| 1 | /* | 
|---|
| 2 | * molecule_dynamics.cpp | 
|---|
| 3 | * | 
|---|
| 4 | *  Created on: Oct 5, 2009 | 
|---|
| 5 | *      Author: heber | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "Helpers/MemDebug.hpp" | 
|---|
| 9 |  | 
|---|
| 10 | #include "World.hpp" | 
|---|
| 11 | #include "atom.hpp" | 
|---|
| 12 | #include "config.hpp" | 
|---|
| 13 | #include "element.hpp" | 
|---|
| 14 | #include "Helpers/Info.hpp" | 
|---|
| 15 | #include "Helpers/Verbose.hpp" | 
|---|
| 16 | #include "Helpers/Log.hpp" | 
|---|
| 17 | #include "molecule.hpp" | 
|---|
| 18 | #include "parser.hpp" | 
|---|
| 19 | #include "LinearAlgebra/Plane.hpp" | 
|---|
| 20 | #include "ThermoStatContainer.hpp" | 
|---|
| 21 |  | 
|---|
| 22 | #include <gsl/gsl_matrix.h> | 
|---|
| 23 | #include <gsl/gsl_vector.h> | 
|---|
| 24 | #include <gsl/gsl_linalg.h> | 
|---|
| 25 |  | 
|---|
| 26 | /************************************* Functions for class molecule *********************************/ | 
|---|
| 27 |  | 
|---|
| 28 | /** Penalizes long trajectories. | 
|---|
| 29 | * \param *Walker atom to check against others | 
|---|
| 30 | * \param *mol molecule with other atoms | 
|---|
| 31 | * \param &Params constraint potential parameters | 
|---|
| 32 | * \return penalty times each distance | 
|---|
| 33 | */ | 
|---|
| 34 | double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params) | 
|---|
| 35 | { | 
|---|
| 36 | gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM); | 
|---|
| 37 | gsl_vector *x = gsl_vector_alloc(NDIM); | 
|---|
| 38 | atom *Sprinter = NULL; | 
|---|
| 39 | Vector trajectory1, trajectory2, normal, TestVector; | 
|---|
| 40 | double Norm1, Norm2, tmp, result = 0.; | 
|---|
| 41 |  | 
|---|
| 42 | for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { | 
|---|
| 43 | if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++) | 
|---|
| 44 | break; | 
|---|
| 45 | // determine normalized trajectories direction vector (n1, n2) | 
|---|
| 46 | Sprinter = Params.PermutationMap[Walker->nr];   // find first target point | 
|---|
| 47 | trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); | 
|---|
| 48 | trajectory1.Normalize(); | 
|---|
| 49 | Norm1 = trajectory1.Norm(); | 
|---|
| 50 | Sprinter = Params.PermutationMap[(*iter)->nr];   // find second target point | 
|---|
| 51 | trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep); | 
|---|
| 52 | trajectory2.Normalize(); | 
|---|
| 53 | Norm2 = trajectory1.Norm(); | 
|---|
| 54 | // check whether either is zero() | 
|---|
| 55 | if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) { | 
|---|
| 56 | tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep)); | 
|---|
| 57 | } else if (Norm1 < MYEPSILON) { | 
|---|
| 58 | Sprinter = Params.PermutationMap[Walker->nr];   // find first target point | 
|---|
| 59 | trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep); | 
|---|
| 60 | trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything | 
|---|
| 61 | trajectory1 -= trajectory2;   // project the part in norm direction away | 
|---|
| 62 | tmp = trajectory1.Norm();  // remaining norm is distance | 
|---|
| 63 | } else if (Norm2 < MYEPSILON) { | 
|---|
| 64 | Sprinter = Params.PermutationMap[(*iter)->nr];   // find second target point | 
|---|
| 65 | trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);  // copy second offset | 
|---|
| 66 | trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything | 
|---|
| 67 | trajectory2 -= trajectory1;   // project the part in norm direction away | 
|---|
| 68 | tmp = trajectory2.Norm();  // remaining norm is distance | 
|---|
| 69 | } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent | 
|---|
| 70 | //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: "; | 
|---|
| 71 | //        Log() << Verbose(0) << trajectory1; | 
|---|
| 72 | //        Log() << Verbose(0) << " and "; | 
|---|
| 73 | //        Log() << Verbose(0) << trajectory2; | 
|---|
| 74 | tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep)); | 
|---|
| 75 | //        Log() << Verbose(0) << " with distance " << tmp << "." << endl; | 
|---|
| 76 | } else { // determine distance by finding minimum distance | 
|---|
| 77 | //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent "; | 
|---|
| 78 | //        Log() << Verbose(0) << endl; | 
|---|
| 79 | //        Log() << Verbose(0) << "First Trajectory: "; | 
|---|
| 80 | //        Log() << Verbose(0) << trajectory1 << endl; | 
|---|
| 81 | //        Log() << Verbose(0) << "Second Trajectory: "; | 
|---|
| 82 | //        Log() << Verbose(0) << trajectory2 << endl; | 
|---|
| 83 | // determine normal vector for both | 
|---|
| 84 | normal = Plane(trajectory1, trajectory2,0).getNormal(); | 
|---|
| 85 | // print all vectors for debugging | 
|---|
| 86 | //        Log() << Verbose(0) << "Normal vector in between: "; | 
|---|
| 87 | //        Log() << Verbose(0) << normal << endl; | 
|---|
| 88 | // setup matrix | 
|---|
| 89 | for (int i=NDIM;i--;) { | 
|---|
| 90 | gsl_matrix_set(A, 0, i, trajectory1[i]); | 
|---|
| 91 | gsl_matrix_set(A, 1, i, trajectory2[i]); | 
|---|
| 92 | gsl_matrix_set(A, 2, i, normal[i]); | 
|---|
| 93 | gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - (*iter)->Trajectory.R.at(Params.startstep)[i])); | 
|---|
| 94 | } | 
|---|
| 95 | // solve the linear system by Householder transformations | 
|---|
| 96 | gsl_linalg_HH_svx(A, x); | 
|---|
| 97 | // distance from last component | 
|---|
| 98 | tmp = gsl_vector_get(x,2); | 
|---|
| 99 | //        Log() << Verbose(0) << " with distance " << tmp << "." << endl; | 
|---|
| 100 | // test whether we really have the intersection (by checking on c_1 and c_2) | 
|---|
| 101 | trajectory1.Scale(gsl_vector_get(x,0)); | 
|---|
| 102 | trajectory2.Scale(gsl_vector_get(x,1)); | 
|---|
| 103 | normal.Scale(gsl_vector_get(x,2)); | 
|---|
| 104 | TestVector = (*iter)->Trajectory.R.at(Params.startstep) + trajectory2 + normal | 
|---|
| 105 | - (Walker->Trajectory.R.at(Params.startstep) + trajectory1); | 
|---|
| 106 | if (TestVector.Norm() < MYEPSILON) { | 
|---|
| 107 | //          Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl; | 
|---|
| 108 | } else { | 
|---|
| 109 | //          Log() << Verbose(2) << "Test: failed.\tIntersection is off by "; | 
|---|
| 110 | //          Log() << Verbose(0) << TestVector; | 
|---|
| 111 | //          Log() << Verbose(0) << "." << endl; | 
|---|
| 112 | } | 
|---|
| 113 | } | 
|---|
| 114 | // add up | 
|---|
| 115 | tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; | 
|---|
| 116 | if (fabs(tmp) > MYEPSILON) { | 
|---|
| 117 | result += Params.PenaltyConstants[1] * 1./tmp; | 
|---|
| 118 | //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl; | 
|---|
| 119 | } | 
|---|
| 120 | } | 
|---|
| 121 | return result; | 
|---|
| 122 | }; | 
|---|
| 123 |  | 
|---|
| 124 | /** Penalizes atoms heading to same target. | 
|---|
| 125 | * \param *Walker atom to check against others | 
|---|
| 126 | * \param *mol molecule with other atoms | 
|---|
| 127 | * \param &Params constrained potential parameters | 
|---|
| 128 | * \return \a penalty times the number of equal targets | 
|---|
| 129 | */ | 
|---|
| 130 | double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params) | 
|---|
| 131 | { | 
|---|
| 132 | double result = 0.; | 
|---|
| 133 | for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { | 
|---|
| 134 | if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[(*iter)->nr]) && (Walker->nr < (*iter)->nr)) { | 
|---|
| 135 | //    atom *Sprinter = PermutationMap[Walker->nr]; | 
|---|
| 136 | //        Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at "; | 
|---|
| 137 | //        Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep); | 
|---|
| 138 | //        Log() << Verbose(0) << ", penalting." << endl; | 
|---|
| 139 | result += Params.PenaltyConstants[2]; | 
|---|
| 140 | //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl; | 
|---|
| 141 | } | 
|---|
| 142 | } | 
|---|
| 143 | return result; | 
|---|
| 144 | }; | 
|---|
| 145 |  | 
|---|
| 146 | /** Evaluates the potential energy used for constrained molecular dynamics. | 
|---|
| 147 | * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$ | 
|---|
| 148 | *     where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between | 
|---|
| 149 | *     trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point. | 
|---|
| 150 | * Note that for the second term we have to solve the following linear system: | 
|---|
| 151 | * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants, | 
|---|
| 152 | * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$, | 
|---|
| 153 | * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines. | 
|---|
| 154 | * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration() | 
|---|
| 155 | * \param *out output stream for debugging | 
|---|
| 156 | * \param &Params constrained potential parameters | 
|---|
| 157 | * \return potential energy | 
|---|
| 158 | * \note This routine is scaling quadratically which is not optimal. | 
|---|
| 159 | * \todo There's a bit double counting going on for the first time, bu nothing to worry really about. | 
|---|
| 160 | */ | 
|---|
| 161 | double molecule::ConstrainedPotential(struct EvaluatePotential &Params) | 
|---|
| 162 | { | 
|---|
| 163 | double tmp = 0.; | 
|---|
| 164 | double result = 0.; | 
|---|
| 165 | // go through every atom | 
|---|
| 166 | atom *Runner = NULL; | 
|---|
| 167 | for (molecule::const_iterator iter = begin(); iter != end(); ++iter) { | 
|---|
| 168 | // first term: distance to target | 
|---|
| 169 | Runner = Params.PermutationMap[(*iter)->nr];   // find target point | 
|---|
| 170 | tmp = ((*iter)->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep))); | 
|---|
| 171 | tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; | 
|---|
| 172 | result += Params.PenaltyConstants[0] * tmp; | 
|---|
| 173 | //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl; | 
|---|
| 174 |  | 
|---|
| 175 | // second term: sum of distances to other trajectories | 
|---|
| 176 | result += SumDistanceOfTrajectories((*iter), this, Params); | 
|---|
| 177 |  | 
|---|
| 178 | // third term: penalty for equal targets | 
|---|
| 179 | result += PenalizeEqualTargets((*iter), this, Params); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | return result; | 
|---|
| 183 | }; | 
|---|
| 184 |  | 
|---|
| 185 | /** print the current permutation map. | 
|---|
| 186 | * \param *out output stream for debugging | 
|---|
| 187 | * \param &Params constrained potential parameters | 
|---|
| 188 | * \param AtomCount number of atoms | 
|---|
| 189 | */ | 
|---|
| 190 | void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params) | 
|---|
| 191 | { | 
|---|
| 192 | stringstream zeile1, zeile2; | 
|---|
| 193 | int *DoubleList = new int[AtomCount]; | 
|---|
| 194 | for(int i=0;i<AtomCount;i++) | 
|---|
| 195 | DoubleList[i] = 0; | 
|---|
| 196 | int doubles = 0; | 
|---|
| 197 | zeile1 << "PermutationMap: "; | 
|---|
| 198 | zeile2 << "                "; | 
|---|
| 199 | for (int i=0;i<AtomCount;i++) { | 
|---|
| 200 | Params.DoubleList[Params.PermutationMap[i]->nr]++; | 
|---|
| 201 | zeile1 << i << " "; | 
|---|
| 202 | zeile2 << Params.PermutationMap[i]->nr << " "; | 
|---|
| 203 | } | 
|---|
| 204 | for (int i=0;i<AtomCount;i++) | 
|---|
| 205 | if (Params.DoubleList[i] > 1) | 
|---|
| 206 | doubles++; | 
|---|
| 207 | if (doubles >0) | 
|---|
| 208 | DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl); | 
|---|
| 209 | delete[](DoubleList); | 
|---|
| 210 | //  Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl; | 
|---|
| 211 | }; | 
|---|
| 212 |  | 
|---|
| 213 | /** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList. | 
|---|
| 214 | * \param *mol molecule to scan distances in | 
|---|
| 215 | * \param &Params constrained potential parameters | 
|---|
| 216 | */ | 
|---|
| 217 | void FillDistanceList(molecule *mol, struct EvaluatePotential &Params) | 
|---|
| 218 | { | 
|---|
| 219 | for (int i=mol->getAtomCount(); i--;) { | 
|---|
| 220 | Params.DistanceList[i] = new DistanceMap;    // is the distance sorted target list per atom | 
|---|
| 221 | Params.DistanceList[i]->clear(); | 
|---|
| 222 | } | 
|---|
| 223 |  | 
|---|
| 224 | for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { | 
|---|
| 225 | for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) { | 
|---|
| 226 | Params.DistanceList[(*iter)->nr]->insert( DistancePair((*iter)->Trajectory.R.at(Params.startstep).distance((*runner)->Trajectory.R.at(Params.endstep)), (*runner)) ); | 
|---|
| 227 | } | 
|---|
| 228 | } | 
|---|
| 229 | }; | 
|---|
| 230 |  | 
|---|
| 231 | /** initialize lists. | 
|---|
| 232 | * \param *out output stream for debugging | 
|---|
| 233 | * \param *mol molecule to scan distances in | 
|---|
| 234 | * \param &Params constrained potential parameters | 
|---|
| 235 | */ | 
|---|
| 236 | void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params) | 
|---|
| 237 | { | 
|---|
| 238 | for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { | 
|---|
| 239 | Params.StepList[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin();    // stores the step to the next iterator that could be a possible next target | 
|---|
| 240 | Params.PermutationMap[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin()->second;   // always pick target with the smallest distance | 
|---|
| 241 | Params.DoubleList[Params.DistanceList[(*iter)->nr]->begin()->second->nr]++;            // increase this target's source count (>1? not injective) | 
|---|
| 242 | Params.DistanceIterators[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin();    // and remember which one we picked | 
|---|
| 243 | DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->nr]->begin()->first << "." << endl); | 
|---|
| 244 | } | 
|---|
| 245 | }; | 
|---|
| 246 |  | 
|---|
| 247 | /** Try the next nearest neighbour in order to make the permutation map injective. | 
|---|
| 248 | * \param *out output stream for debugging | 
|---|
| 249 | * \param *mol molecule | 
|---|
| 250 | * \param *Walker atom to change its target | 
|---|
| 251 | * \param &OldPotential old value of constraint potential to see if we do better with new target | 
|---|
| 252 | * \param &Params constrained potential parameters | 
|---|
| 253 | */ | 
|---|
| 254 | double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params) | 
|---|
| 255 | { | 
|---|
| 256 | double Potential = 0; | 
|---|
| 257 | DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr];  // store old base | 
|---|
| 258 | do { | 
|---|
| 259 | NewBase++;  // take next further distance in distance to targets list that's a target of no one | 
|---|
| 260 | } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end())); | 
|---|
| 261 | if (NewBase != Params.DistanceList[Walker->nr]->end()) { | 
|---|
| 262 | Params.PermutationMap[Walker->nr] = NewBase->second; | 
|---|
| 263 | Potential = fabs(mol->ConstrainedPotential(Params)); | 
|---|
| 264 | if (Potential > OldPotential) { // undo | 
|---|
| 265 | Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; | 
|---|
| 266 | } else {  // do | 
|---|
| 267 | Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--;  // decrease the old entry in the doubles list | 
|---|
| 268 | Params.DoubleList[NewBase->second->nr]++;    // increase the old entry in the doubles list | 
|---|
| 269 | Params.DistanceIterators[Walker->nr] = NewBase; | 
|---|
| 270 | OldPotential = Potential; | 
|---|
| 271 | DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl); | 
|---|
| 272 | } | 
|---|
| 273 | } | 
|---|
| 274 | return Potential; | 
|---|
| 275 | }; | 
|---|
| 276 |  | 
|---|
| 277 | /** Permutes \a **&PermutationMap until the penalty is below constants[2]. | 
|---|
| 278 | * \param *out output stream for debugging | 
|---|
| 279 | * \param *mol molecule to scan distances in | 
|---|
| 280 | * \param &Params constrained potential parameters | 
|---|
| 281 | */ | 
|---|
| 282 | void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params) | 
|---|
| 283 | { | 
|---|
| 284 | molecule::const_iterator iter = mol->begin(); | 
|---|
| 285 | DistanceMap::iterator NewBase; | 
|---|
| 286 | double Potential = fabs(mol->ConstrainedPotential(Params)); | 
|---|
| 287 |  | 
|---|
| 288 | if (mol->empty()) { | 
|---|
| 289 | eLog() << Verbose(1) << "Molecule is empty." << endl; | 
|---|
| 290 | return; | 
|---|
| 291 | } | 
|---|
| 292 | while ((Potential) > Params.PenaltyConstants[2]) { | 
|---|
| 293 | PrintPermutationMap(mol->getAtomCount(), Params); | 
|---|
| 294 | iter++; | 
|---|
| 295 | if (iter == mol->end()) // round-robin at the end | 
|---|
| 296 | iter = mol->begin(); | 
|---|
| 297 | if (Params.DoubleList[Params.DistanceIterators[(*iter)->nr]->second->nr] <= 1)  // no need to make those injective that aren't | 
|---|
| 298 | continue; | 
|---|
| 299 | // now, try finding a new one | 
|---|
| 300 | Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params); | 
|---|
| 301 | } | 
|---|
| 302 | for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1 | 
|---|
| 303 | if (Params.DoubleList[i] > 1) { | 
|---|
| 304 | DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl); | 
|---|
| 305 | performCriticalExit(); | 
|---|
| 306 | } | 
|---|
| 307 | DoLog(1) && (Log() << Verbose(1) << "done." << endl); | 
|---|
| 308 | }; | 
|---|
| 309 |  | 
|---|
| 310 | /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy. | 
|---|
| 311 | * We do the following: | 
|---|
| 312 | *  -# Generate a distance list from all source to all target points | 
|---|
| 313 | *  -# Sort this per source point | 
|---|
| 314 | *  -# Take for each source point the target point with minimum distance, use this as initial permutation | 
|---|
| 315 | *  -# check whether molecule::ConstrainedPotential() is greater than injective penalty | 
|---|
| 316 | *     -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential. | 
|---|
| 317 | *  -# Next, we only apply transformations that keep the injectivity of the permutations list. | 
|---|
| 318 | *  -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target | 
|---|
| 319 | *     point and try to change it for one with lesser distance, or for the next one with greater distance, but only | 
|---|
| 320 | *     if this decreases the conditional potential. | 
|---|
| 321 | *  -# finished. | 
|---|
| 322 | *  -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree, | 
|---|
| 323 | *     that the total force is always pointing in direction of the constraint force (ensuring that we move in the | 
|---|
| 324 | *     right direction). | 
|---|
| 325 | *  -# Finally, we calculate the potential energy and return. | 
|---|
| 326 | * \param *out output stream for debugging | 
|---|
| 327 | * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration | 
|---|
| 328 | * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) | 
|---|
| 329 | * \param endstep step giving final position in constrained MD | 
|---|
| 330 | * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) | 
|---|
| 331 | * \sa molecule::VerletForceIntegration() | 
|---|
| 332 | * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2) | 
|---|
| 333 | * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order | 
|---|
| 334 | *       to ensure they're properties (e.g. constants[2] always greater than the energy of the system). | 
|---|
| 335 | * \bug this all is not O(N log N) but O(N^2) | 
|---|
| 336 | */ | 
|---|
| 337 | double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem) | 
|---|
| 338 | { | 
|---|
| 339 | double Potential, OldPotential, OlderPotential; | 
|---|
| 340 | struct EvaluatePotential Params; | 
|---|
| 341 | Params.PermutationMap = new atom *[getAtomCount()]; | 
|---|
| 342 | Params.DistanceList = new DistanceMap *[getAtomCount()]; | 
|---|
| 343 | Params.DistanceIterators = new DistanceMap::iterator[getAtomCount()]; | 
|---|
| 344 | Params.DoubleList = new int[getAtomCount()]; | 
|---|
| 345 | Params.StepList = new DistanceMap::iterator[getAtomCount()]; | 
|---|
| 346 | int round; | 
|---|
| 347 | atom *Sprinter = NULL; | 
|---|
| 348 | DistanceMap::iterator Rider, Strider; | 
|---|
| 349 |  | 
|---|
| 350 | // set to zero | 
|---|
| 351 | for (int i=0;i<getAtomCount();i++) { | 
|---|
| 352 | Params.PermutationMap[i] = NULL; | 
|---|
| 353 | Params.DoubleList[i] = 0; | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | /// Minimise the potential | 
|---|
| 357 | // set Lagrange multiplier constants | 
|---|
| 358 | Params.PenaltyConstants[0] = 10.; | 
|---|
| 359 | Params.PenaltyConstants[1] = 1.; | 
|---|
| 360 | Params.PenaltyConstants[2] = 1e+7;    // just a huge penalty | 
|---|
| 361 | // generate the distance list | 
|---|
| 362 | DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl); | 
|---|
| 363 | FillDistanceList(this, Params); | 
|---|
| 364 |  | 
|---|
| 365 | // create the initial PermutationMap (source -> target) | 
|---|
| 366 | CreateInitialLists(this, Params); | 
|---|
| 367 |  | 
|---|
| 368 | // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it | 
|---|
| 369 | DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl); | 
|---|
| 370 | MakeInjectivePermutation(this, Params); | 
|---|
| 371 | delete[](Params.DoubleList); | 
|---|
| 372 |  | 
|---|
| 373 | // argument minimise the constrained potential in this injective PermutationMap | 
|---|
| 374 | DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl); | 
|---|
| 375 | OldPotential = 1e+10; | 
|---|
| 376 | round = 0; | 
|---|
| 377 | do { | 
|---|
| 378 | DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl); | 
|---|
| 379 | OlderPotential = OldPotential; | 
|---|
| 380 | molecule::const_iterator iter; | 
|---|
| 381 | do { | 
|---|
| 382 | iter = begin(); | 
|---|
| 383 | for (; iter != end(); ++iter) { | 
|---|
| 384 | PrintPermutationMap(getAtomCount(), Params); | 
|---|
| 385 | Sprinter = Params.DistanceIterators[(*iter)->nr]->second;   // store initial partner | 
|---|
| 386 | Strider = Params.DistanceIterators[(*iter)->nr];  //remember old iterator | 
|---|
| 387 | Params.DistanceIterators[(*iter)->nr] = Params.StepList[(*iter)->nr]; | 
|---|
| 388 | if (Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->end()) {// stop, before we run through the list and still on | 
|---|
| 389 | Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->begin(); | 
|---|
| 390 | break; | 
|---|
| 391 | } | 
|---|
| 392 | //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->nr]->second << "." << endl; | 
|---|
| 393 | // find source of the new target | 
|---|
| 394 | molecule::const_iterator runner = begin(); | 
|---|
| 395 | for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already) | 
|---|
| 396 | if (Params.PermutationMap[(*runner)->nr] == Params.DistanceIterators[(*iter)->nr]->second) { | 
|---|
| 397 | //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->nr] << "." << endl; | 
|---|
| 398 | break; | 
|---|
| 399 | } | 
|---|
| 400 | } | 
|---|
| 401 | if (runner != end()) { // we found the other source | 
|---|
| 402 | // then look in its distance list for Sprinter | 
|---|
| 403 | Rider = Params.DistanceList[(*runner)->nr]->begin(); | 
|---|
| 404 | for (; Rider != Params.DistanceList[(*runner)->nr]->end(); Rider++) | 
|---|
| 405 | if (Rider->second == Sprinter) | 
|---|
| 406 | break; | 
|---|
| 407 | if (Rider != Params.DistanceList[(*runner)->nr]->end()) { // if we have found one | 
|---|
| 408 | //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->nr] << "/" << *Rider->second << "." << endl; | 
|---|
| 409 | // exchange both | 
|---|
| 410 | Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // put next farther distance into PermutationMap | 
|---|
| 411 | Params.PermutationMap[(*runner)->nr] = Sprinter;  // and hand the old target to its respective owner | 
|---|
| 412 | PrintPermutationMap(getAtomCount(), Params); | 
|---|
| 413 | // calculate the new potential | 
|---|
| 414 | //Log() << Verbose(2) << "Checking new potential ..." << endl; | 
|---|
| 415 | Potential = ConstrainedPotential(Params); | 
|---|
| 416 | if (Potential > OldPotential) { // we made everything worse! Undo ... | 
|---|
| 417 | //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl; | 
|---|
| 418 | //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->nr]->second << "." << endl; | 
|---|
| 419 | // Undo for Runner (note, we haven't moved the iteration yet, we may use this) | 
|---|
| 420 | Params.PermutationMap[(*runner)->nr] = Params.DistanceIterators[(*runner)->nr]->second; | 
|---|
| 421 | // Undo for Walker | 
|---|
| 422 | Params.DistanceIterators[(*iter)->nr] = Strider;  // take next farther distance target | 
|---|
| 423 | //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->nr]->second << "." << endl; | 
|---|
| 424 | Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; | 
|---|
| 425 | } else { | 
|---|
| 426 | Params.DistanceIterators[(*runner)->nr] = Rider;  // if successful also move the pointer in the iterator list | 
|---|
| 427 | DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl); | 
|---|
| 428 | OldPotential = Potential; | 
|---|
| 429 | } | 
|---|
| 430 | if (Potential > Params.PenaltyConstants[2]) { | 
|---|
| 431 | DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl); | 
|---|
| 432 | exit(255); | 
|---|
| 433 | } | 
|---|
| 434 | //Log() << Verbose(0) << endl; | 
|---|
| 435 | } else { | 
|---|
| 436 | DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl); | 
|---|
| 437 | exit(255); | 
|---|
| 438 | } | 
|---|
| 439 | } else { | 
|---|
| 440 | Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // new target has no source! | 
|---|
| 441 | } | 
|---|
| 442 | Params.StepList[(*iter)->nr]++; // take next farther distance target | 
|---|
| 443 | } | 
|---|
| 444 | } while (++iter != end()); | 
|---|
| 445 | } while ((OlderPotential - OldPotential) > 1e-3); | 
|---|
| 446 | DoLog(1) && (Log() << Verbose(1) << "done." << endl); | 
|---|
| 447 |  | 
|---|
| 448 |  | 
|---|
| 449 | /// free memory and return with evaluated potential | 
|---|
| 450 | for (int i=getAtomCount(); i--;) | 
|---|
| 451 | Params.DistanceList[i]->clear(); | 
|---|
| 452 | delete[](Params.DistanceList); | 
|---|
| 453 | delete[](Params.DistanceIterators); | 
|---|
| 454 | return ConstrainedPotential(Params); | 
|---|
| 455 | }; | 
|---|
| 456 |  | 
|---|
| 457 |  | 
|---|
| 458 | /** Evaluates the (distance-related part) of the constrained potential for the constrained forces. | 
|---|
| 459 | * \param *out output stream for debugging | 
|---|
| 460 | * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) | 
|---|
| 461 | * \param endstep step giving final position in constrained MD | 
|---|
| 462 | * \param **PermutationMap mapping between the atom label of the initial and the final configuration | 
|---|
| 463 | * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation. | 
|---|
| 464 | * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential() | 
|---|
| 465 | */ | 
|---|
| 466 | void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) | 
|---|
| 467 | { | 
|---|
| 468 | /// evaluate forces (only the distance to target dependent part) with the final PermutationMap | 
|---|
| 469 | DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl); | 
|---|
| 470 | ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force ); | 
|---|
| 471 | DoLog(1) && (Log() << Verbose(1) << "done." << endl); | 
|---|
| 472 | }; | 
|---|
| 473 |  | 
|---|
| 474 | /** Performs a linear interpolation between two desired atomic configurations with a given number of steps. | 
|---|
| 475 | * Note, step number is config::MaxOuterStep | 
|---|
| 476 | * \param *out output stream for debugging | 
|---|
| 477 | * \param startstep stating initial configuration in molecule::Trajectories | 
|---|
| 478 | * \param endstep stating final configuration in molecule::Trajectories | 
|---|
| 479 | * \param &prefix path and prefix | 
|---|
| 480 | * \param &config configuration structure | 
|---|
| 481 | * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential() | 
|---|
| 482 | * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories | 
|---|
| 483 | */ | 
|---|
| 484 | bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, std::string &prefix, config &configuration, bool MapByIdentity) | 
|---|
| 485 | { | 
|---|
| 486 | molecule *mol = NULL; | 
|---|
| 487 | bool status = true; | 
|---|
| 488 | int MaxSteps = configuration.MaxOuterStep; | 
|---|
| 489 | MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer()); | 
|---|
| 490 | // Get the Permutation Map by MinimiseConstrainedPotential | 
|---|
| 491 | atom **PermutationMap = NULL; | 
|---|
| 492 | atom *Sprinter = NULL; | 
|---|
| 493 | if (!MapByIdentity) | 
|---|
| 494 | MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem()); | 
|---|
| 495 | else { | 
|---|
| 496 | PermutationMap = new atom *[getAtomCount()]; | 
|---|
| 497 | SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr ); | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | // check whether we have sufficient space in Trajectories for each atom | 
|---|
| 501 | ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps ); | 
|---|
| 502 | // push endstep to last one | 
|---|
| 503 | ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep ); | 
|---|
| 504 | endstep = MaxSteps; | 
|---|
| 505 |  | 
|---|
| 506 | // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule | 
|---|
| 507 | DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl); | 
|---|
| 508 | for (int step = 0; step <= MaxSteps; step++) { | 
|---|
| 509 | mol = World::getInstance().createMolecule(); | 
|---|
| 510 | MoleculePerStep->insert(mol); | 
|---|
| 511 | for (molecule::const_iterator iter = begin(); iter != end(); ++iter) { | 
|---|
| 512 | // add to molecule list | 
|---|
| 513 | Sprinter = mol->AddCopyAtom((*iter)); | 
|---|
| 514 | for (int n=NDIM;n--;) { | 
|---|
| 515 | Sprinter->set(n, (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps)); | 
|---|
| 516 | // add to Trajectories | 
|---|
| 517 | //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl; | 
|---|
| 518 | if (step < MaxSteps) { | 
|---|
| 519 | (*iter)->Trajectory.R.at(step)[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps); | 
|---|
| 520 | (*iter)->Trajectory.U.at(step)[n] = 0.; | 
|---|
| 521 | (*iter)->Trajectory.F.at(step)[n] = 0.; | 
|---|
| 522 | } | 
|---|
| 523 | } | 
|---|
| 524 | } | 
|---|
| 525 | } | 
|---|
| 526 | MDSteps = MaxSteps+1;   // otherwise new Trajectories' points aren't stored on save&exit | 
|---|
| 527 |  | 
|---|
| 528 | // store the list to single step files | 
|---|
| 529 | int *SortIndex = new int[getAtomCount()]; | 
|---|
| 530 | for (int i=getAtomCount(); i--; ) | 
|---|
| 531 | SortIndex[i] = i; | 
|---|
| 532 |  | 
|---|
| 533 | status = MoleculePerStep->OutputConfigForListOfFragments(prefix, SortIndex); | 
|---|
| 534 | delete[](SortIndex); | 
|---|
| 535 |  | 
|---|
| 536 | // free and return | 
|---|
| 537 | delete[](PermutationMap); | 
|---|
| 538 | delete(MoleculePerStep); | 
|---|
| 539 | return status; | 
|---|
| 540 | }; | 
|---|
| 541 |  | 
|---|
| 542 | /** Parses nuclear forces from file and performs Verlet integration. | 
|---|
| 543 | * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we | 
|---|
| 544 | * have to transform them). | 
|---|
| 545 | * This adds a new MD step to the config file. | 
|---|
| 546 | * \param *file filename | 
|---|
| 547 | * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained | 
|---|
| 548 | * \param offset offset in matrix file to the first force component | 
|---|
| 549 | * \return true - file found and parsed, false - file not found or imparsable | 
|---|
| 550 | * \todo This is not yet checked if it is correctly working with DoConstrained set to true. | 
|---|
| 551 | */ | 
|---|
| 552 | bool molecule::VerletForceIntegration(char *file, config &configuration, const size_t offset) | 
|---|
| 553 | { | 
|---|
| 554 | Info FunctionInfo(__func__); | 
|---|
| 555 | ifstream input(file); | 
|---|
| 556 | string token; | 
|---|
| 557 | stringstream item; | 
|---|
| 558 | double IonMass, ConstrainedPotentialEnergy, ActualTemp; | 
|---|
| 559 | Vector Velocity; | 
|---|
| 560 | ForceMatrix Force; | 
|---|
| 561 |  | 
|---|
| 562 | const int AtomCount = getAtomCount(); | 
|---|
| 563 | // check file | 
|---|
| 564 | if (input == NULL) { | 
|---|
| 565 | return false; | 
|---|
| 566 | } else { | 
|---|
| 567 | // parse file into ForceMatrix | 
|---|
| 568 | if (!Force.ParseMatrix(file, 0,0,0)) { | 
|---|
| 569 | DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl); | 
|---|
| 570 | performCriticalExit(); | 
|---|
| 571 | return false; | 
|---|
| 572 | } | 
|---|
| 573 | if (Force.RowCounter[0] != AtomCount) { | 
|---|
| 574 | DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl); | 
|---|
| 575 | performCriticalExit(); | 
|---|
| 576 | return false; | 
|---|
| 577 | } | 
|---|
| 578 | // correct Forces | 
|---|
| 579 | Velocity.Zero(); | 
|---|
| 580 | for(int i=0;i<AtomCount;i++) | 
|---|
| 581 | for(int d=0;d<NDIM;d++) { | 
|---|
| 582 | Velocity[d] += Force.Matrix[0][i][d+offset]; | 
|---|
| 583 | } | 
|---|
| 584 | for(int i=0;i<AtomCount;i++) | 
|---|
| 585 | for(int d=0;d<NDIM;d++) { | 
|---|
| 586 | Force.Matrix[0][i][d+offset] -= Velocity[d]/static_cast<double>(AtomCount); | 
|---|
| 587 | } | 
|---|
| 588 | // solve a constrained potential if we are meant to | 
|---|
| 589 | if (configuration.DoConstrainedMD) { | 
|---|
| 590 | // calculate forces and potential | 
|---|
| 591 | atom **PermutationMap = NULL; | 
|---|
| 592 | ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem()); | 
|---|
| 593 | EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force); | 
|---|
| 594 | delete[](PermutationMap); | 
|---|
| 595 | } | 
|---|
| 596 |  | 
|---|
| 597 | // and perform Verlet integration for each atom with position, velocity and force vector | 
|---|
| 598 | // check size of vectors | 
|---|
| 599 | //ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 ); | 
|---|
| 600 |  | 
|---|
| 601 | ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps+1, &configuration, &Force, (const size_t) 0); | 
|---|
| 602 | } | 
|---|
| 603 | // correct velocities (rather momenta) so that center of mass remains motionless | 
|---|
| 604 | Velocity.Zero(); | 
|---|
| 605 | IonMass = 0.; | 
|---|
| 606 | ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps+1, &IonMass, &Velocity ); | 
|---|
| 607 |  | 
|---|
| 608 | // correct velocities (rather momenta) so that center of mass remains motionless | 
|---|
| 609 | Velocity.Scale(1./IonMass); | 
|---|
| 610 | ActualTemp = 0.; | 
|---|
| 611 | ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps+1, &Velocity ); | 
|---|
| 612 | Thermostats(configuration, ActualTemp, Berendsen); | 
|---|
| 613 | MDSteps++; | 
|---|
| 614 |  | 
|---|
| 615 | // exit | 
|---|
| 616 | return true; | 
|---|
| 617 | }; | 
|---|
| 618 |  | 
|---|
| 619 | /** Implementation of various thermostats. | 
|---|
| 620 | * All these thermostats apply an additional force which has the following forms: | 
|---|
| 621 | * -# Woodcock | 
|---|
| 622 | *  \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$ | 
|---|
| 623 | * -# Gaussian | 
|---|
| 624 | *  \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$ | 
|---|
| 625 | * -# Langevin | 
|---|
| 626 | *  \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$ | 
|---|
| 627 | * -# Berendsen | 
|---|
| 628 | *  \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$ | 
|---|
| 629 | * -# Nose-Hoover | 
|---|
| 630 | *  \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$ | 
|---|
| 631 | * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or | 
|---|
| 632 | * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified | 
|---|
| 633 | * belatedly and the constraint force set. | 
|---|
| 634 | * \param *P Problem at hand | 
|---|
| 635 | * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover | 
|---|
| 636 | * \sa InitThermostat() | 
|---|
| 637 | */ | 
|---|
| 638 | void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat) | 
|---|
| 639 | { | 
|---|
| 640 | double ekin = 0.; | 
|---|
| 641 | double E = 0., G = 0.; | 
|---|
| 642 | double delta_alpha = 0.; | 
|---|
| 643 | double ScaleTempFactor; | 
|---|
| 644 | gsl_rng * r; | 
|---|
| 645 | const gsl_rng_type * T; | 
|---|
| 646 |  | 
|---|
| 647 | // calculate scale configuration | 
|---|
| 648 | ScaleTempFactor = configuration.Thermostats->TargetTemp/ActualTemp; | 
|---|
| 649 |  | 
|---|
| 650 | // differentating between the various thermostats | 
|---|
| 651 | switch(Thermostat) { | 
|---|
| 652 | case None: | 
|---|
| 653 | DoLog(2) && (Log() << Verbose(2) <<  "Applying no thermostat..." << endl); | 
|---|
| 654 | break; | 
|---|
| 655 | case Woodcock: | 
|---|
| 656 | if ((configuration.Thermostats->ScaleTempStep > 0) && ((MDSteps-1) % configuration.Thermostats->ScaleTempStep == 0)) { | 
|---|
| 657 | DoLog(2) && (Log() << Verbose(2) <<  "Applying Woodcock thermostat..." << endl); | 
|---|
| 658 | ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin ); | 
|---|
| 659 | } | 
|---|
| 660 | break; | 
|---|
| 661 | case Gaussian: | 
|---|
| 662 | DoLog(2) && (Log() << Verbose(2) <<  "Applying Gaussian thermostat..." << endl); | 
|---|
| 663 | ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E ); | 
|---|
| 664 |  | 
|---|
| 665 | DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl); | 
|---|
| 666 | ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration); | 
|---|
| 667 |  | 
|---|
| 668 | break; | 
|---|
| 669 | case Langevin: | 
|---|
| 670 | DoLog(2) && (Log() << Verbose(2) <<  "Applying Langevin thermostat..." << endl); | 
|---|
| 671 | // init random number generator | 
|---|
| 672 | gsl_rng_env_setup(); | 
|---|
| 673 | T = gsl_rng_default; | 
|---|
| 674 | r = gsl_rng_alloc (T); | 
|---|
| 675 | // Go through each ion | 
|---|
| 676 | ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration ); | 
|---|
| 677 | break; | 
|---|
| 678 |  | 
|---|
| 679 | case Berendsen: | 
|---|
| 680 | DoLog(2) && (Log() << Verbose(2) <<  "Applying Berendsen-VanGunsteren thermostat..." << endl); | 
|---|
| 681 | ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration ); | 
|---|
| 682 | break; | 
|---|
| 683 |  | 
|---|
| 684 | case NoseHoover: | 
|---|
| 685 | DoLog(2) && (Log() << Verbose(2) <<  "Applying Nose-Hoover thermostat..." << endl); | 
|---|
| 686 | // dynamically evolve alpha (the additional degree of freedom) | 
|---|
| 687 | delta_alpha = 0.; | 
|---|
| 688 | ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha ); | 
|---|
| 689 | delta_alpha = (delta_alpha - (3.*getAtomCount()+1.) * configuration.Thermostats->TargetTemp)/(configuration.Thermostats->HooverMass*Units2Electronmass); | 
|---|
| 690 | configuration.Thermostats->alpha += delta_alpha*configuration.Deltat; | 
|---|
| 691 | DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.Thermostats->alpha << "." << endl); | 
|---|
| 692 | // apply updated alpha as additional force | 
|---|
| 693 | ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration ); | 
|---|
| 694 | break; | 
|---|
| 695 | } | 
|---|
| 696 | DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl); | 
|---|
| 697 | }; | 
|---|