL)
976 FragmentList[FragmentCounter] = new Graph;
977 KeySet *TempSet = new KeySet;
978 for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
979 if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
980 // translate keyset to local numbers
981 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
982 TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr);
983 // insert into FragmentList
984 FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair<int, double> (KeySetCounter++, (*runner).second.second)));
985 }
986 TempSet->clear();
987 }
988 delete (TempSet);
989 if (KeySetCounter == 0) {// if there are no keysets, delete the list
990 *out << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl;
991 delete (FragmentList[FragmentCounter]);
992 } else
993 *out << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl;
994 FragmentCounter++;
995 if (next != NULL)
996 next->AssignKeySetsToFragment(out, reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
997 FragmentCounter--;
998 } else
999 *out << Verbose(1) << "KeySetList is NULL or empty." << endl;
1000
1001 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1002 // free the index lookup list
1003 Free(&ListOfLocalAtoms[FragmentCounter]);
1004 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1005 Free(&ListOfLocalAtoms);
1006 }
1007 *out << Verbose(1) << "End of AssignKeySetsToFragment." << endl;
1008 return status;
1009};
1010
1011/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
1012 * \param *out output stream for debugging
1013 * \param **FragmentList Graph with local numbers per fragment
1014 * \param &FragmentCounter counts the fragments as we move along the list
1015 * \param &TotalNumberOfKeySets global key set counter
1016 * \param &TotalGraph Graph to be filled with global numbers
1017 */
1018void MoleculeLeafClass::TranslateIndicesToGlobalIDs(ofstream *out,
1019 Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets,
1020 Graph &TotalGraph)
1021{
1022 *out << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl;
1023 KeySet *TempSet = new KeySet;
1024 if (FragmentList[FragmentCounter] != NULL) {
1025 for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
1026 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1027 TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
1028 TotalGraph.insert(GraphPair(*TempSet, pair<int, double> (TotalNumberOfKeySets++, (*runner).second.second)));
1029 TempSet->clear();
1030 }
1031 delete (TempSet);
1032 } else {
1033 *out << Verbose(1) << "FragmentList is NULL." << endl;
1034 }
1035 if (next != NULL)
1036 next->TranslateIndicesToGlobalIDs(out, FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
1037 FragmentCounter--;
1038 *out << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl;
1039};
1040
1041/** Simply counts the number of items in the list, from given MoleculeLeafClass.
1042 * \return number of items
1043 */
1044int MoleculeLeafClass::Count() const
1045{
1046 if (next != NULL)
1047 return next->Count() + 1;
1048 else
1049 return 1;
1050};
1051
Note: See TracBrowser for help on using the repository browser.