1 | /*
|
---|
2 | * molecule_graph.cpp
|
---|
3 | *
|
---|
4 | * Created on: Oct 5, 2009
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "config.hpp"
|
---|
9 | #include "memoryallocator.hpp"
|
---|
10 | #include "molecule.hpp"
|
---|
11 |
|
---|
12 | /************************************* Functions for class molecule *********************************/
|
---|
13 |
|
---|
14 |
|
---|
15 | /** Creates an adjacency list of the molecule.
|
---|
16 | * We obtain an outside file with the indices of atoms which are bondmembers.
|
---|
17 | */
|
---|
18 | void molecule::CreateAdjacencyList2(ofstream *out, ifstream *input)
|
---|
19 | {
|
---|
20 |
|
---|
21 | // 1 We will parse bonds out of the dbond file created by tremolo.
|
---|
22 | int atom1, atom2, temp;
|
---|
23 | atom *Walker, *OtherWalker;
|
---|
24 |
|
---|
25 | if (!input)
|
---|
26 | {
|
---|
27 | cout << Verbose(1) << "Opening silica failed \n";
|
---|
28 | };
|
---|
29 |
|
---|
30 | *input >> ws >> atom1;
|
---|
31 | *input >> ws >> atom2;
|
---|
32 | cout << Verbose(1) << "Scanning file\n";
|
---|
33 | while (!input->eof()) // Check whether we read everything already
|
---|
34 | {
|
---|
35 | *input >> ws >> atom1;
|
---|
36 | *input >> ws >> atom2;
|
---|
37 | if(atom2<atom1) //Sort indices of atoms in order
|
---|
38 | {
|
---|
39 | temp=atom1;
|
---|
40 | atom1=atom2;
|
---|
41 | atom2=temp;
|
---|
42 | };
|
---|
43 |
|
---|
44 | Walker=start;
|
---|
45 | while(Walker-> nr != atom1) // Find atom corresponding to first index
|
---|
46 | {
|
---|
47 | Walker = Walker->next;
|
---|
48 | };
|
---|
49 | OtherWalker = Walker->next;
|
---|
50 | while(OtherWalker->nr != atom2) // Find atom corresponding to second index
|
---|
51 | {
|
---|
52 | OtherWalker= OtherWalker->next;
|
---|
53 | };
|
---|
54 | AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.
|
---|
55 |
|
---|
56 | }
|
---|
57 |
|
---|
58 | CreateListOfBondsPerAtom(out);
|
---|
59 |
|
---|
60 | };
|
---|
61 |
|
---|
62 |
|
---|
63 | /** Creates an adjacency list of the molecule.
|
---|
64 | * Generally, we use the CSD approach to bond recognition, that is the the distance
|
---|
65 | * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
|
---|
66 | * a threshold t = 0.4 Angstroem.
|
---|
67 | * To make it O(N log N) the function uses the linked-cell technique as follows:
|
---|
68 | * The procedure is step-wise:
|
---|
69 | * -# Remove every bond in list
|
---|
70 | * -# Count the atoms in the molecule with CountAtoms()
|
---|
71 | * -# partition cell into smaller linked cells of size \a bonddistance
|
---|
72 | * -# put each atom into its corresponding cell
|
---|
73 | * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
|
---|
74 | * -# create the list of bonds via CreateListOfBondsPerAtom()
|
---|
75 | * -# correct the bond degree iteratively (single->double->triple bond)
|
---|
76 | * -# finally print the bond list to \a *out if desired
|
---|
77 | * \param *out out stream for printing the matrix, NULL if no output
|
---|
78 | * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
|
---|
79 | * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
|
---|
80 | */
|
---|
81 | void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)
|
---|
82 | {
|
---|
83 |
|
---|
84 | atom *Walker = NULL, *OtherWalker = NULL, *Candidate = NULL;
|
---|
85 | int No, NoBonds, CandidateBondNo;
|
---|
86 | int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
|
---|
87 | molecule **CellList;
|
---|
88 | double distance, MinDistance, MaxDistance;
|
---|
89 | double *matrix = ReturnFullMatrixforSymmetric(cell_size);
|
---|
90 | Vector x;
|
---|
91 | int FalseBondDegree = 0;
|
---|
92 |
|
---|
93 | BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
|
---|
94 | *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
|
---|
95 | // remove every bond from the list
|
---|
96 | if ((first->next != last) && (last->previous != first)) { // there are bonds present
|
---|
97 | cleanup(first,last);
|
---|
98 | }
|
---|
99 |
|
---|
100 | // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
|
---|
101 | CountAtoms(out);
|
---|
102 | *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
|
---|
103 |
|
---|
104 | if (AtomCount != 0) {
|
---|
105 | // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
|
---|
106 | j=-1;
|
---|
107 | for (int i=0;i<NDIM;i++) {
|
---|
108 | j += i+1;
|
---|
109 | divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
|
---|
110 | //*out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
|
---|
111 | }
|
---|
112 | // 2a. allocate memory for the cell list
|
---|
113 | NumberCells = divisor[0]*divisor[1]*divisor[2];
|
---|
114 | *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
|
---|
115 | CellList = Malloc<molecule*>(NumberCells, "molecule::CreateAdjacencyList - ** CellList");
|
---|
116 | for (int i=NumberCells;i--;)
|
---|
117 | CellList[i] = NULL;
|
---|
118 |
|
---|
119 | // 2b. put all atoms into its corresponding list
|
---|
120 | Walker = start;
|
---|
121 | while(Walker->next != end) {
|
---|
122 | Walker = Walker->next;
|
---|
123 | //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
|
---|
124 | //Walker->x.Output(out);
|
---|
125 | //*out << "." << endl;
|
---|
126 | // compute the cell by the atom's coordinates
|
---|
127 | j=-1;
|
---|
128 | for (int i=0;i<NDIM;i++) {
|
---|
129 | j += i+1;
|
---|
130 | x.CopyVector(&(Walker->x));
|
---|
131 | x.KeepPeriodic(out, matrix);
|
---|
132 | n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
|
---|
133 | }
|
---|
134 | index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
|
---|
135 | //*out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
|
---|
136 | // add copy atom to this cell
|
---|
137 | if (CellList[index] == NULL) // allocate molecule if not done
|
---|
138 | CellList[index] = new molecule(elemente);
|
---|
139 | OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
|
---|
140 | //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
|
---|
141 | }
|
---|
142 | //for (int i=0;i<NumberCells;i++)
|
---|
143 | //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
|
---|
144 |
|
---|
145 |
|
---|
146 | // 3a. go through every cell
|
---|
147 | for (N[0]=divisor[0];N[0]--;)
|
---|
148 | for (N[1]=divisor[1];N[1]--;)
|
---|
149 | for (N[2]=divisor[2];N[2]--;) {
|
---|
150 | Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
|
---|
151 | if (CellList[Index] != NULL) { // if there atoms in this cell
|
---|
152 | //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
|
---|
153 | // 3b. for every atom therein
|
---|
154 | Walker = CellList[Index]->start;
|
---|
155 | while (Walker->next != CellList[Index]->end) { // go through every atom
|
---|
156 | Walker = Walker->next;
|
---|
157 | //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
|
---|
158 | // 3c. check for possible bond between each atom in this and every one in the 27 cells
|
---|
159 | for (n[0]=-1;n[0]<=1;n[0]++)
|
---|
160 | for (n[1]=-1;n[1]<=1;n[1]++)
|
---|
161 | for (n[2]=-1;n[2]<=1;n[2]++) {
|
---|
162 | // compute the index of this comparison cell and make it periodic
|
---|
163 | index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
|
---|
164 | //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
|
---|
165 | if (CellList[index] != NULL) { // if there are any atoms in this cell
|
---|
166 | OtherWalker = CellList[index]->start;
|
---|
167 | while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
|
---|
168 | OtherWalker = OtherWalker->next;
|
---|
169 | //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
|
---|
170 | /// \todo periodic check is missing here!
|
---|
171 | //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
|
---|
172 | MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
|
---|
173 | MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;
|
---|
174 | MaxDistance = MinDistance + BONDTHRESHOLD;
|
---|
175 | MinDistance -= BONDTHRESHOLD;
|
---|
176 | distance = OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size);
|
---|
177 | if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
|
---|
178 | //*out << Verbose(1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance) << "." << endl;
|
---|
179 | AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
|
---|
180 | } else {
|
---|
181 | //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
|
---|
182 | }
|
---|
183 | }
|
---|
184 | }
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 |
|
---|
192 | // 4. free the cell again
|
---|
193 | for (int i=NumberCells;i--;)
|
---|
194 | if (CellList[i] != NULL) {
|
---|
195 | delete(CellList[i]);
|
---|
196 | }
|
---|
197 | Free(&CellList);
|
---|
198 |
|
---|
199 | // create the adjacency list per atom
|
---|
200 | CreateListOfBondsPerAtom(out);
|
---|
201 |
|
---|
202 | // correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
|
---|
203 | // iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
|
---|
204 | // preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
|
---|
205 | // double bonds as was expected.
|
---|
206 | if (BondCount != 0) {
|
---|
207 | NoCyclicBonds = 0;
|
---|
208 | *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
|
---|
209 | do {
|
---|
210 | No = 0; // No acts as breakup flag (if 1 we still continue)
|
---|
211 | Walker = start;
|
---|
212 | while (Walker->next != end) { // go through every atom
|
---|
213 | Walker = Walker->next;
|
---|
214 | // count valence of first partner
|
---|
215 | NoBonds = 0;
|
---|
216 | for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
|
---|
217 | NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
|
---|
218 | *out << Verbose(3) << "Walker " << *Walker << ": " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
|
---|
219 | if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check all bonding partners for mismatch
|
---|
220 | Candidate = NULL;
|
---|
221 | CandidateBondNo = -1;
|
---|
222 | for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
|
---|
223 | OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
|
---|
224 | // count valence of second partner
|
---|
225 | NoBonds = 0;
|
---|
226 | for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
|
---|
227 | NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
|
---|
228 | *out << Verbose(3) << "OtherWalker " << *OtherWalker << ": " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
|
---|
229 | if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) { // check if possible candidate
|
---|
230 | if ((Candidate == NULL) || (NumberOfBondsPerAtom[Candidate->nr] > NumberOfBondsPerAtom[OtherWalker->nr])) { // pick the one with fewer number of bonds first
|
---|
231 | Candidate = OtherWalker;
|
---|
232 | CandidateBondNo = i;
|
---|
233 | *out << Verbose(3) << "New candidate is " << *Candidate << "." << endl;
|
---|
234 | }
|
---|
235 | }
|
---|
236 | }
|
---|
237 | if ((Candidate != NULL) && (CandidateBondNo != -1)) {
|
---|
238 | ListOfBondsPerAtom[Walker->nr][CandidateBondNo]->BondDegree++;
|
---|
239 | *out << Verbose(2) << "Increased bond degree for bond " << *ListOfBondsPerAtom[Walker->nr][CandidateBondNo] << "." << endl;
|
---|
240 | } else
|
---|
241 | *out << Verbose(2) << "Could not find correct degree for atom " << *Walker << "." << endl;
|
---|
242 | FalseBondDegree++;
|
---|
243 | }
|
---|
244 | }
|
---|
245 | } while (No);
|
---|
246 | *out << " done." << endl;
|
---|
247 | } else
|
---|
248 | *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
|
---|
249 | *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl;
|
---|
250 |
|
---|
251 | // output bonds for debugging (if bond chain list was correctly installed)
|
---|
252 | *out << Verbose(1) << endl << "From contents of bond chain list:";
|
---|
253 | bond *Binder = first;
|
---|
254 | while(Binder->next != last) {
|
---|
255 | Binder = Binder->next;
|
---|
256 | *out << *Binder << "\t" << endl;
|
---|
257 | }
|
---|
258 | *out << endl;
|
---|
259 | } else
|
---|
260 | *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
|
---|
261 | *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
|
---|
262 | Free(&matrix);
|
---|
263 |
|
---|
264 | };
|
---|
265 |
|
---|
266 | /** Counts all cyclic bonds and returns their number.
|
---|
267 | * \note Hydrogen bonds can never by cyclic, thus no check for that
|
---|
268 | * \param *out output stream for debugging
|
---|
269 | * \return number opf cyclic bonds
|
---|
270 | */
|
---|
271 | int molecule::CountCyclicBonds(ofstream *out)
|
---|
272 | {
|
---|
273 | int No = 0;
|
---|
274 | int *MinimumRingSize = NULL;
|
---|
275 | MoleculeLeafClass *Subgraphs = NULL;
|
---|
276 | class StackClass<bond *> *BackEdgeStack = NULL;
|
---|
277 | bond *Binder = first;
|
---|
278 | if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
|
---|
279 | *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
|
---|
280 | Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
|
---|
281 | while (Subgraphs->next != NULL) {
|
---|
282 | Subgraphs = Subgraphs->next;
|
---|
283 | delete(Subgraphs->previous);
|
---|
284 | }
|
---|
285 | delete(Subgraphs);
|
---|
286 | delete[](MinimumRingSize);
|
---|
287 | }
|
---|
288 | while(Binder->next != last) {
|
---|
289 | Binder = Binder->next;
|
---|
290 | if (Binder->Cyclic)
|
---|
291 | No++;
|
---|
292 | }
|
---|
293 | delete(BackEdgeStack);
|
---|
294 | return No;
|
---|
295 | };
|
---|
296 | /** Returns Shading as a char string.
|
---|
297 | * \param color the Shading
|
---|
298 | * \return string of the flag
|
---|
299 | */
|
---|
300 | string molecule::GetColor(enum Shading color)
|
---|
301 | {
|
---|
302 | switch(color) {
|
---|
303 | case white:
|
---|
304 | return "white";
|
---|
305 | break;
|
---|
306 | case lightgray:
|
---|
307 | return "lightgray";
|
---|
308 | break;
|
---|
309 | case darkgray:
|
---|
310 | return "darkgray";
|
---|
311 | break;
|
---|
312 | case black:
|
---|
313 | return "black";
|
---|
314 | break;
|
---|
315 | default:
|
---|
316 | return "uncolored";
|
---|
317 | break;
|
---|
318 | };
|
---|
319 | };
|
---|
320 |
|
---|
321 | /** Performs a Depth-First search on this molecule.
|
---|
322 | * Marks bonds in molecule as cyclic, bridge, ... and atoms as
|
---|
323 | * articulations points, ...
|
---|
324 | * We use the algorithm from [Even, Graph Algorithms, p.62].
|
---|
325 | * \param *out output stream for debugging
|
---|
326 | * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
|
---|
327 | * \return list of each disconnected subgraph as an individual molecule class structure
|
---|
328 | */
|
---|
329 | MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, class StackClass<bond *> *&BackEdgeStack)
|
---|
330 | {
|
---|
331 | class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
|
---|
332 | BackEdgeStack = new StackClass<bond *> (BondCount);
|
---|
333 | MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
|
---|
334 | MoleculeLeafClass *LeafWalker = SubGraphs;
|
---|
335 | int CurrentGraphNr = 0, OldGraphNr;
|
---|
336 | int ComponentNumber = 0;
|
---|
337 | atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
|
---|
338 | bond *Binder = NULL;
|
---|
339 | bool BackStepping = false;
|
---|
340 |
|
---|
341 | *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
|
---|
342 |
|
---|
343 | ResetAllBondsToUnused();
|
---|
344 | ResetAllAtomNumbers();
|
---|
345 | InitComponentNumbers();
|
---|
346 | BackEdgeStack->ClearStack();
|
---|
347 | while (Root != end) { // if there any atoms at all
|
---|
348 | // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
|
---|
349 | AtomStack->ClearStack();
|
---|
350 |
|
---|
351 | // put into new subgraph molecule and add this to list of subgraphs
|
---|
352 | LeafWalker = new MoleculeLeafClass(LeafWalker);
|
---|
353 | LeafWalker->Leaf = new molecule(elemente);
|
---|
354 | LeafWalker->Leaf->AddCopyAtom(Root);
|
---|
355 |
|
---|
356 | OldGraphNr = CurrentGraphNr;
|
---|
357 | Walker = Root;
|
---|
358 | do { // (10)
|
---|
359 | do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
|
---|
360 | if (!BackStepping) { // if we don't just return from (8)
|
---|
361 | Walker->GraphNr = CurrentGraphNr;
|
---|
362 | Walker->LowpointNr = CurrentGraphNr;
|
---|
363 | *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
|
---|
364 | AtomStack->Push(Walker);
|
---|
365 | CurrentGraphNr++;
|
---|
366 | }
|
---|
367 | do { // (3) if Walker has no unused egdes, go to (5)
|
---|
368 | BackStepping = false; // reset backstepping flag for (8)
|
---|
369 | if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
|
---|
370 | Binder = FindNextUnused(Walker);
|
---|
371 | if (Binder == NULL)
|
---|
372 | break;
|
---|
373 | *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
|
---|
374 | // (4) Mark Binder used, ...
|
---|
375 | Binder->MarkUsed(black);
|
---|
376 | OtherAtom = Binder->GetOtherAtom(Walker);
|
---|
377 | *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
|
---|
378 | if (OtherAtom->GraphNr != -1) {
|
---|
379 | // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
|
---|
380 | Binder->Type = BackEdge;
|
---|
381 | BackEdgeStack->Push(Binder);
|
---|
382 | Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
|
---|
383 | *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
|
---|
384 | } else {
|
---|
385 | // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
|
---|
386 | Binder->Type = TreeEdge;
|
---|
387 | OtherAtom->Ancestor = Walker;
|
---|
388 | Walker = OtherAtom;
|
---|
389 | *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
|
---|
390 | break;
|
---|
391 | }
|
---|
392 | Binder = NULL;
|
---|
393 | } while (1); // (3)
|
---|
394 | if (Binder == NULL) {
|
---|
395 | *out << Verbose(2) << "No more Unused Bonds." << endl;
|
---|
396 | break;
|
---|
397 | } else
|
---|
398 | Binder = NULL;
|
---|
399 | } while (1); // (2)
|
---|
400 |
|
---|
401 | // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
|
---|
402 | if ((Walker == Root) && (Binder == NULL))
|
---|
403 | break;
|
---|
404 |
|
---|
405 | // (5) if Ancestor of Walker is ...
|
---|
406 | *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
|
---|
407 | if (Walker->Ancestor->GraphNr != Root->GraphNr) {
|
---|
408 | // (6) (Ancestor of Walker is not Root)
|
---|
409 | if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
|
---|
410 | // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
|
---|
411 | Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
|
---|
412 | *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
|
---|
413 | } else {
|
---|
414 | // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
|
---|
415 | Walker->Ancestor->SeparationVertex = true;
|
---|
416 | *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
|
---|
417 | SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
|
---|
418 | *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
|
---|
419 | SetNextComponentNumber(Walker, ComponentNumber);
|
---|
420 | *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
|
---|
421 | do {
|
---|
422 | OtherAtom = AtomStack->PopLast();
|
---|
423 | LeafWalker->Leaf->AddCopyAtom(OtherAtom);
|
---|
424 | SetNextComponentNumber(OtherAtom, ComponentNumber);
|
---|
425 | *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
|
---|
426 | } while (OtherAtom != Walker);
|
---|
427 | ComponentNumber++;
|
---|
428 | }
|
---|
429 | // (8) Walker becomes its Ancestor, go to (3)
|
---|
430 | *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
|
---|
431 | Walker = Walker->Ancestor;
|
---|
432 | BackStepping = true;
|
---|
433 | }
|
---|
434 | if (!BackStepping) { // coming from (8) want to go to (3)
|
---|
435 | // (9) remove all from stack till Walker (including), these and Root form a component
|
---|
436 | AtomStack->Output(out);
|
---|
437 | SetNextComponentNumber(Root, ComponentNumber);
|
---|
438 | *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
|
---|
439 | SetNextComponentNumber(Walker, ComponentNumber);
|
---|
440 | *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
|
---|
441 | do {
|
---|
442 | OtherAtom = AtomStack->PopLast();
|
---|
443 | LeafWalker->Leaf->AddCopyAtom(OtherAtom);
|
---|
444 | SetNextComponentNumber(OtherAtom, ComponentNumber);
|
---|
445 | *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
|
---|
446 | } while (OtherAtom != Walker);
|
---|
447 | ComponentNumber++;
|
---|
448 |
|
---|
449 | // (11) Root is separation vertex, set Walker to Root and go to (4)
|
---|
450 | Walker = Root;
|
---|
451 | Binder = FindNextUnused(Walker);
|
---|
452 | *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
|
---|
453 | if (Binder != NULL) { // Root is separation vertex
|
---|
454 | *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
|
---|
455 | Walker->SeparationVertex = true;
|
---|
456 | }
|
---|
457 | }
|
---|
458 | } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
|
---|
459 |
|
---|
460 | // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
|
---|
461 | *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
|
---|
462 | LeafWalker->Leaf->Output(out);
|
---|
463 | *out << endl;
|
---|
464 |
|
---|
465 | // step on to next root
|
---|
466 | while ((Root != end) && (Root->GraphNr != -1)) {
|
---|
467 | //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
|
---|
468 | if (Root->GraphNr != -1) // if already discovered, step on
|
---|
469 | Root = Root->next;
|
---|
470 | }
|
---|
471 | }
|
---|
472 | // set cyclic bond criterium on "same LP" basis
|
---|
473 | Binder = first;
|
---|
474 | while(Binder->next != last) {
|
---|
475 | Binder = Binder->next;
|
---|
476 | if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
|
---|
477 | Binder->Cyclic = true;
|
---|
478 | NoCyclicBonds++;
|
---|
479 | }
|
---|
480 | }
|
---|
481 |
|
---|
482 |
|
---|
483 | *out << Verbose(1) << "Final graph info for each atom is:" << endl;
|
---|
484 | Walker = start;
|
---|
485 | while (Walker->next != end) {
|
---|
486 | Walker = Walker->next;
|
---|
487 | *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
|
---|
488 | OutputComponentNumber(out, Walker);
|
---|
489 | *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
|
---|
490 | }
|
---|
491 |
|
---|
492 | *out << Verbose(1) << "Final graph info for each bond is:" << endl;
|
---|
493 | Binder = first;
|
---|
494 | while(Binder->next != last) {
|
---|
495 | Binder = Binder->next;
|
---|
496 | *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
|
---|
497 | *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
|
---|
498 | OutputComponentNumber(out, Binder->leftatom);
|
---|
499 | *out << " === ";
|
---|
500 | *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
|
---|
501 | OutputComponentNumber(out, Binder->rightatom);
|
---|
502 | *out << ">." << endl;
|
---|
503 | if (Binder->Cyclic) // cyclic ??
|
---|
504 | *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
|
---|
505 | }
|
---|
506 |
|
---|
507 | // free all and exit
|
---|
508 | delete(AtomStack);
|
---|
509 | *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
|
---|
510 | return SubGraphs;
|
---|
511 | };
|
---|
512 |
|
---|
513 | /** Analyses the cycles found and returns minimum of all cycle lengths.
|
---|
514 | * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
|
---|
515 | * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
|
---|
516 | * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
|
---|
517 | * as cyclic and print out the cycles.
|
---|
518 | * \param *out output stream for debugging
|
---|
519 | * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
|
---|
520 | * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
|
---|
521 | * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
|
---|
522 | */
|
---|
523 | void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)
|
---|
524 | {
|
---|
525 | atom **PredecessorList = Malloc<atom*>(AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
|
---|
526 | int *ShortestPathList = Malloc<int>(AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
|
---|
527 | enum Shading *ColorList = Malloc<enum Shading>(AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
|
---|
528 | class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
|
---|
529 | class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms (that need to be reset after BFS loop)
|
---|
530 | atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
|
---|
531 | bond *Binder = NULL, *BackEdge = NULL;
|
---|
532 | int RingSize, NumCycles, MinRingSize = -1;
|
---|
533 |
|
---|
534 | // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
|
---|
535 | for (int i=AtomCount;i--;) {
|
---|
536 | PredecessorList[i] = NULL;
|
---|
537 | ShortestPathList[i] = -1;
|
---|
538 | ColorList[i] = white;
|
---|
539 | }
|
---|
540 |
|
---|
541 | *out << Verbose(1) << "Back edge list - ";
|
---|
542 | BackEdgeStack->Output(out);
|
---|
543 |
|
---|
544 | *out << Verbose(1) << "Analysing cycles ... " << endl;
|
---|
545 | NumCycles = 0;
|
---|
546 | while (!BackEdgeStack->IsEmpty()) {
|
---|
547 | BackEdge = BackEdgeStack->PopFirst();
|
---|
548 | // this is the target
|
---|
549 | Root = BackEdge->leftatom;
|
---|
550 | // this is the source point
|
---|
551 | Walker = BackEdge->rightatom;
|
---|
552 | ShortestPathList[Walker->nr] = 0;
|
---|
553 | BFSStack->ClearStack(); // start with empty BFS stack
|
---|
554 | BFSStack->Push(Walker);
|
---|
555 | TouchedStack->Push(Walker);
|
---|
556 | *out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
|
---|
557 | OtherAtom = NULL;
|
---|
558 | do { // look for Root
|
---|
559 | Walker = BFSStack->PopFirst();
|
---|
560 | *out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
|
---|
561 | for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
|
---|
562 | Binder = ListOfBondsPerAtom[Walker->nr][i];
|
---|
563 | if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
|
---|
564 | OtherAtom = Binder->GetOtherAtom(Walker);
|
---|
565 | #ifdef ADDHYDROGEN
|
---|
566 | if (OtherAtom->type->Z != 1) {
|
---|
567 | #endif
|
---|
568 | *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
|
---|
569 | if (ColorList[OtherAtom->nr] == white) {
|
---|
570 | TouchedStack->Push(OtherAtom);
|
---|
571 | ColorList[OtherAtom->nr] = lightgray;
|
---|
572 | PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
|
---|
573 | ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
|
---|
574 | *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
|
---|
575 | //if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
|
---|
576 | *out << Verbose(3) << "Putting OtherAtom into queue." << endl;
|
---|
577 | BFSStack->Push(OtherAtom);
|
---|
578 | //}
|
---|
579 | } else {
|
---|
580 | *out << Verbose(3) << "Not Adding, has already been visited." << endl;
|
---|
581 | }
|
---|
582 | if (OtherAtom == Root)
|
---|
583 | break;
|
---|
584 | #ifdef ADDHYDROGEN
|
---|
585 | } else {
|
---|
586 | *out << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
|
---|
587 | ColorList[OtherAtom->nr] = black;
|
---|
588 | }
|
---|
589 | #endif
|
---|
590 | } else {
|
---|
591 | *out << Verbose(2) << "Bond " << *Binder << " not Visiting, is the back edge." << endl;
|
---|
592 | }
|
---|
593 | }
|
---|
594 | ColorList[Walker->nr] = black;
|
---|
595 | *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
|
---|
596 | if (OtherAtom == Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
|
---|
597 | // step through predecessor list
|
---|
598 | while (OtherAtom != BackEdge->rightatom) {
|
---|
599 | if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
|
---|
600 | break;
|
---|
601 | else
|
---|
602 | OtherAtom = PredecessorList[OtherAtom->nr];
|
---|
603 | }
|
---|
604 | if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
|
---|
605 | *out << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;\
|
---|
606 | do {
|
---|
607 | OtherAtom = TouchedStack->PopLast();
|
---|
608 | if (PredecessorList[OtherAtom->nr] == Walker) {
|
---|
609 | *out << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
|
---|
610 | PredecessorList[OtherAtom->nr] = NULL;
|
---|
611 | ShortestPathList[OtherAtom->nr] = -1;
|
---|
612 | ColorList[OtherAtom->nr] = white;
|
---|
613 | BFSStack->RemoveItem(OtherAtom);
|
---|
614 | }
|
---|
615 | } while ((!TouchedStack->IsEmpty()) && (PredecessorList[OtherAtom->nr] == NULL));
|
---|
616 | TouchedStack->Push(OtherAtom); // last was wrongly popped
|
---|
617 | OtherAtom = BackEdge->rightatom; // set to not Root
|
---|
618 | } else
|
---|
619 | OtherAtom = Root;
|
---|
620 | }
|
---|
621 | } while ((!BFSStack->IsEmpty()) && (OtherAtom != Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
|
---|
622 |
|
---|
623 | if (OtherAtom == Root) {
|
---|
624 | // now climb back the predecessor list and thus find the cycle members
|
---|
625 | NumCycles++;
|
---|
626 | RingSize = 1;
|
---|
627 | Root->GetTrueFather()->IsCyclic = true;
|
---|
628 | *out << Verbose(1) << "Found ring contains: ";
|
---|
629 | Walker = Root;
|
---|
630 | while (Walker != BackEdge->rightatom) {
|
---|
631 | *out << Walker->Name << " <-> ";
|
---|
632 | Walker = PredecessorList[Walker->nr];
|
---|
633 | Walker->GetTrueFather()->IsCyclic = true;
|
---|
634 | RingSize++;
|
---|
635 | }
|
---|
636 | *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
|
---|
637 | // walk through all and set MinimumRingSize
|
---|
638 | Walker = Root;
|
---|
639 | MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
|
---|
640 | while (Walker != BackEdge->rightatom) {
|
---|
641 | Walker = PredecessorList[Walker->nr];
|
---|
642 | if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
|
---|
643 | MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
|
---|
644 | }
|
---|
645 | if ((RingSize < MinRingSize) || (MinRingSize == -1))
|
---|
646 | MinRingSize = RingSize;
|
---|
647 | } else {
|
---|
648 | *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
|
---|
649 | }
|
---|
650 |
|
---|
651 | // now clean the lists
|
---|
652 | while (!TouchedStack->IsEmpty()){
|
---|
653 | Walker = TouchedStack->PopFirst();
|
---|
654 | PredecessorList[Walker->nr] = NULL;
|
---|
655 | ShortestPathList[Walker->nr] = -1;
|
---|
656 | ColorList[Walker->nr] = white;
|
---|
657 | }
|
---|
658 | }
|
---|
659 | if (MinRingSize != -1) {
|
---|
660 | // go over all atoms
|
---|
661 | Root = start;
|
---|
662 | while(Root->next != end) {
|
---|
663 | Root = Root->next;
|
---|
664 |
|
---|
665 | if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
|
---|
666 | Walker = Root;
|
---|
667 | ShortestPathList[Walker->nr] = 0;
|
---|
668 | BFSStack->ClearStack(); // start with empty BFS stack
|
---|
669 | BFSStack->Push(Walker);
|
---|
670 | TouchedStack->Push(Walker);
|
---|
671 | //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
|
---|
672 | OtherAtom = Walker;
|
---|
673 | while (OtherAtom != NULL) { // look for Root
|
---|
674 | Walker = BFSStack->PopFirst();
|
---|
675 | //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
|
---|
676 | for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
|
---|
677 | Binder = ListOfBondsPerAtom[Walker->nr][i];
|
---|
678 | if ((Binder != BackEdge) || (NumberOfBondsPerAtom[Walker->nr] == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
|
---|
679 | OtherAtom = Binder->GetOtherAtom(Walker);
|
---|
680 | //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
|
---|
681 | if (ColorList[OtherAtom->nr] == white) {
|
---|
682 | TouchedStack->Push(OtherAtom);
|
---|
683 | ColorList[OtherAtom->nr] = lightgray;
|
---|
684 | PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
|
---|
685 | ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
|
---|
686 | //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
|
---|
687 | if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
|
---|
688 | MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];
|
---|
689 | OtherAtom = NULL; //break;
|
---|
690 | break;
|
---|
691 | } else
|
---|
692 | BFSStack->Push(OtherAtom);
|
---|
693 | } else {
|
---|
694 | //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
|
---|
695 | }
|
---|
696 | } else {
|
---|
697 | //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
|
---|
698 | }
|
---|
699 | }
|
---|
700 | ColorList[Walker->nr] = black;
|
---|
701 | //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
|
---|
702 | }
|
---|
703 |
|
---|
704 | // now clean the lists
|
---|
705 | while (!TouchedStack->IsEmpty()){
|
---|
706 | Walker = TouchedStack->PopFirst();
|
---|
707 | PredecessorList[Walker->nr] = NULL;
|
---|
708 | ShortestPathList[Walker->nr] = -1;
|
---|
709 | ColorList[Walker->nr] = white;
|
---|
710 | }
|
---|
711 | }
|
---|
712 | *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
|
---|
713 | }
|
---|
714 | *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
|
---|
715 | } else
|
---|
716 | *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
|
---|
717 |
|
---|
718 | Free(&PredecessorList);
|
---|
719 | Free(&ShortestPathList);
|
---|
720 | Free(&ColorList);
|
---|
721 | delete(BFSStack);
|
---|
722 | };
|
---|
723 |
|
---|
724 | /** Sets the next component number.
|
---|
725 | * This is O(N) as the number of bonds per atom is bound.
|
---|
726 | * \param *vertex atom whose next atom::*ComponentNr is to be set
|
---|
727 | * \param nr number to use
|
---|
728 | */
|
---|
729 | void molecule::SetNextComponentNumber(atom *vertex, int nr)
|
---|
730 | {
|
---|
731 | int i=0;
|
---|
732 | if (vertex != NULL) {
|
---|
733 | for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
|
---|
734 | if (vertex->ComponentNr[i] == -1) { // check if not yet used
|
---|
735 | vertex->ComponentNr[i] = nr;
|
---|
736 | break;
|
---|
737 | }
|
---|
738 | else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
|
---|
739 | break; // breaking here will not cause error!
|
---|
740 | }
|
---|
741 | if (i == NumberOfBondsPerAtom[vertex->nr])
|
---|
742 | cerr << "Error: All Component entries are already occupied!" << endl;
|
---|
743 | } else
|
---|
744 | cerr << "Error: Given vertex is NULL!" << endl;
|
---|
745 | };
|
---|
746 |
|
---|
747 | /** Output a list of flags, stating whether the bond was visited or not.
|
---|
748 | * \param *out output stream for debugging
|
---|
749 | */
|
---|
750 | void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
|
---|
751 | {
|
---|
752 | for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
|
---|
753 | *out << vertex->ComponentNr[i] << " ";
|
---|
754 | };
|
---|
755 |
|
---|
756 | /** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
|
---|
757 | */
|
---|
758 | void molecule::InitComponentNumbers()
|
---|
759 | {
|
---|
760 | atom *Walker = start;
|
---|
761 | while(Walker->next != end) {
|
---|
762 | Walker = Walker->next;
|
---|
763 | if (Walker->ComponentNr != NULL)
|
---|
764 | Free(&Walker->ComponentNr);
|
---|
765 | Walker->ComponentNr = Malloc<int>(NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
|
---|
766 | for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)
|
---|
767 | Walker->ComponentNr[i] = -1;
|
---|
768 | }
|
---|
769 | };
|
---|
770 |
|
---|
771 | /** Returns next unused bond for this atom \a *vertex or NULL of none exists.
|
---|
772 | * \param *vertex atom to regard
|
---|
773 | * \return bond class or NULL
|
---|
774 | */
|
---|
775 | bond * molecule::FindNextUnused(atom *vertex)
|
---|
776 | {
|
---|
777 | for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
|
---|
778 | if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
|
---|
779 | return(ListOfBondsPerAtom[vertex->nr][i]);
|
---|
780 | return NULL;
|
---|
781 | };
|
---|
782 |
|
---|
783 | /** Resets bond::Used flag of all bonds in this molecule.
|
---|
784 | * \return true - success, false - -failure
|
---|
785 | */
|
---|
786 | void molecule::ResetAllBondsToUnused()
|
---|
787 | {
|
---|
788 | bond *Binder = first;
|
---|
789 | while (Binder->next != last) {
|
---|
790 | Binder = Binder->next;
|
---|
791 | Binder->ResetUsed();
|
---|
792 | }
|
---|
793 | };
|
---|
794 |
|
---|
795 | /** Resets atom::nr to -1 of all atoms in this molecule.
|
---|
796 | */
|
---|
797 | void molecule::ResetAllAtomNumbers()
|
---|
798 | {
|
---|
799 | atom *Walker = start;
|
---|
800 | while (Walker->next != end) {
|
---|
801 | Walker = Walker->next;
|
---|
802 | Walker->GraphNr = -1;
|
---|
803 | }
|
---|
804 | };
|
---|
805 |
|
---|
806 | /** Output a list of flags, stating whether the bond was visited or not.
|
---|
807 | * \param *out output stream for debugging
|
---|
808 | * \param *list
|
---|
809 | */
|
---|
810 | void OutputAlreadyVisited(ofstream *out, int *list)
|
---|
811 | {
|
---|
812 | *out << Verbose(4) << "Already Visited Bonds:\t";
|
---|
813 | for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
|
---|
814 | *out << endl;
|
---|
815 | };
|
---|
816 |
|
---|
817 |
|
---|
818 | /** Storing the bond structure of a molecule to file.
|
---|
819 | * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
|
---|
820 | * \param *out output stream for debugging
|
---|
821 | * \param *path path to file
|
---|
822 | * \return true - file written successfully, false - writing failed
|
---|
823 | */
|
---|
824 | bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
|
---|
825 | {
|
---|
826 | ofstream AdjacencyFile;
|
---|
827 | atom *Walker = NULL;
|
---|
828 | stringstream line;
|
---|
829 | bool status = true;
|
---|
830 |
|
---|
831 | line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
|
---|
832 | AdjacencyFile.open(line.str().c_str(), ios::out);
|
---|
833 | *out << Verbose(1) << "Saving adjacency list ... ";
|
---|
834 | if (AdjacencyFile != NULL) {
|
---|
835 | Walker = start;
|
---|
836 | while(Walker->next != end) {
|
---|
837 | Walker = Walker->next;
|
---|
838 | AdjacencyFile << Walker->nr << "\t";
|
---|
839 | for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
|
---|
840 | AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
|
---|
841 | AdjacencyFile << endl;
|
---|
842 | }
|
---|
843 | AdjacencyFile.close();
|
---|
844 | *out << Verbose(1) << "done." << endl;
|
---|
845 | } else {
|
---|
846 | *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
|
---|
847 | status = false;
|
---|
848 | }
|
---|
849 |
|
---|
850 | return status;
|
---|
851 | };
|
---|
852 |
|
---|
853 | /** Checks contents of adjacency file against bond structure in structure molecule.
|
---|
854 | * \param *out output stream for debugging
|
---|
855 | * \param *path path to file
|
---|
856 | * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
|
---|
857 | * \return true - structure is equal, false - not equivalence
|
---|
858 | */
|
---|
859 | bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
|
---|
860 | {
|
---|
861 | ifstream File;
|
---|
862 | stringstream filename;
|
---|
863 | bool status = true;
|
---|
864 | char *buffer = Malloc<char>(MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
|
---|
865 |
|
---|
866 | filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
|
---|
867 | File.open(filename.str().c_str(), ios::out);
|
---|
868 | *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
|
---|
869 | if (File != NULL) {
|
---|
870 | // allocate storage structure
|
---|
871 | int NonMatchNumber = 0; // will number of atoms with differing bond structure
|
---|
872 | int *CurrentBonds = Malloc<int>(8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
|
---|
873 | int CurrentBondsOfAtom;
|
---|
874 |
|
---|
875 | // Parse the file line by line and count the bonds
|
---|
876 | while (!File.eof()) {
|
---|
877 | File.getline(buffer, MAXSTRINGSIZE);
|
---|
878 | stringstream line;
|
---|
879 | line.str(buffer);
|
---|
880 | int AtomNr = -1;
|
---|
881 | line >> AtomNr;
|
---|
882 | CurrentBondsOfAtom = -1; // we count one too far due to line end
|
---|
883 | // parse into structure
|
---|
884 | if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
|
---|
885 | while (!line.eof())
|
---|
886 | line >> CurrentBonds[ ++CurrentBondsOfAtom ];
|
---|
887 | // compare against present bonds
|
---|
888 | //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
|
---|
889 | if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
|
---|
890 | for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
|
---|
891 | int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
|
---|
892 | int j = 0;
|
---|
893 | for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
|
---|
894 | if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
|
---|
895 | ListOfAtoms[AtomNr] = NULL;
|
---|
896 | NonMatchNumber++;
|
---|
897 | status = false;
|
---|
898 | //out << "[" << id << "]\t";
|
---|
899 | } else {
|
---|
900 | //out << id << "\t";
|
---|
901 | }
|
---|
902 | }
|
---|
903 | //out << endl;
|
---|
904 | } else {
|
---|
905 | *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
|
---|
906 | status = false;
|
---|
907 | }
|
---|
908 | }
|
---|
909 | }
|
---|
910 | File.close();
|
---|
911 | File.clear();
|
---|
912 | if (status) { // if equal we parse the KeySetFile
|
---|
913 | *out << Verbose(1) << "done: Equal." << endl;
|
---|
914 | status = true;
|
---|
915 | } else
|
---|
916 | *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
|
---|
917 | Free(&CurrentBonds);
|
---|
918 | } else {
|
---|
919 | *out << Verbose(1) << "Adjacency file not found." << endl;
|
---|
920 | status = false;
|
---|
921 | }
|
---|
922 | *out << endl;
|
---|
923 | Free(&buffer);
|
---|
924 |
|
---|
925 | return status;
|
---|
926 | };
|
---|
927 |
|
---|
928 |
|
---|
929 | /** Picks from a global stack with all back edges the ones in the fragment.
|
---|
930 | * \param *out output stream for debugging
|
---|
931 | * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
|
---|
932 | * \param *ReferenceStack stack with all the back egdes
|
---|
933 | * \param *LocalStack stack to be filled
|
---|
934 | * \return true - everything ok, false - ReferenceStack was empty
|
---|
935 | */
|
---|
936 | bool molecule::PickLocalBackEdges(ofstream *out, atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack)
|
---|
937 | {
|
---|
938 | bool status = true;
|
---|
939 | if (ReferenceStack->IsEmpty()) {
|
---|
940 | cerr << "ReferenceStack is empty!" << endl;
|
---|
941 | return false;
|
---|
942 | }
|
---|
943 | bond *Binder = ReferenceStack->PopFirst();
|
---|
944 | bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
|
---|
945 | atom *Walker = NULL, *OtherAtom = NULL;
|
---|
946 | ReferenceStack->Push(Binder);
|
---|
947 |
|
---|
948 | do { // go through all bonds and push local ones
|
---|
949 | Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
|
---|
950 | if (Walker != NULL) // if this Walker exists in the subgraph ...
|
---|
951 | for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through the local list of bonds
|
---|
952 | OtherAtom = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
|
---|
953 | if (OtherAtom == ListOfLocalAtoms[Binder->rightatom->nr]) { // found the bond
|
---|
954 | LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]);
|
---|
955 | *out << Verbose(3) << "Found local edge " << *(ListOfBondsPerAtom[Walker->nr][i]) << "." << endl;
|
---|
956 | break;
|
---|
957 | }
|
---|
958 | }
|
---|
959 | Binder = ReferenceStack->PopFirst(); // loop the stack for next item
|
---|
960 | *out << Verbose(3) << "Current candidate edge " << Binder << "." << endl;
|
---|
961 | ReferenceStack->Push(Binder);
|
---|
962 | } while (FirstBond != Binder);
|
---|
963 |
|
---|
964 | return status;
|
---|
965 | };
|
---|
966 |
|
---|
967 |
|
---|
968 | /** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
|
---|
969 | * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
|
---|
970 | * white and putting into queue.
|
---|
971 | * \param *out output stream for debugging
|
---|
972 | * \param *Mol Molecule class to add atoms to
|
---|
973 | * \param **AddedAtomList list with added atom pointers, index is atom father's number
|
---|
974 | * \param **AddedBondList list with added bond pointers, index is bond father's number
|
---|
975 | * \param *Root root vertex for BFS
|
---|
976 | * \param *Bond bond not to look beyond
|
---|
977 | * \param BondOrder maximum distance for vertices to add
|
---|
978 | * \param IsAngstroem lengths are in angstroem or bohrradii
|
---|
979 | */
|
---|
980 | void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
|
---|
981 | {
|
---|
982 | atom **PredecessorList = Malloc<atom*>(AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
|
---|
983 | int *ShortestPathList = Malloc<int>(AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
|
---|
984 | enum Shading *ColorList = Malloc<enum Shading>(AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
|
---|
985 | class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
|
---|
986 | atom *Walker = NULL, *OtherAtom = NULL;
|
---|
987 | bond *Binder = NULL;
|
---|
988 |
|
---|
989 | // add Root if not done yet
|
---|
990 | AtomStack->ClearStack();
|
---|
991 | if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
|
---|
992 | AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
|
---|
993 | AtomStack->Push(Root);
|
---|
994 |
|
---|
995 | // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
|
---|
996 | for (int i=AtomCount;i--;) {
|
---|
997 | PredecessorList[i] = NULL;
|
---|
998 | ShortestPathList[i] = -1;
|
---|
999 | if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
|
---|
1000 | ColorList[i] = lightgray;
|
---|
1001 | else
|
---|
1002 | ColorList[i] = white;
|
---|
1003 | }
|
---|
1004 | ShortestPathList[Root->nr] = 0;
|
---|
1005 |
|
---|
1006 | // and go on ... Queue always contains all lightgray vertices
|
---|
1007 | while (!AtomStack->IsEmpty()) {
|
---|
1008 | // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
|
---|
1009 | // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
|
---|
1010 | // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
|
---|
1011 | // followed by n+1 till top of stack.
|
---|
1012 | Walker = AtomStack->PopFirst(); // pop oldest added
|
---|
1013 | *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
|
---|
1014 | for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
|
---|
1015 | Binder = ListOfBondsPerAtom[Walker->nr][i];
|
---|
1016 | if (Binder != NULL) { // don't look at bond equal NULL
|
---|
1017 | OtherAtom = Binder->GetOtherAtom(Walker);
|
---|
1018 | *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
|
---|
1019 | if (ColorList[OtherAtom->nr] == white) {
|
---|
1020 | if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
|
---|
1021 | ColorList[OtherAtom->nr] = lightgray;
|
---|
1022 | PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
|
---|
1023 | ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
|
---|
1024 | *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
|
---|
1025 | if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
|
---|
1026 | *out << Verbose(3);
|
---|
1027 | if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
|
---|
1028 | AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
|
---|
1029 | *out << "Added OtherAtom " << OtherAtom->Name;
|
---|
1030 | AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
|
---|
1031 | AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
|
---|
1032 | AddedBondList[Binder->nr]->Type = Binder->Type;
|
---|
1033 | *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
|
---|
1034 | } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
|
---|
1035 | *out << "Not adding OtherAtom " << OtherAtom->Name;
|
---|
1036 | if (AddedBondList[Binder->nr] == NULL) {
|
---|
1037 | AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
|
---|
1038 | AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
|
---|
1039 | AddedBondList[Binder->nr]->Type = Binder->Type;
|
---|
1040 | *out << ", added Bond " << *(AddedBondList[Binder->nr]);
|
---|
1041 | } else
|
---|
1042 | *out << ", not added Bond ";
|
---|
1043 | }
|
---|
1044 | *out << ", putting OtherAtom into queue." << endl;
|
---|
1045 | AtomStack->Push(OtherAtom);
|
---|
1046 | } else { // out of bond order, then replace
|
---|
1047 | if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
|
---|
1048 | ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
|
---|
1049 | if (Binder == Bond)
|
---|
1050 | *out << Verbose(3) << "Not Queueing, is the Root bond";
|
---|
1051 | else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
|
---|
1052 | *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
|
---|
1053 | if (!Binder->Cyclic)
|
---|
1054 | *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
|
---|
1055 | if (AddedBondList[Binder->nr] == NULL) {
|
---|
1056 | if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
|
---|
1057 | AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
|
---|
1058 | AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
|
---|
1059 | AddedBondList[Binder->nr]->Type = Binder->Type;
|
---|
1060 | } else {
|
---|
1061 | #ifdef ADDHYDROGEN
|
---|
1062 | if (!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))
|
---|
1063 | exit(1);
|
---|
1064 | #endif
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 | } else {
|
---|
1069 | *out << Verbose(3) << "Not Adding, has already been visited." << endl;
|
---|
1070 | // This has to be a cyclic bond, check whether it's present ...
|
---|
1071 | if (AddedBondList[Binder->nr] == NULL) {
|
---|
1072 | if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
|
---|
1073 | AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
|
---|
1074 | AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
|
---|
1075 | AddedBondList[Binder->nr]->Type = Binder->Type;
|
---|
1076 | } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
|
---|
1077 | #ifdef ADDHYDROGEN
|
---|
1078 | if(!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))
|
---|
1079 | exit(1);
|
---|
1080 | #endif
|
---|
1081 | }
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 | ColorList[Walker->nr] = black;
|
---|
1087 | *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
|
---|
1088 | }
|
---|
1089 | Free(&PredecessorList);
|
---|
1090 | Free(&ShortestPathList);
|
---|
1091 | Free(&ColorList);
|
---|
1092 | delete(AtomStack);
|
---|
1093 | };
|
---|
1094 |
|
---|
1095 | /** Adds bond structure to this molecule from \a Father molecule.
|
---|
1096 | * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
|
---|
1097 | * with end points present in this molecule, bond is created in this molecule.
|
---|
1098 | * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
|
---|
1099 | * \param *out output stream for debugging
|
---|
1100 | * \param *Father father molecule
|
---|
1101 | * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
|
---|
1102 | * \todo not checked, not fully working probably
|
---|
1103 | */
|
---|
1104 | bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
|
---|
1105 | {
|
---|
1106 | atom *Walker = NULL, *OtherAtom = NULL;
|
---|
1107 | bool status = true;
|
---|
1108 | atom **ParentList = Malloc<atom*>(Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
|
---|
1109 |
|
---|
1110 | *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
|
---|
1111 |
|
---|
1112 | // reset parent list
|
---|
1113 | *out << Verbose(3) << "Resetting ParentList." << endl;
|
---|
1114 | for (int i=Father->AtomCount;i--;)
|
---|
1115 | ParentList[i] = NULL;
|
---|
1116 |
|
---|
1117 | // fill parent list with sons
|
---|
1118 | *out << Verbose(3) << "Filling Parent List." << endl;
|
---|
1119 | Walker = start;
|
---|
1120 | while (Walker->next != end) {
|
---|
1121 | Walker = Walker->next;
|
---|
1122 | ParentList[Walker->father->nr] = Walker;
|
---|
1123 | // Outputting List for debugging
|
---|
1124 | *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
|
---|
1125 | }
|
---|
1126 |
|
---|
1127 | // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
|
---|
1128 | *out << Verbose(3) << "Creating bonds." << endl;
|
---|
1129 | Walker = Father->start;
|
---|
1130 | while (Walker->next != Father->end) {
|
---|
1131 | Walker = Walker->next;
|
---|
1132 | if (ParentList[Walker->nr] != NULL) {
|
---|
1133 | if (ParentList[Walker->nr]->father != Walker) {
|
---|
1134 | status = false;
|
---|
1135 | } else {
|
---|
1136 | for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
|
---|
1137 | OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
|
---|
1138 | if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
|
---|
1139 | *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
|
---|
1140 | AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
|
---|
1141 | }
|
---|
1142 | }
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | Free(&ParentList);
|
---|
1148 | *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
|
---|
1149 | return status;
|
---|
1150 | };
|
---|
1151 |
|
---|
1152 |
|
---|
1153 | /** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
|
---|
1154 | * \param *out output stream for debugging
|
---|
1155 | * \param *Fragment Keyset of fragment's vertices
|
---|
1156 | * \return true - connected, false - disconnected
|
---|
1157 | * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
|
---|
1158 | */
|
---|
1159 | bool molecule::CheckForConnectedSubgraph(ofstream *out, KeySet *Fragment)
|
---|
1160 | {
|
---|
1161 | atom *Walker = NULL, *Walker2 = NULL;
|
---|
1162 | bool BondStatus = false;
|
---|
1163 | int size;
|
---|
1164 |
|
---|
1165 | *out << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
|
---|
1166 | *out << Verbose(2) << "Disconnected atom: ";
|
---|
1167 |
|
---|
1168 | // count number of atoms in graph
|
---|
1169 | size = 0;
|
---|
1170 | for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
|
---|
1171 | size++;
|
---|
1172 | if (size > 1)
|
---|
1173 | for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
|
---|
1174 | Walker = FindAtom(*runner);
|
---|
1175 | BondStatus = false;
|
---|
1176 | for(KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
|
---|
1177 | Walker2 = FindAtom(*runners);
|
---|
1178 | for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
|
---|
1179 | if (ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker) == Walker2) {
|
---|
1180 | BondStatus = true;
|
---|
1181 | break;
|
---|
1182 | }
|
---|
1183 | if (BondStatus)
|
---|
1184 | break;
|
---|
1185 | }
|
---|
1186 | }
|
---|
1187 | if (!BondStatus) {
|
---|
1188 | *out << (*Walker) << endl;
|
---|
1189 | return false;
|
---|
1190 | }
|
---|
1191 | }
|
---|
1192 | else {
|
---|
1193 | *out << "none." << endl;
|
---|
1194 | return true;
|
---|
1195 | }
|
---|
1196 | *out << "none." << endl;
|
---|
1197 |
|
---|
1198 | *out << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
|
---|
1199 |
|
---|
1200 | return true;
|
---|
1201 | }
|
---|