| 1 | /*
 | 
|---|
| 2 |  * molecule_dynamics.cpp
 | 
|---|
| 3 |  *
 | 
|---|
| 4 |  *  Created on: Oct 5, 2009
 | 
|---|
| 5 |  *      Author: heber
 | 
|---|
| 6 |  */
 | 
|---|
| 7 | 
 | 
|---|
| 8 | #include "World.hpp"
 | 
|---|
| 9 | #include "atom.hpp"
 | 
|---|
| 10 | #include "config.hpp"
 | 
|---|
| 11 | #include "element.hpp"
 | 
|---|
| 12 | #include "log.hpp"
 | 
|---|
| 13 | #include "memoryallocator.hpp"
 | 
|---|
| 14 | #include "molecule.hpp"
 | 
|---|
| 15 | #include "parser.hpp"
 | 
|---|
| 16 | #include "Plane.hpp"
 | 
|---|
| 17 | 
 | 
|---|
| 18 | /************************************* Functions for class molecule *********************************/
 | 
|---|
| 19 | 
 | 
|---|
| 20 | /** Penalizes long trajectories.
 | 
|---|
| 21 |  * \param *Walker atom to check against others
 | 
|---|
| 22 |  * \param *mol molecule with other atoms
 | 
|---|
| 23 |  * \param &Params constraint potential parameters
 | 
|---|
| 24 |  * \return penalty times each distance
 | 
|---|
| 25 |  */
 | 
|---|
| 26 | double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 27 | {
 | 
|---|
| 28 |   gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
 | 
|---|
| 29 |   gsl_vector *x = gsl_vector_alloc(NDIM);
 | 
|---|
| 30 |   atom * Runner = mol->start;
 | 
|---|
| 31 |   atom *Sprinter = NULL;
 | 
|---|
| 32 |   Vector trajectory1, trajectory2, normal, TestVector;
 | 
|---|
| 33 |   double Norm1, Norm2, tmp, result = 0.;
 | 
|---|
| 34 | 
 | 
|---|
| 35 |   while (Runner->next != mol->end) {
 | 
|---|
| 36 |     Runner = Runner->next;
 | 
|---|
| 37 |     if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
 | 
|---|
| 38 |       break;
 | 
|---|
| 39 |     // determine normalized trajectories direction vector (n1, n2)
 | 
|---|
| 40 |     Sprinter = Params.PermutationMap[Walker->nr];   // find first target point
 | 
|---|
| 41 |     trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
 | 
|---|
| 42 |     trajectory1.Normalize();
 | 
|---|
| 43 |     Norm1 = trajectory1.Norm();
 | 
|---|
| 44 |     Sprinter = Params.PermutationMap[Runner->nr];   // find second target point
 | 
|---|
| 45 |     trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Runner->Trajectory.R.at(Params.startstep);
 | 
|---|
| 46 |     trajectory2.Normalize();
 | 
|---|
| 47 |     Norm2 = trajectory1.Norm();
 | 
|---|
| 48 |     // check whether either is zero()
 | 
|---|
| 49 |     if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
 | 
|---|
| 50 |       tmp = Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.startstep));
 | 
|---|
| 51 |     } else if (Norm1 < MYEPSILON) {
 | 
|---|
| 52 |       Sprinter = Params.PermutationMap[Walker->nr];   // find first target point
 | 
|---|
| 53 |       trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Runner->Trajectory.R.at(Params.startstep);
 | 
|---|
| 54 |       trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
 | 
|---|
| 55 |       trajectory1 -= trajectory2;   // project the part in norm direction away
 | 
|---|
| 56 |       tmp = trajectory1.Norm();  // remaining norm is distance
 | 
|---|
| 57 |     } else if (Norm2 < MYEPSILON) {
 | 
|---|
| 58 |       Sprinter = Params.PermutationMap[Runner->nr];   // find second target point
 | 
|---|
| 59 |       trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);  // copy second offset
 | 
|---|
| 60 |       trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
 | 
|---|
| 61 |       trajectory2 -= trajectory1;   // project the part in norm direction away
 | 
|---|
| 62 |       tmp = trajectory2.Norm();  // remaining norm is distance
 | 
|---|
| 63 |     } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
 | 
|---|
| 64 |   //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
 | 
|---|
| 65 |   //        Log() << Verbose(0) << trajectory1;
 | 
|---|
| 66 |   //        Log() << Verbose(0) << " and ";
 | 
|---|
| 67 |   //        Log() << Verbose(0) << trajectory2;
 | 
|---|
| 68 |       tmp = Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.startstep));
 | 
|---|
| 69 |   //        Log() << Verbose(0) << " with distance " << tmp << "." << endl;
 | 
|---|
| 70 |     } else { // determine distance by finding minimum distance
 | 
|---|
| 71 |   //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent ";
 | 
|---|
| 72 |   //        Log() << Verbose(0) << endl;
 | 
|---|
| 73 |   //        Log() << Verbose(0) << "First Trajectory: ";
 | 
|---|
| 74 |   //        Log() << Verbose(0) << trajectory1 << endl;
 | 
|---|
| 75 |   //        Log() << Verbose(0) << "Second Trajectory: ";
 | 
|---|
| 76 |   //        Log() << Verbose(0) << trajectory2 << endl;
 | 
|---|
| 77 |       // determine normal vector for both
 | 
|---|
| 78 |       normal = Plane(trajectory1, trajectory2,0).getNormal();
 | 
|---|
| 79 |       // print all vectors for debugging
 | 
|---|
| 80 |   //        Log() << Verbose(0) << "Normal vector in between: ";
 | 
|---|
| 81 |   //        Log() << Verbose(0) << normal << endl;
 | 
|---|
| 82 |       // setup matrix
 | 
|---|
| 83 |       for (int i=NDIM;i--;) {
 | 
|---|
| 84 |         gsl_matrix_set(A, 0, i, trajectory1[i]);
 | 
|---|
| 85 |         gsl_matrix_set(A, 1, i, trajectory2[i]);
 | 
|---|
| 86 |         gsl_matrix_set(A, 2, i, normal[i]);
 | 
|---|
| 87 |         gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - Runner->Trajectory.R.at(Params.startstep)[i]));
 | 
|---|
| 88 |       }
 | 
|---|
| 89 |       // solve the linear system by Householder transformations
 | 
|---|
| 90 |       gsl_linalg_HH_svx(A, x);
 | 
|---|
| 91 |       // distance from last component
 | 
|---|
| 92 |       tmp = gsl_vector_get(x,2);
 | 
|---|
| 93 |   //        Log() << Verbose(0) << " with distance " << tmp << "." << endl;
 | 
|---|
| 94 |       // test whether we really have the intersection (by checking on c_1 and c_2)
 | 
|---|
| 95 |       trajectory1.Scale(gsl_vector_get(x,0));
 | 
|---|
| 96 |       trajectory2.Scale(gsl_vector_get(x,1));
 | 
|---|
| 97 |       normal.Scale(gsl_vector_get(x,2));
 | 
|---|
| 98 |       TestVector = Runner->Trajectory.R.at(Params.startstep) + trajectory2 + normal
 | 
|---|
| 99 |                    - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
 | 
|---|
| 100 |       if (TestVector.Norm() < MYEPSILON) {
 | 
|---|
| 101 |   //          Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
 | 
|---|
| 102 |       } else {
 | 
|---|
| 103 |   //          Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
 | 
|---|
| 104 |   //          Log() << Verbose(0) << TestVector;
 | 
|---|
| 105 |   //          Log() << Verbose(0) << "." << endl;
 | 
|---|
| 106 |       }
 | 
|---|
| 107 |     }
 | 
|---|
| 108 |     // add up
 | 
|---|
| 109 |     tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
 | 
|---|
| 110 |     if (fabs(tmp) > MYEPSILON) {
 | 
|---|
| 111 |       result += Params.PenaltyConstants[1] * 1./tmp;
 | 
|---|
| 112 |       //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
 | 
|---|
| 113 |     }
 | 
|---|
| 114 |   }
 | 
|---|
| 115 |   return result;
 | 
|---|
| 116 | };
 | 
|---|
| 117 | 
 | 
|---|
| 118 | /** Penalizes atoms heading to same target.
 | 
|---|
| 119 |  * \param *Walker atom to check against others
 | 
|---|
| 120 |  * \param *mol molecule with other atoms
 | 
|---|
| 121 |  * \param &Params constrained potential parameters
 | 
|---|
| 122 |  * \return \a penalty times the number of equal targets
 | 
|---|
| 123 |  */
 | 
|---|
| 124 | double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 125 | {
 | 
|---|
| 126 |   double result = 0.;
 | 
|---|
| 127 |   atom * Runner = mol->start;
 | 
|---|
| 128 |   while (Runner->next != mol->end) {
 | 
|---|
| 129 |     Runner = Runner->next;
 | 
|---|
| 130 |     if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) {
 | 
|---|
| 131 |   //    atom *Sprinter = PermutationMap[Walker->nr];
 | 
|---|
| 132 |   //        Log() << Verbose(0) << *Walker << " and " << *Runner << " are heading to the same target at ";
 | 
|---|
| 133 |   //        Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
 | 
|---|
| 134 |   //        Log() << Verbose(0) << ", penalting." << endl;
 | 
|---|
| 135 |       result += Params.PenaltyConstants[2];
 | 
|---|
| 136 |       //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
 | 
|---|
| 137 |     }
 | 
|---|
| 138 |   }
 | 
|---|
| 139 |   return result;
 | 
|---|
| 140 | };
 | 
|---|
| 141 | 
 | 
|---|
| 142 | /** Evaluates the potential energy used for constrained molecular dynamics.
 | 
|---|
| 143 |  * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
 | 
|---|
| 144 |  *     where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
 | 
|---|
| 145 |  *     trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
 | 
|---|
| 146 |  * Note that for the second term we have to solve the following linear system:
 | 
|---|
| 147 |  * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
 | 
|---|
| 148 |  * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
 | 
|---|
| 149 |  * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
 | 
|---|
| 150 |  * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
 | 
|---|
| 151 |  * \param *out output stream for debugging
 | 
|---|
| 152 |  * \param &Params constrained potential parameters
 | 
|---|
| 153 |  * \return potential energy
 | 
|---|
| 154 |  * \note This routine is scaling quadratically which is not optimal.
 | 
|---|
| 155 |  * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
 | 
|---|
| 156 |  */
 | 
|---|
| 157 | double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
 | 
|---|
| 158 | {
 | 
|---|
| 159 |   double tmp = 0.;
 | 
|---|
| 160 |   double result = 0.;
 | 
|---|
| 161 |   // go through every atom
 | 
|---|
| 162 |   atom *Runner = NULL;
 | 
|---|
| 163 |   atom *Walker = start;
 | 
|---|
| 164 |   while (Walker->next != end) {
 | 
|---|
| 165 |     Walker = Walker->next;
 | 
|---|
| 166 |     // first term: distance to target
 | 
|---|
| 167 |     Runner = Params.PermutationMap[Walker->nr];   // find target point
 | 
|---|
| 168 |     tmp = (Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
 | 
|---|
| 169 |     tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
 | 
|---|
| 170 |     result += Params.PenaltyConstants[0] * tmp;
 | 
|---|
| 171 |     //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
 | 
|---|
| 172 | 
 | 
|---|
| 173 |     // second term: sum of distances to other trajectories
 | 
|---|
| 174 |     result += SumDistanceOfTrajectories(Walker, this, Params);
 | 
|---|
| 175 | 
 | 
|---|
| 176 |     // third term: penalty for equal targets
 | 
|---|
| 177 |     result += PenalizeEqualTargets(Walker, this, Params);
 | 
|---|
| 178 |   }
 | 
|---|
| 179 | 
 | 
|---|
| 180 |   return result;
 | 
|---|
| 181 | };
 | 
|---|
| 182 | 
 | 
|---|
| 183 | /** print the current permutation map.
 | 
|---|
| 184 |  * \param *out output stream for debugging
 | 
|---|
| 185 |  * \param &Params constrained potential parameters
 | 
|---|
| 186 |  * \param AtomCount number of atoms
 | 
|---|
| 187 |  */
 | 
|---|
| 188 | void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
 | 
|---|
| 189 | {
 | 
|---|
| 190 |   stringstream zeile1, zeile2;
 | 
|---|
| 191 |   int *DoubleList = Calloc<int>(AtomCount, "PrintPermutationMap: *DoubleList");
 | 
|---|
| 192 |   int doubles = 0;
 | 
|---|
| 193 |   zeile1 << "PermutationMap: ";
 | 
|---|
| 194 |   zeile2 << "                ";
 | 
|---|
| 195 |   for (int i=0;i<AtomCount;i++) {
 | 
|---|
| 196 |     Params.DoubleList[Params.PermutationMap[i]->nr]++;
 | 
|---|
| 197 |     zeile1 << i << " ";
 | 
|---|
| 198 |     zeile2 << Params.PermutationMap[i]->nr << " ";
 | 
|---|
| 199 |   }
 | 
|---|
| 200 |   for (int i=0;i<AtomCount;i++)
 | 
|---|
| 201 |     if (Params.DoubleList[i] > 1)
 | 
|---|
| 202 |     doubles++;
 | 
|---|
| 203 |   if (doubles >0)
 | 
|---|
| 204 |     DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
 | 
|---|
| 205 |   Free(&DoubleList);
 | 
|---|
| 206 | //  Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
 | 
|---|
| 207 | };
 | 
|---|
| 208 | 
 | 
|---|
| 209 | /** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
 | 
|---|
| 210 |  * \param *mol molecule to scan distances in
 | 
|---|
| 211 |  * \param &Params constrained potential parameters
 | 
|---|
| 212 |  */
 | 
|---|
| 213 | void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 214 | {
 | 
|---|
| 215 |   for (int i=mol->AtomCount; i--;) {
 | 
|---|
| 216 |     Params.DistanceList[i] = new DistanceMap;    // is the distance sorted target list per atom
 | 
|---|
| 217 |     Params.DistanceList[i]->clear();
 | 
|---|
| 218 |   }
 | 
|---|
| 219 | 
 | 
|---|
| 220 |   atom *Runner = NULL;
 | 
|---|
| 221 |   atom *Walker = mol->start;
 | 
|---|
| 222 |   while (Walker->next != mol->end) {
 | 
|---|
| 223 |     Walker = Walker->next;
 | 
|---|
| 224 |     Runner = mol->start;
 | 
|---|
| 225 |     while(Runner->next != mol->end) {
 | 
|---|
| 226 |       Runner = Runner->next;
 | 
|---|
| 227 |       Params.DistanceList[Walker->nr]->insert( DistancePair(Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)), Runner) );
 | 
|---|
| 228 |     }
 | 
|---|
| 229 |   }
 | 
|---|
| 230 | };
 | 
|---|
| 231 | 
 | 
|---|
| 232 | /** initialize lists.
 | 
|---|
| 233 |  * \param *out output stream for debugging
 | 
|---|
| 234 |  * \param *mol molecule to scan distances in
 | 
|---|
| 235 |  * \param &Params constrained potential parameters
 | 
|---|
| 236 |  */
 | 
|---|
| 237 | void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 238 | {
 | 
|---|
| 239 |   atom *Walker = mol->start;
 | 
|---|
| 240 |   while (Walker->next != mol->end) {
 | 
|---|
| 241 |     Walker = Walker->next;
 | 
|---|
| 242 |     Params.StepList[Walker->nr] = Params.DistanceList[Walker->nr]->begin();    // stores the step to the next iterator that could be a possible next target
 | 
|---|
| 243 |     Params.PermutationMap[Walker->nr] = Params.DistanceList[Walker->nr]->begin()->second;   // always pick target with the smallest distance
 | 
|---|
| 244 |     Params.DoubleList[Params.DistanceList[Walker->nr]->begin()->second->nr]++;            // increase this target's source count (>1? not injective)
 | 
|---|
| 245 |     Params.DistanceIterators[Walker->nr] = Params.DistanceList[Walker->nr]->begin();    // and remember which one we picked
 | 
|---|
| 246 |     DoLog(2) && (Log() << Verbose(2) << *Walker << " starts with distance " << Params.DistanceList[Walker->nr]->begin()->first << "." << endl);
 | 
|---|
| 247 |   }
 | 
|---|
| 248 | };
 | 
|---|
| 249 | 
 | 
|---|
| 250 | /** Try the next nearest neighbour in order to make the permutation map injective.
 | 
|---|
| 251 |  * \param *out output stream for debugging
 | 
|---|
| 252 |  * \param *mol molecule
 | 
|---|
| 253 |  * \param *Walker atom to change its target
 | 
|---|
| 254 |  * \param &OldPotential old value of constraint potential to see if we do better with new target
 | 
|---|
| 255 |  * \param &Params constrained potential parameters
 | 
|---|
| 256 |  */
 | 
|---|
| 257 | double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
 | 
|---|
| 258 | {
 | 
|---|
| 259 |   double Potential = 0;
 | 
|---|
| 260 |   DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr];  // store old base
 | 
|---|
| 261 |   do {
 | 
|---|
| 262 |     NewBase++;  // take next further distance in distance to targets list that's a target of no one
 | 
|---|
| 263 |   } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
 | 
|---|
| 264 |   if (NewBase != Params.DistanceList[Walker->nr]->end()) {
 | 
|---|
| 265 |     Params.PermutationMap[Walker->nr] = NewBase->second;
 | 
|---|
| 266 |     Potential = fabs(mol->ConstrainedPotential(Params));
 | 
|---|
| 267 |     if (Potential > OldPotential) { // undo
 | 
|---|
| 268 |       Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
 | 
|---|
| 269 |     } else {  // do
 | 
|---|
| 270 |       Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--;  // decrease the old entry in the doubles list
 | 
|---|
| 271 |       Params.DoubleList[NewBase->second->nr]++;    // increase the old entry in the doubles list
 | 
|---|
| 272 |       Params.DistanceIterators[Walker->nr] = NewBase;
 | 
|---|
| 273 |       OldPotential = Potential;
 | 
|---|
| 274 |       DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
 | 
|---|
| 275 |     }
 | 
|---|
| 276 |   }
 | 
|---|
| 277 |   return Potential;
 | 
|---|
| 278 | };
 | 
|---|
| 279 | 
 | 
|---|
| 280 | /** Permutes \a **&PermutationMap until the penalty is below constants[2].
 | 
|---|
| 281 |  * \param *out output stream for debugging
 | 
|---|
| 282 |  * \param *mol molecule to scan distances in
 | 
|---|
| 283 |  * \param &Params constrained potential parameters
 | 
|---|
| 284 |  */
 | 
|---|
| 285 | void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 286 | {
 | 
|---|
| 287 |   atom *Walker = mol->start;
 | 
|---|
| 288 |   DistanceMap::iterator NewBase;
 | 
|---|
| 289 |   double Potential = fabs(mol->ConstrainedPotential(Params));
 | 
|---|
| 290 | 
 | 
|---|
| 291 |   while ((Potential) > Params.PenaltyConstants[2]) {
 | 
|---|
| 292 |     PrintPermutationMap(mol->AtomCount, Params);
 | 
|---|
| 293 |     Walker = Walker->next;
 | 
|---|
| 294 |     if (Walker == mol->end) // round-robin at the end
 | 
|---|
| 295 |       Walker = mol->start->next;
 | 
|---|
| 296 |     if (Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr] <= 1)  // no need to make those injective that aren't
 | 
|---|
| 297 |       continue;
 | 
|---|
| 298 |     // now, try finding a new one
 | 
|---|
| 299 |     Potential = TryNextNearestNeighbourForInjectivePermutation(mol, Walker, Potential, Params);
 | 
|---|
| 300 |   }
 | 
|---|
| 301 |   for (int i=mol->AtomCount; i--;) // now each single entry in the DoubleList should be <=1
 | 
|---|
| 302 |     if (Params.DoubleList[i] > 1) {
 | 
|---|
| 303 |       DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
 | 
|---|
| 304 |       performCriticalExit();
 | 
|---|
| 305 |     }
 | 
|---|
| 306 |   DoLog(1) && (Log() << Verbose(1) << "done." << endl);
 | 
|---|
| 307 | };
 | 
|---|
| 308 | 
 | 
|---|
| 309 | /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
 | 
|---|
| 310 |  * We do the following:
 | 
|---|
| 311 |  *  -# Generate a distance list from all source to all target points
 | 
|---|
| 312 |  *  -# Sort this per source point
 | 
|---|
| 313 |  *  -# Take for each source point the target point with minimum distance, use this as initial permutation
 | 
|---|
| 314 |  *  -# check whether molecule::ConstrainedPotential() is greater than injective penalty
 | 
|---|
| 315 |  *     -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
 | 
|---|
| 316 |  *  -# Next, we only apply transformations that keep the injectivity of the permutations list.
 | 
|---|
| 317 |  *  -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
 | 
|---|
| 318 |  *     point and try to change it for one with lesser distance, or for the next one with greater distance, but only
 | 
|---|
| 319 |  *     if this decreases the conditional potential.
 | 
|---|
| 320 |  *  -# finished.
 | 
|---|
| 321 |  *  -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
 | 
|---|
| 322 |  *     that the total force is always pointing in direction of the constraint force (ensuring that we move in the
 | 
|---|
| 323 |  *     right direction).
 | 
|---|
| 324 |  *  -# Finally, we calculate the potential energy and return.
 | 
|---|
| 325 |  * \param *out output stream for debugging
 | 
|---|
| 326 |  * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
 | 
|---|
| 327 |  * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
 | 
|---|
| 328 |  * \param endstep step giving final position in constrained MD
 | 
|---|
| 329 |  * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
 | 
|---|
| 330 |  * \sa molecule::VerletForceIntegration()
 | 
|---|
| 331 |  * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
 | 
|---|
| 332 |  * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
 | 
|---|
| 333 |  *       to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
 | 
|---|
| 334 |  * \bug this all is not O(N log N) but O(N^2)
 | 
|---|
| 335 |  */
 | 
|---|
| 336 | double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
 | 
|---|
| 337 | {
 | 
|---|
| 338 |   double Potential, OldPotential, OlderPotential;
 | 
|---|
| 339 |   struct EvaluatePotential Params;
 | 
|---|
| 340 |   Params.PermutationMap = Calloc<atom*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**PermutationMap");
 | 
|---|
| 341 |   Params.DistanceList = Malloc<DistanceMap*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**DistanceList");
 | 
|---|
| 342 |   Params.DistanceIterators = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DistanceIterators");
 | 
|---|
| 343 |   Params.DoubleList = Calloc<int>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DoubleList");
 | 
|---|
| 344 |   Params.StepList = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*StepList");
 | 
|---|
| 345 |   int round;
 | 
|---|
| 346 |   atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;
 | 
|---|
| 347 |   DistanceMap::iterator Rider, Strider;
 | 
|---|
| 348 | 
 | 
|---|
| 349 |   /// Minimise the potential
 | 
|---|
| 350 |   // set Lagrange multiplier constants
 | 
|---|
| 351 |   Params.PenaltyConstants[0] = 10.;
 | 
|---|
| 352 |   Params.PenaltyConstants[1] = 1.;
 | 
|---|
| 353 |   Params.PenaltyConstants[2] = 1e+7;    // just a huge penalty
 | 
|---|
| 354 |   // generate the distance list
 | 
|---|
| 355 |   DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
 | 
|---|
| 356 |   FillDistanceList(this, Params);
 | 
|---|
| 357 | 
 | 
|---|
| 358 |   // create the initial PermutationMap (source -> target)
 | 
|---|
| 359 |   CreateInitialLists(this, Params);
 | 
|---|
| 360 | 
 | 
|---|
| 361 |   // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
 | 
|---|
| 362 |   DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
 | 
|---|
| 363 |   MakeInjectivePermutation(this, Params);
 | 
|---|
| 364 |   Free(&Params.DoubleList);
 | 
|---|
| 365 | 
 | 
|---|
| 366 |   // argument minimise the constrained potential in this injective PermutationMap
 | 
|---|
| 367 |   DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
 | 
|---|
| 368 |   OldPotential = 1e+10;
 | 
|---|
| 369 |   round = 0;
 | 
|---|
| 370 |   do {
 | 
|---|
| 371 |     DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
 | 
|---|
| 372 |     OlderPotential = OldPotential;
 | 
|---|
| 373 |     do {
 | 
|---|
| 374 |       Walker = start;
 | 
|---|
| 375 |       while (Walker->next != end) { // pick one
 | 
|---|
| 376 |         Walker = Walker->next;
 | 
|---|
| 377 |         PrintPermutationMap(AtomCount, Params);
 | 
|---|
| 378 |         Sprinter = Params.DistanceIterators[Walker->nr]->second;   // store initial partner
 | 
|---|
| 379 |         Strider = Params.DistanceIterators[Walker->nr];  //remember old iterator
 | 
|---|
| 380 |         Params.DistanceIterators[Walker->nr] = Params.StepList[Walker->nr];
 | 
|---|
| 381 |         if (Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on
 | 
|---|
| 382 |           Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->begin();
 | 
|---|
| 383 |           break;
 | 
|---|
| 384 |         }
 | 
|---|
| 385 |         //Log() << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl;
 | 
|---|
| 386 |         // find source of the new target
 | 
|---|
| 387 |         Runner = start->next;
 | 
|---|
| 388 |         while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
 | 
|---|
| 389 |           if (Params.PermutationMap[Runner->nr] == Params.DistanceIterators[Walker->nr]->second) {
 | 
|---|
| 390 |             //Log() << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl;
 | 
|---|
| 391 |             break;
 | 
|---|
| 392 |           }
 | 
|---|
| 393 |           Runner = Runner->next;
 | 
|---|
| 394 |         }
 | 
|---|
| 395 |         if (Runner != end) { // we found the other source
 | 
|---|
| 396 |           // then look in its distance list for Sprinter
 | 
|---|
| 397 |           Rider = Params.DistanceList[Runner->nr]->begin();
 | 
|---|
| 398 |           for (; Rider != Params.DistanceList[Runner->nr]->end(); Rider++)
 | 
|---|
| 399 |             if (Rider->second == Sprinter)
 | 
|---|
| 400 |               break;
 | 
|---|
| 401 |           if (Rider != Params.DistanceList[Runner->nr]->end()) { // if we have found one
 | 
|---|
| 402 |             //Log() << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl;
 | 
|---|
| 403 |             // exchange both
 | 
|---|
| 404 |             Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap
 | 
|---|
| 405 |             Params.PermutationMap[Runner->nr] = Sprinter;  // and hand the old target to its respective owner
 | 
|---|
| 406 |             PrintPermutationMap(AtomCount, Params);
 | 
|---|
| 407 |             // calculate the new potential
 | 
|---|
| 408 |             //Log() << Verbose(2) << "Checking new potential ..." << endl;
 | 
|---|
| 409 |             Potential = ConstrainedPotential(Params);
 | 
|---|
| 410 |             if (Potential > OldPotential) { // we made everything worse! Undo ...
 | 
|---|
| 411 |               //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
 | 
|---|
| 412 |               //Log() << Verbose(3) << "Setting " << *Runner << "'s source to " << *Params.DistanceIterators[Runner->nr]->second << "." << endl;
 | 
|---|
| 413 |               // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
 | 
|---|
| 414 |               Params.PermutationMap[Runner->nr] = Params.DistanceIterators[Runner->nr]->second;
 | 
|---|
| 415 |               // Undo for Walker
 | 
|---|
| 416 |               Params.DistanceIterators[Walker->nr] = Strider;  // take next farther distance target
 | 
|---|
| 417 |               //Log() << Verbose(3) << "Setting " << *Walker << "'s source to " << *Params.DistanceIterators[Walker->nr]->second << "." << endl;
 | 
|---|
| 418 |               Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
 | 
|---|
| 419 |             } else {
 | 
|---|
| 420 |               Params.DistanceIterators[Runner->nr] = Rider;  // if successful also move the pointer in the iterator list
 | 
|---|
| 421 |               DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
 | 
|---|
| 422 |               OldPotential = Potential;
 | 
|---|
| 423 |             }
 | 
|---|
| 424 |             if (Potential > Params.PenaltyConstants[2]) {
 | 
|---|
| 425 |               DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
 | 
|---|
| 426 |               exit(255);
 | 
|---|
| 427 |             }
 | 
|---|
| 428 |             //Log() << Verbose(0) << endl;
 | 
|---|
| 429 |           } else {
 | 
|---|
| 430 |             DoeLog(1) && (eLog()<< Verbose(1) << *Runner << " was not the owner of " << *Sprinter << "!" << endl);
 | 
|---|
| 431 |             exit(255);
 | 
|---|
| 432 |           }
 | 
|---|
| 433 |         } else {
 | 
|---|
| 434 |           Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // new target has no source!
 | 
|---|
| 435 |         }
 | 
|---|
| 436 |         Params.StepList[Walker->nr]++; // take next farther distance target
 | 
|---|
| 437 |       }
 | 
|---|
| 438 |     } while (Walker->next != end);
 | 
|---|
| 439 |   } while ((OlderPotential - OldPotential) > 1e-3);
 | 
|---|
| 440 |   DoLog(1) && (Log() << Verbose(1) << "done." << endl);
 | 
|---|
| 441 | 
 | 
|---|
| 442 | 
 | 
|---|
| 443 |   /// free memory and return with evaluated potential
 | 
|---|
| 444 |   for (int i=AtomCount; i--;)
 | 
|---|
| 445 |     Params.DistanceList[i]->clear();
 | 
|---|
| 446 |   Free(&Params.DistanceList);
 | 
|---|
| 447 |   Free(&Params.DistanceIterators);
 | 
|---|
| 448 |   return ConstrainedPotential(Params);
 | 
|---|
| 449 | };
 | 
|---|
| 450 | 
 | 
|---|
| 451 | 
 | 
|---|
| 452 | /** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
 | 
|---|
| 453 |  * \param *out output stream for debugging
 | 
|---|
| 454 |  * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
 | 
|---|
| 455 |  * \param endstep step giving final position in constrained MD
 | 
|---|
| 456 |  * \param **PermutationMap mapping between the atom label of the initial and the final configuration
 | 
|---|
| 457 |  * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
 | 
|---|
| 458 |  * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
 | 
|---|
| 459 |  */
 | 
|---|
| 460 | void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
 | 
|---|
| 461 | {
 | 
|---|
| 462 |   /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
 | 
|---|
| 463 |   DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
 | 
|---|
| 464 |   ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
 | 
|---|
| 465 |   DoLog(1) && (Log() << Verbose(1) << "done." << endl);
 | 
|---|
| 466 | };
 | 
|---|
| 467 | 
 | 
|---|
| 468 | /** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
 | 
|---|
| 469 |  * Note, step number is config::MaxOuterStep
 | 
|---|
| 470 |  * \param *out output stream for debugging
 | 
|---|
| 471 |  * \param startstep stating initial configuration in molecule::Trajectories
 | 
|---|
| 472 |  * \param endstep stating final configuration in molecule::Trajectories
 | 
|---|
| 473 |  * \param &config configuration structure
 | 
|---|
| 474 |  * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
 | 
|---|
| 475 |  * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
 | 
|---|
| 476 |  */
 | 
|---|
| 477 | bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
 | 
|---|
| 478 | {
 | 
|---|
| 479 |   molecule *mol = NULL;
 | 
|---|
| 480 |   bool status = true;
 | 
|---|
| 481 |   int MaxSteps = configuration.MaxOuterStep;
 | 
|---|
| 482 |   MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
 | 
|---|
| 483 |   // Get the Permutation Map by MinimiseConstrainedPotential
 | 
|---|
| 484 |   atom **PermutationMap = NULL;
 | 
|---|
| 485 |   atom *Walker = NULL, *Sprinter = NULL;
 | 
|---|
| 486 |   if (!MapByIdentity)
 | 
|---|
| 487 |     MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
 | 
|---|
| 488 |   else {
 | 
|---|
| 489 |     PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");
 | 
|---|
| 490 |     SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
 | 
|---|
| 491 |   }
 | 
|---|
| 492 | 
 | 
|---|
| 493 |   // check whether we have sufficient space in Trajectories for each atom
 | 
|---|
| 494 |   ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
 | 
|---|
| 495 |   // push endstep to last one
 | 
|---|
| 496 |   ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
 | 
|---|
| 497 |   endstep = MaxSteps;
 | 
|---|
| 498 | 
 | 
|---|
| 499 |   // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
 | 
|---|
| 500 |   DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
 | 
|---|
| 501 |   for (int step = 0; step <= MaxSteps; step++) {
 | 
|---|
| 502 |     mol = World::getInstance().createMolecule();
 | 
|---|
| 503 |     MoleculePerStep->insert(mol);
 | 
|---|
| 504 |     Walker = start;
 | 
|---|
| 505 |     while (Walker->next != end) {
 | 
|---|
| 506 |       Walker = Walker->next;
 | 
|---|
| 507 |       // add to molecule list
 | 
|---|
| 508 |       Sprinter = mol->AddCopyAtom(Walker);
 | 
|---|
| 509 |       for (int n=NDIM;n--;) {
 | 
|---|
| 510 |         Sprinter->x[n] = Walker->Trajectory.R.at(startstep)[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep)[n] - Walker->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
 | 
|---|
| 511 |         // add to Trajectories
 | 
|---|
| 512 |         //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
 | 
|---|
| 513 |         if (step < MaxSteps) {
 | 
|---|
| 514 |           Walker->Trajectory.R.at(step)[n] = Walker->Trajectory.R.at(startstep)[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep)[n] - Walker->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
 | 
|---|
| 515 |           Walker->Trajectory.U.at(step)[n] = 0.;
 | 
|---|
| 516 |           Walker->Trajectory.F.at(step)[n] = 0.;
 | 
|---|
| 517 |         }
 | 
|---|
| 518 |       }
 | 
|---|
| 519 |     }
 | 
|---|
| 520 |   }
 | 
|---|
| 521 |   MDSteps = MaxSteps+1;   // otherwise new Trajectories' points aren't stored on save&exit
 | 
|---|
| 522 | 
 | 
|---|
| 523 |   // store the list to single step files
 | 
|---|
| 524 |   int *SortIndex = Malloc<int>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");
 | 
|---|
| 525 |   for (int i=AtomCount; i--; )
 | 
|---|
| 526 |     SortIndex[i] = i;
 | 
|---|
| 527 |   status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex);
 | 
|---|
| 528 | 
 | 
|---|
| 529 |   // free and return
 | 
|---|
| 530 |   Free(&PermutationMap);
 | 
|---|
| 531 |   delete(MoleculePerStep);
 | 
|---|
| 532 |   return status;
 | 
|---|
| 533 | };
 | 
|---|
| 534 | 
 | 
|---|
| 535 | /** Parses nuclear forces from file and performs Verlet integration.
 | 
|---|
| 536 |  * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
 | 
|---|
| 537 |  * have to transform them).
 | 
|---|
| 538 |  * This adds a new MD step to the config file.
 | 
|---|
| 539 |  * \param *out output stream for debugging
 | 
|---|
| 540 |  * \param *file filename
 | 
|---|
| 541 |  * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
 | 
|---|
| 542 |  * \param delta_t time step width in atomic units
 | 
|---|
| 543 |  * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
 | 
|---|
| 544 |  * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
 | 
|---|
| 545 |  * \return true - file found and parsed, false - file not found or imparsable
 | 
|---|
| 546 |  * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
 | 
|---|
| 547 |  */
 | 
|---|
| 548 | bool molecule::VerletForceIntegration(char *file, config &configuration)
 | 
|---|
| 549 | {
 | 
|---|
| 550 |   ifstream input(file);
 | 
|---|
| 551 |   string token;
 | 
|---|
| 552 |   stringstream item;
 | 
|---|
| 553 |   double IonMass, ConstrainedPotentialEnergy, ActualTemp;
 | 
|---|
| 554 |   Vector Velocity;
 | 
|---|
| 555 |   ForceMatrix Force;
 | 
|---|
| 556 | 
 | 
|---|
| 557 |   CountElements();  // make sure ElementsInMolecule is up to date
 | 
|---|
| 558 | 
 | 
|---|
| 559 |   // check file
 | 
|---|
| 560 |   if (input == NULL) {
 | 
|---|
| 561 |     return false;
 | 
|---|
| 562 |   } else {
 | 
|---|
| 563 |     // parse file into ForceMatrix
 | 
|---|
| 564 |     if (!Force.ParseMatrix(file, 0,0,0)) {
 | 
|---|
| 565 |       DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
 | 
|---|
| 566 |       performCriticalExit();
 | 
|---|
| 567 |       return false;
 | 
|---|
| 568 |     }
 | 
|---|
| 569 |     if (Force.RowCounter[0] != AtomCount) {
 | 
|---|
| 570 |       DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl);
 | 
|---|
| 571 |       performCriticalExit();
 | 
|---|
| 572 |       return false;
 | 
|---|
| 573 |     }
 | 
|---|
| 574 |     // correct Forces
 | 
|---|
| 575 |     Velocity.Zero();
 | 
|---|
| 576 |     for(int i=0;i<AtomCount;i++)
 | 
|---|
| 577 |       for(int d=0;d<NDIM;d++) {
 | 
|---|
| 578 |         Velocity[d] += Force.Matrix[0][i][d+5];
 | 
|---|
| 579 |       }
 | 
|---|
| 580 |     for(int i=0;i<AtomCount;i++)
 | 
|---|
| 581 |       for(int d=0;d<NDIM;d++) {
 | 
|---|
| 582 |         Force.Matrix[0][i][d+5] -= Velocity[d]/(double)AtomCount;
 | 
|---|
| 583 |       }
 | 
|---|
| 584 |     // solve a constrained potential if we are meant to
 | 
|---|
| 585 |     if (configuration.DoConstrainedMD) {
 | 
|---|
| 586 |       // calculate forces and potential
 | 
|---|
| 587 |       atom **PermutationMap = NULL;
 | 
|---|
| 588 |       ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
 | 
|---|
| 589 |       EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
 | 
|---|
| 590 |       Free(&PermutationMap);
 | 
|---|
| 591 |     }
 | 
|---|
| 592 | 
 | 
|---|
| 593 |     // and perform Verlet integration for each atom with position, velocity and force vector
 | 
|---|
| 594 |     // check size of vectors
 | 
|---|
| 595 |     ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
 | 
|---|
| 596 | 
 | 
|---|
| 597 |     ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps, &configuration, &Force);
 | 
|---|
| 598 |   }
 | 
|---|
| 599 |   // correct velocities (rather momenta) so that center of mass remains motionless
 | 
|---|
| 600 |   Velocity.Zero();
 | 
|---|
| 601 |   IonMass = 0.;
 | 
|---|
| 602 |   ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps, &IonMass, &Velocity );
 | 
|---|
| 603 | 
 | 
|---|
| 604 |   // correct velocities (rather momenta) so that center of mass remains motionless
 | 
|---|
| 605 |   Velocity.Scale(1./IonMass);
 | 
|---|
| 606 |   ActualTemp = 0.;
 | 
|---|
| 607 |   ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps, &Velocity );
 | 
|---|
| 608 |   Thermostats(configuration, ActualTemp, Berendsen);
 | 
|---|
| 609 |   MDSteps++;
 | 
|---|
| 610 | 
 | 
|---|
| 611 |   // exit
 | 
|---|
| 612 |   return true;
 | 
|---|
| 613 | };
 | 
|---|
| 614 | 
 | 
|---|
| 615 | /** Implementation of various thermostats.
 | 
|---|
| 616 |  * All these thermostats apply an additional force which has the following forms:
 | 
|---|
| 617 |  * -# Woodcock
 | 
|---|
| 618 |  *  \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
 | 
|---|
| 619 |  * -# Gaussian
 | 
|---|
| 620 |  *  \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
 | 
|---|
| 621 |  * -# Langevin
 | 
|---|
| 622 |  *  \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
 | 
|---|
| 623 |  * -# Berendsen
 | 
|---|
| 624 |  *  \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
 | 
|---|
| 625 |  * -# Nose-Hoover
 | 
|---|
| 626 |  *  \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
 | 
|---|
| 627 |  * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
 | 
|---|
| 628 |  * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
 | 
|---|
| 629 |  * belatedly and the constraint force set.
 | 
|---|
| 630 |  * \param *P Problem at hand
 | 
|---|
| 631 |  * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
 | 
|---|
| 632 |  * \sa InitThermostat()
 | 
|---|
| 633 |  */
 | 
|---|
| 634 | void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
 | 
|---|
| 635 | {
 | 
|---|
| 636 |   double ekin = 0.;
 | 
|---|
| 637 |   double E = 0., G = 0.;
 | 
|---|
| 638 |   double delta_alpha = 0.;
 | 
|---|
| 639 |   double ScaleTempFactor;
 | 
|---|
| 640 |   gsl_rng * r;
 | 
|---|
| 641 |   const gsl_rng_type * T;
 | 
|---|
| 642 | 
 | 
|---|
| 643 |   // calculate scale configuration
 | 
|---|
| 644 |   ScaleTempFactor = configuration.TargetTemp/ActualTemp;
 | 
|---|
| 645 | 
 | 
|---|
| 646 |   // differentating between the various thermostats
 | 
|---|
| 647 |   switch(Thermostat) {
 | 
|---|
| 648 |      case None:
 | 
|---|
| 649 |       DoLog(2) && (Log() << Verbose(2) <<  "Applying no thermostat..." << endl);
 | 
|---|
| 650 |       break;
 | 
|---|
| 651 |      case Woodcock:
 | 
|---|
| 652 |       if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
 | 
|---|
| 653 |         DoLog(2) && (Log() << Verbose(2) <<  "Applying Woodcock thermostat..." << endl);
 | 
|---|
| 654 |         ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
 | 
|---|
| 655 |       }
 | 
|---|
| 656 |       break;
 | 
|---|
| 657 |      case Gaussian:
 | 
|---|
| 658 |       DoLog(2) && (Log() << Verbose(2) <<  "Applying Gaussian thermostat..." << endl);
 | 
|---|
| 659 |       ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
 | 
|---|
| 660 | 
 | 
|---|
| 661 |       DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl);
 | 
|---|
| 662 |       ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
 | 
|---|
| 663 | 
 | 
|---|
| 664 |       break;
 | 
|---|
| 665 |      case Langevin:
 | 
|---|
| 666 |       DoLog(2) && (Log() << Verbose(2) <<  "Applying Langevin thermostat..." << endl);
 | 
|---|
| 667 |       // init random number generator
 | 
|---|
| 668 |       gsl_rng_env_setup();
 | 
|---|
| 669 |       T = gsl_rng_default;
 | 
|---|
| 670 |       r = gsl_rng_alloc (T);
 | 
|---|
| 671 |       // Go through each ion
 | 
|---|
| 672 |       ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
 | 
|---|
| 673 |       break;
 | 
|---|
| 674 | 
 | 
|---|
| 675 |      case Berendsen:
 | 
|---|
| 676 |       DoLog(2) && (Log() << Verbose(2) <<  "Applying Berendsen-VanGunsteren thermostat..." << endl);
 | 
|---|
| 677 |       ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
 | 
|---|
| 678 |       break;
 | 
|---|
| 679 | 
 | 
|---|
| 680 |      case NoseHoover:
 | 
|---|
| 681 |       DoLog(2) && (Log() << Verbose(2) <<  "Applying Nose-Hoover thermostat..." << endl);
 | 
|---|
| 682 |       // dynamically evolve alpha (the additional degree of freedom)
 | 
|---|
| 683 |       delta_alpha = 0.;
 | 
|---|
| 684 |       ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
 | 
|---|
| 685 |       delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
 | 
|---|
| 686 |       configuration.alpha += delta_alpha*configuration.Deltat;
 | 
|---|
| 687 |       DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl);
 | 
|---|
| 688 |       // apply updated alpha as additional force
 | 
|---|
| 689 |       ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
 | 
|---|
| 690 |       break;
 | 
|---|
| 691 |   }
 | 
|---|
| 692 |   DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
 | 
|---|
| 693 | };
 | 
|---|