| [cee0b57] | 1 | /* | 
|---|
|  | 2 | * molecule_dynamics.cpp | 
|---|
|  | 3 | * | 
|---|
|  | 4 | *  Created on: Oct 5, 2009 | 
|---|
|  | 5 | *      Author: heber | 
|---|
|  | 6 | */ | 
|---|
|  | 7 |  | 
|---|
| [f66195] | 8 | #include "atom.hpp" | 
|---|
| [cee0b57] | 9 | #include "config.hpp" | 
|---|
| [f66195] | 10 | #include "element.hpp" | 
|---|
| [e138de] | 11 | #include "log.hpp" | 
|---|
| [cee0b57] | 12 | #include "memoryallocator.hpp" | 
|---|
|  | 13 | #include "molecule.hpp" | 
|---|
| [f66195] | 14 | #include "parser.hpp" | 
|---|
| [cee0b57] | 15 |  | 
|---|
|  | 16 | /************************************* Functions for class molecule *********************************/ | 
|---|
|  | 17 |  | 
|---|
| [ccd9f5] | 18 | /** Penalizes long trajectories. | 
|---|
|  | 19 | * \param *Walker atom to check against others | 
|---|
|  | 20 | * \param *mol molecule with other atoms | 
|---|
|  | 21 | * \param &Params constraint potential parameters | 
|---|
|  | 22 | * \return penalty times each distance | 
|---|
|  | 23 | */ | 
|---|
|  | 24 | double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params) | 
|---|
|  | 25 | { | 
|---|
|  | 26 | gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM); | 
|---|
|  | 27 | gsl_vector *x = gsl_vector_alloc(NDIM); | 
|---|
|  | 28 | atom * Runner = mol->start; | 
|---|
|  | 29 | atom *Sprinter = NULL; | 
|---|
|  | 30 | Vector trajectory1, trajectory2, normal, TestVector; | 
|---|
|  | 31 | double Norm1, Norm2, tmp, result = 0.; | 
|---|
|  | 32 |  | 
|---|
|  | 33 | while (Runner->next != mol->end) { | 
|---|
|  | 34 | Runner = Runner->next; | 
|---|
|  | 35 | if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++) | 
|---|
|  | 36 | break; | 
|---|
|  | 37 | // determine normalized trajectories direction vector (n1, n2) | 
|---|
|  | 38 | Sprinter = Params.PermutationMap[Walker->nr];   // find first target point | 
|---|
|  | 39 | trajectory1.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep)); | 
|---|
|  | 40 | trajectory1.SubtractVector(&Walker->Trajectory.R.at(Params.startstep)); | 
|---|
|  | 41 | trajectory1.Normalize(); | 
|---|
|  | 42 | Norm1 = trajectory1.Norm(); | 
|---|
|  | 43 | Sprinter = Params.PermutationMap[Runner->nr];   // find second target point | 
|---|
|  | 44 | trajectory2.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep)); | 
|---|
|  | 45 | trajectory2.SubtractVector(&Runner->Trajectory.R.at(Params.startstep)); | 
|---|
|  | 46 | trajectory2.Normalize(); | 
|---|
|  | 47 | Norm2 = trajectory1.Norm(); | 
|---|
|  | 48 | // check whether either is zero() | 
|---|
|  | 49 | if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) { | 
|---|
|  | 50 | tmp = Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.startstep)); | 
|---|
|  | 51 | } else if (Norm1 < MYEPSILON) { | 
|---|
|  | 52 | Sprinter = Params.PermutationMap[Walker->nr];   // find first target point | 
|---|
|  | 53 | trajectory1.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep));  // copy first offset | 
|---|
|  | 54 | trajectory1.SubtractVector(&Runner->Trajectory.R.at(Params.startstep));  // subtract second offset | 
|---|
|  | 55 | trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything | 
|---|
|  | 56 | trajectory1.SubtractVector(&trajectory2);   // project the part in norm direction away | 
|---|
|  | 57 | tmp = trajectory1.Norm();  // remaining norm is distance | 
|---|
|  | 58 | } else if (Norm2 < MYEPSILON) { | 
|---|
|  | 59 | Sprinter = Params.PermutationMap[Runner->nr];   // find second target point | 
|---|
|  | 60 | trajectory2.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep));  // copy second offset | 
|---|
|  | 61 | trajectory2.SubtractVector(&Walker->Trajectory.R.at(Params.startstep));  // subtract first offset | 
|---|
|  | 62 | trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything | 
|---|
|  | 63 | trajectory2.SubtractVector(&trajectory1);   // project the part in norm direction away | 
|---|
|  | 64 | tmp = trajectory2.Norm();  // remaining norm is distance | 
|---|
|  | 65 | } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent | 
|---|
| [e138de] | 66 | //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: "; | 
|---|
|  | 67 | //        Log() << Verbose(0) << trajectory1; | 
|---|
|  | 68 | //        Log() << Verbose(0) << " and "; | 
|---|
|  | 69 | //        Log() << Verbose(0) << trajectory2; | 
|---|
| [ccd9f5] | 70 | tmp = Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.startstep)); | 
|---|
| [e138de] | 71 | //        Log() << Verbose(0) << " with distance " << tmp << "." << endl; | 
|---|
| [ccd9f5] | 72 | } else { // determine distance by finding minimum distance | 
|---|
| [e138de] | 73 | //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent "; | 
|---|
|  | 74 | //        Log() << Verbose(0) << endl; | 
|---|
|  | 75 | //        Log() << Verbose(0) << "First Trajectory: "; | 
|---|
|  | 76 | //        Log() << Verbose(0) << trajectory1 << endl; | 
|---|
|  | 77 | //        Log() << Verbose(0) << "Second Trajectory: "; | 
|---|
|  | 78 | //        Log() << Verbose(0) << trajectory2 << endl; | 
|---|
| [ccd9f5] | 79 | // determine normal vector for both | 
|---|
|  | 80 | normal.MakeNormalVector(&trajectory1, &trajectory2); | 
|---|
|  | 81 | // print all vectors for debugging | 
|---|
| [e138de] | 82 | //        Log() << Verbose(0) << "Normal vector in between: "; | 
|---|
|  | 83 | //        Log() << Verbose(0) << normal << endl; | 
|---|
| [ccd9f5] | 84 | // setup matrix | 
|---|
|  | 85 | for (int i=NDIM;i--;) { | 
|---|
|  | 86 | gsl_matrix_set(A, 0, i, trajectory1.x[i]); | 
|---|
|  | 87 | gsl_matrix_set(A, 1, i, trajectory2.x[i]); | 
|---|
|  | 88 | gsl_matrix_set(A, 2, i, normal.x[i]); | 
|---|
|  | 89 | gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep).x[i] - Runner->Trajectory.R.at(Params.startstep).x[i])); | 
|---|
|  | 90 | } | 
|---|
|  | 91 | // solve the linear system by Householder transformations | 
|---|
|  | 92 | gsl_linalg_HH_svx(A, x); | 
|---|
|  | 93 | // distance from last component | 
|---|
|  | 94 | tmp = gsl_vector_get(x,2); | 
|---|
| [e138de] | 95 | //        Log() << Verbose(0) << " with distance " << tmp << "." << endl; | 
|---|
| [ccd9f5] | 96 | // test whether we really have the intersection (by checking on c_1 and c_2) | 
|---|
|  | 97 | TestVector.CopyVector(&Runner->Trajectory.R.at(Params.startstep)); | 
|---|
|  | 98 | trajectory2.Scale(gsl_vector_get(x,1)); | 
|---|
|  | 99 | TestVector.AddVector(&trajectory2); | 
|---|
|  | 100 | normal.Scale(gsl_vector_get(x,2)); | 
|---|
|  | 101 | TestVector.AddVector(&normal); | 
|---|
|  | 102 | TestVector.SubtractVector(&Walker->Trajectory.R.at(Params.startstep)); | 
|---|
|  | 103 | trajectory1.Scale(gsl_vector_get(x,0)); | 
|---|
|  | 104 | TestVector.SubtractVector(&trajectory1); | 
|---|
|  | 105 | if (TestVector.Norm() < MYEPSILON) { | 
|---|
| [e138de] | 106 | //          Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl; | 
|---|
| [ccd9f5] | 107 | } else { | 
|---|
| [e138de] | 108 | //          Log() << Verbose(2) << "Test: failed.\tIntersection is off by "; | 
|---|
|  | 109 | //          Log() << Verbose(0) << TestVector; | 
|---|
|  | 110 | //          Log() << Verbose(0) << "." << endl; | 
|---|
| [ccd9f5] | 111 | } | 
|---|
|  | 112 | } | 
|---|
|  | 113 | // add up | 
|---|
|  | 114 | tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; | 
|---|
|  | 115 | if (fabs(tmp) > MYEPSILON) { | 
|---|
|  | 116 | result += Params.PenaltyConstants[1] * 1./tmp; | 
|---|
| [e138de] | 117 | //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl; | 
|---|
| [ccd9f5] | 118 | } | 
|---|
|  | 119 | } | 
|---|
|  | 120 | return result; | 
|---|
|  | 121 | }; | 
|---|
|  | 122 |  | 
|---|
|  | 123 | /** Penalizes atoms heading to same target. | 
|---|
|  | 124 | * \param *Walker atom to check against others | 
|---|
|  | 125 | * \param *mol molecule with other atoms | 
|---|
|  | 126 | * \param &Params constrained potential parameters | 
|---|
|  | 127 | * \return \a penalty times the number of equal targets | 
|---|
|  | 128 | */ | 
|---|
|  | 129 | double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params) | 
|---|
|  | 130 | { | 
|---|
|  | 131 | double result = 0.; | 
|---|
|  | 132 | atom * Runner = mol->start; | 
|---|
|  | 133 | while (Runner->next != mol->end) { | 
|---|
|  | 134 | Runner = Runner->next; | 
|---|
|  | 135 | if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) { | 
|---|
|  | 136 | //    atom *Sprinter = PermutationMap[Walker->nr]; | 
|---|
| [e138de] | 137 | //        Log() << Verbose(0) << *Walker << " and " << *Runner << " are heading to the same target at "; | 
|---|
|  | 138 | //        Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep); | 
|---|
|  | 139 | //        Log() << Verbose(0) << ", penalting." << endl; | 
|---|
| [ccd9f5] | 140 | result += Params.PenaltyConstants[2]; | 
|---|
| [e138de] | 141 | //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl; | 
|---|
| [ccd9f5] | 142 | } | 
|---|
|  | 143 | } | 
|---|
|  | 144 | return result; | 
|---|
|  | 145 | }; | 
|---|
| [cee0b57] | 146 |  | 
|---|
|  | 147 | /** Evaluates the potential energy used for constrained molecular dynamics. | 
|---|
|  | 148 | * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$ | 
|---|
|  | 149 | *     where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between | 
|---|
|  | 150 | *     trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point. | 
|---|
|  | 151 | * Note that for the second term we have to solve the following linear system: | 
|---|
|  | 152 | * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants, | 
|---|
|  | 153 | * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$, | 
|---|
|  | 154 | * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines. | 
|---|
|  | 155 | * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration() | 
|---|
|  | 156 | * \param *out output stream for debugging | 
|---|
| [ccd9f5] | 157 | * \param &Params constrained potential parameters | 
|---|
| [cee0b57] | 158 | * \return potential energy | 
|---|
|  | 159 | * \note This routine is scaling quadratically which is not optimal. | 
|---|
|  | 160 | * \todo There's a bit double counting going on for the first time, bu nothing to worry really about. | 
|---|
|  | 161 | */ | 
|---|
| [e138de] | 162 | double molecule::ConstrainedPotential(struct EvaluatePotential &Params) | 
|---|
| [cee0b57] | 163 | { | 
|---|
| [ccd9f5] | 164 | double tmp, result; | 
|---|
| [cee0b57] | 165 |  | 
|---|
|  | 166 | // go through every atom | 
|---|
| [ccd9f5] | 167 | atom *Runner = NULL; | 
|---|
|  | 168 | atom *Walker = start; | 
|---|
| [cee0b57] | 169 | while (Walker->next != end) { | 
|---|
|  | 170 | Walker = Walker->next; | 
|---|
|  | 171 | // first term: distance to target | 
|---|
| [ccd9f5] | 172 | Runner = Params.PermutationMap[Walker->nr];   // find target point | 
|---|
|  | 173 | tmp = (Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.endstep))); | 
|---|
|  | 174 | tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; | 
|---|
|  | 175 | result += Params.PenaltyConstants[0] * tmp; | 
|---|
| [e138de] | 176 | //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl; | 
|---|
| [cee0b57] | 177 |  | 
|---|
|  | 178 | // second term: sum of distances to other trajectories | 
|---|
| [ccd9f5] | 179 | result += SumDistanceOfTrajectories(Walker, this, Params); | 
|---|
| [cee0b57] | 180 |  | 
|---|
|  | 181 | // third term: penalty for equal targets | 
|---|
| [ccd9f5] | 182 | result += PenalizeEqualTargets(Walker, this, Params); | 
|---|
| [cee0b57] | 183 | } | 
|---|
|  | 184 |  | 
|---|
|  | 185 | return result; | 
|---|
|  | 186 | }; | 
|---|
|  | 187 |  | 
|---|
| [ccd9f5] | 188 | /** print the current permutation map. | 
|---|
|  | 189 | * \param *out output stream for debugging | 
|---|
|  | 190 | * \param &Params constrained potential parameters | 
|---|
|  | 191 | * \param AtomCount number of atoms | 
|---|
|  | 192 | */ | 
|---|
| [e138de] | 193 | void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params) | 
|---|
| [cee0b57] | 194 | { | 
|---|
|  | 195 | stringstream zeile1, zeile2; | 
|---|
| [7218f8] | 196 | int *DoubleList = Calloc<int>(AtomCount, "PrintPermutationMap: *DoubleList"); | 
|---|
| [cee0b57] | 197 | int doubles = 0; | 
|---|
|  | 198 | zeile1 << "PermutationMap: "; | 
|---|
|  | 199 | zeile2 << "                "; | 
|---|
| [ccd9f5] | 200 | for (int i=0;i<AtomCount;i++) { | 
|---|
|  | 201 | Params.DoubleList[Params.PermutationMap[i]->nr]++; | 
|---|
| [cee0b57] | 202 | zeile1 << i << " "; | 
|---|
| [ccd9f5] | 203 | zeile2 << Params.PermutationMap[i]->nr << " "; | 
|---|
| [cee0b57] | 204 | } | 
|---|
| [ccd9f5] | 205 | for (int i=0;i<AtomCount;i++) | 
|---|
|  | 206 | if (Params.DoubleList[i] > 1) | 
|---|
| [cee0b57] | 207 | doubles++; | 
|---|
| [ccd9f5] | 208 | if (doubles >0) | 
|---|
| [e138de] | 209 | Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl; | 
|---|
| [cee0b57] | 210 | Free(&DoubleList); | 
|---|
| [e138de] | 211 | //  Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl; | 
|---|
| [cee0b57] | 212 | }; | 
|---|
|  | 213 |  | 
|---|
| [ccd9f5] | 214 | /** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList. | 
|---|
|  | 215 | * \param *mol molecule to scan distances in | 
|---|
|  | 216 | * \param &Params constrained potential parameters | 
|---|
|  | 217 | */ | 
|---|
|  | 218 | void FillDistanceList(molecule *mol, struct EvaluatePotential &Params) | 
|---|
|  | 219 | { | 
|---|
|  | 220 | for (int i=mol->AtomCount; i--;) { | 
|---|
|  | 221 | Params.DistanceList[i] = new DistanceMap;    // is the distance sorted target list per atom | 
|---|
|  | 222 | Params.DistanceList[i]->clear(); | 
|---|
|  | 223 | } | 
|---|
|  | 224 |  | 
|---|
|  | 225 | atom *Runner = NULL; | 
|---|
|  | 226 | atom *Walker = mol->start; | 
|---|
|  | 227 | while (Walker->next != mol->end) { | 
|---|
|  | 228 | Walker = Walker->next; | 
|---|
|  | 229 | Runner = mol->start; | 
|---|
|  | 230 | while(Runner->next != mol->end) { | 
|---|
|  | 231 | Runner = Runner->next; | 
|---|
|  | 232 | Params.DistanceList[Walker->nr]->insert( DistancePair(Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.endstep)), Runner) ); | 
|---|
|  | 233 | } | 
|---|
|  | 234 | } | 
|---|
|  | 235 | }; | 
|---|
|  | 236 |  | 
|---|
|  | 237 | /** initialize lists. | 
|---|
|  | 238 | * \param *out output stream for debugging | 
|---|
|  | 239 | * \param *mol molecule to scan distances in | 
|---|
|  | 240 | * \param &Params constrained potential parameters | 
|---|
|  | 241 | */ | 
|---|
| [e138de] | 242 | void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params) | 
|---|
| [ccd9f5] | 243 | { | 
|---|
|  | 244 | atom *Walker = mol->start; | 
|---|
|  | 245 | while (Walker->next != mol->end) { | 
|---|
|  | 246 | Walker = Walker->next; | 
|---|
|  | 247 | Params.StepList[Walker->nr] = Params.DistanceList[Walker->nr]->begin();    // stores the step to the next iterator that could be a possible next target | 
|---|
|  | 248 | Params.PermutationMap[Walker->nr] = Params.DistanceList[Walker->nr]->begin()->second;   // always pick target with the smallest distance | 
|---|
|  | 249 | Params.DoubleList[Params.DistanceList[Walker->nr]->begin()->second->nr]++;            // increase this target's source count (>1? not injective) | 
|---|
|  | 250 | Params.DistanceIterators[Walker->nr] = Params.DistanceList[Walker->nr]->begin();    // and remember which one we picked | 
|---|
| [e138de] | 251 | Log() << Verbose(2) << *Walker << " starts with distance " << Params.DistanceList[Walker->nr]->begin()->first << "." << endl; | 
|---|
| [ccd9f5] | 252 | } | 
|---|
|  | 253 | }; | 
|---|
|  | 254 |  | 
|---|
|  | 255 | /** Try the next nearest neighbour in order to make the permutation map injective. | 
|---|
|  | 256 | * \param *out output stream for debugging | 
|---|
|  | 257 | * \param *mol molecule | 
|---|
|  | 258 | * \param *Walker atom to change its target | 
|---|
|  | 259 | * \param &OldPotential old value of constraint potential to see if we do better with new target | 
|---|
|  | 260 | * \param &Params constrained potential parameters | 
|---|
|  | 261 | */ | 
|---|
| [e138de] | 262 | double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params) | 
|---|
| [ccd9f5] | 263 | { | 
|---|
|  | 264 | double Potential = 0; | 
|---|
|  | 265 | DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr];  // store old base | 
|---|
|  | 266 | do { | 
|---|
|  | 267 | NewBase++;  // take next further distance in distance to targets list that's a target of no one | 
|---|
|  | 268 | } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end())); | 
|---|
|  | 269 | if (NewBase != Params.DistanceList[Walker->nr]->end()) { | 
|---|
|  | 270 | Params.PermutationMap[Walker->nr] = NewBase->second; | 
|---|
| [e138de] | 271 | Potential = fabs(mol->ConstrainedPotential(Params)); | 
|---|
| [ccd9f5] | 272 | if (Potential > OldPotential) { // undo | 
|---|
|  | 273 | Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; | 
|---|
|  | 274 | } else {  // do | 
|---|
|  | 275 | Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--;  // decrease the old entry in the doubles list | 
|---|
|  | 276 | Params.DoubleList[NewBase->second->nr]++;    // increase the old entry in the doubles list | 
|---|
|  | 277 | Params.DistanceIterators[Walker->nr] = NewBase; | 
|---|
|  | 278 | OldPotential = Potential; | 
|---|
| [e138de] | 279 | Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl; | 
|---|
| [ccd9f5] | 280 | } | 
|---|
|  | 281 | } | 
|---|
|  | 282 | return Potential; | 
|---|
|  | 283 | }; | 
|---|
|  | 284 |  | 
|---|
|  | 285 | /** Permutes \a **&PermutationMap until the penalty is below constants[2]. | 
|---|
|  | 286 | * \param *out output stream for debugging | 
|---|
|  | 287 | * \param *mol molecule to scan distances in | 
|---|
|  | 288 | * \param &Params constrained potential parameters | 
|---|
|  | 289 | */ | 
|---|
| [e138de] | 290 | void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params) | 
|---|
| [ccd9f5] | 291 | { | 
|---|
|  | 292 | atom *Walker = mol->start; | 
|---|
|  | 293 | DistanceMap::iterator NewBase; | 
|---|
| [e138de] | 294 | double Potential = fabs(mol->ConstrainedPotential(Params)); | 
|---|
| [ccd9f5] | 295 |  | 
|---|
|  | 296 | while ((Potential) > Params.PenaltyConstants[2]) { | 
|---|
| [e138de] | 297 | PrintPermutationMap(mol->AtomCount, Params); | 
|---|
| [ccd9f5] | 298 | Walker = Walker->next; | 
|---|
|  | 299 | if (Walker == mol->end) // round-robin at the end | 
|---|
|  | 300 | Walker = mol->start->next; | 
|---|
|  | 301 | if (Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr] <= 1)  // no need to make those injective that aren't | 
|---|
|  | 302 | continue; | 
|---|
|  | 303 | // now, try finding a new one | 
|---|
| [e138de] | 304 | Potential = TryNextNearestNeighbourForInjectivePermutation(mol, Walker, Potential, Params); | 
|---|
| [ccd9f5] | 305 | } | 
|---|
|  | 306 | for (int i=mol->AtomCount; i--;) // now each single entry in the DoubleList should be <=1 | 
|---|
|  | 307 | if (Params.DoubleList[i] > 1) { | 
|---|
| [e138de] | 308 | eLog() << Verbose(0) << "Failed to create an injective PermutationMap!" << endl; | 
|---|
| [e359a8] | 309 | performCriticalExit(); | 
|---|
| [ccd9f5] | 310 | } | 
|---|
| [e138de] | 311 | Log() << Verbose(1) << "done." << endl; | 
|---|
| [ccd9f5] | 312 | }; | 
|---|
|  | 313 |  | 
|---|
| [cee0b57] | 314 | /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy. | 
|---|
|  | 315 | * We do the following: | 
|---|
|  | 316 | *  -# Generate a distance list from all source to all target points | 
|---|
|  | 317 | *  -# Sort this per source point | 
|---|
|  | 318 | *  -# Take for each source point the target point with minimum distance, use this as initial permutation | 
|---|
|  | 319 | *  -# check whether molecule::ConstrainedPotential() is greater than injective penalty | 
|---|
|  | 320 | *     -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential. | 
|---|
|  | 321 | *  -# Next, we only apply transformations that keep the injectivity of the permutations list. | 
|---|
|  | 322 | *  -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target | 
|---|
|  | 323 | *     point and try to change it for one with lesser distance, or for the next one with greater distance, but only | 
|---|
|  | 324 | *     if this decreases the conditional potential. | 
|---|
|  | 325 | *  -# finished. | 
|---|
|  | 326 | *  -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree, | 
|---|
|  | 327 | *     that the total force is always pointing in direction of the constraint force (ensuring that we move in the | 
|---|
|  | 328 | *     right direction). | 
|---|
|  | 329 | *  -# Finally, we calculate the potential energy and return. | 
|---|
|  | 330 | * \param *out output stream for debugging | 
|---|
|  | 331 | * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration | 
|---|
|  | 332 | * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) | 
|---|
|  | 333 | * \param endstep step giving final position in constrained MD | 
|---|
|  | 334 | * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) | 
|---|
|  | 335 | * \sa molecule::VerletForceIntegration() | 
|---|
|  | 336 | * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2) | 
|---|
|  | 337 | * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order | 
|---|
|  | 338 | *       to ensure they're properties (e.g. constants[2] always greater than the energy of the system). | 
|---|
|  | 339 | * \bug this all is not O(N log N) but O(N^2) | 
|---|
|  | 340 | */ | 
|---|
| [e138de] | 341 | double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem) | 
|---|
| [cee0b57] | 342 | { | 
|---|
|  | 343 | double Potential, OldPotential, OlderPotential; | 
|---|
| [ccd9f5] | 344 | struct EvaluatePotential Params; | 
|---|
| [7218f8] | 345 | Params.PermutationMap = Calloc<atom*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**PermutationMap"); | 
|---|
| [ccd9f5] | 346 | Params.DistanceList = Malloc<DistanceMap*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**DistanceList"); | 
|---|
|  | 347 | Params.DistanceIterators = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DistanceIterators"); | 
|---|
| [7218f8] | 348 | Params.DoubleList = Calloc<int>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DoubleList"); | 
|---|
| [ccd9f5] | 349 | Params.StepList = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*StepList"); | 
|---|
| [cee0b57] | 350 | int round; | 
|---|
|  | 351 | atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL; | 
|---|
|  | 352 | DistanceMap::iterator Rider, Strider; | 
|---|
|  | 353 |  | 
|---|
|  | 354 | /// Minimise the potential | 
|---|
|  | 355 | // set Lagrange multiplier constants | 
|---|
| [ccd9f5] | 356 | Params.PenaltyConstants[0] = 10.; | 
|---|
|  | 357 | Params.PenaltyConstants[1] = 1.; | 
|---|
|  | 358 | Params.PenaltyConstants[2] = 1e+7;    // just a huge penalty | 
|---|
| [cee0b57] | 359 | // generate the distance list | 
|---|
| [e138de] | 360 | Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl; | 
|---|
| [ccd9f5] | 361 | FillDistanceList(this, Params); | 
|---|
|  | 362 |  | 
|---|
| [cee0b57] | 363 | // create the initial PermutationMap (source -> target) | 
|---|
| [e138de] | 364 | CreateInitialLists(this, Params); | 
|---|
| [ccd9f5] | 365 |  | 
|---|
| [cee0b57] | 366 | // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it | 
|---|
| [e138de] | 367 | Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl; | 
|---|
|  | 368 | MakeInjectivePermutation(this, Params); | 
|---|
| [ccd9f5] | 369 | Free(&Params.DoubleList); | 
|---|
|  | 370 |  | 
|---|
| [cee0b57] | 371 | // argument minimise the constrained potential in this injective PermutationMap | 
|---|
| [e138de] | 372 | Log() << Verbose(1) << "Argument minimising the PermutationMap, at current potential " << OldPotential << " ... " << endl; | 
|---|
| [cee0b57] | 373 | OldPotential = 1e+10; | 
|---|
|  | 374 | round = 0; | 
|---|
|  | 375 | do { | 
|---|
| [e138de] | 376 | Log() << Verbose(2) << "Starting round " << ++round << " ... " << endl; | 
|---|
| [cee0b57] | 377 | OlderPotential = OldPotential; | 
|---|
|  | 378 | do { | 
|---|
|  | 379 | Walker = start; | 
|---|
|  | 380 | while (Walker->next != end) { // pick one | 
|---|
|  | 381 | Walker = Walker->next; | 
|---|
| [e138de] | 382 | PrintPermutationMap(AtomCount, Params); | 
|---|
| [ccd9f5] | 383 | Sprinter = Params.DistanceIterators[Walker->nr]->second;   // store initial partner | 
|---|
|  | 384 | Strider = Params.DistanceIterators[Walker->nr];  //remember old iterator | 
|---|
|  | 385 | Params.DistanceIterators[Walker->nr] = Params.StepList[Walker->nr]; | 
|---|
|  | 386 | if (Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on | 
|---|
|  | 387 | Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->begin(); | 
|---|
| [cee0b57] | 388 | break; | 
|---|
|  | 389 | } | 
|---|
| [e138de] | 390 | //Log() << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl; | 
|---|
| [cee0b57] | 391 | // find source of the new target | 
|---|
|  | 392 | Runner = start->next; | 
|---|
|  | 393 | while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already) | 
|---|
| [ccd9f5] | 394 | if (Params.PermutationMap[Runner->nr] == Params.DistanceIterators[Walker->nr]->second) { | 
|---|
| [e138de] | 395 | //Log() << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl; | 
|---|
| [cee0b57] | 396 | break; | 
|---|
|  | 397 | } | 
|---|
|  | 398 | Runner = Runner->next; | 
|---|
|  | 399 | } | 
|---|
|  | 400 | if (Runner != end) { // we found the other source | 
|---|
|  | 401 | // then look in its distance list for Sprinter | 
|---|
| [ccd9f5] | 402 | Rider = Params.DistanceList[Runner->nr]->begin(); | 
|---|
|  | 403 | for (; Rider != Params.DistanceList[Runner->nr]->end(); Rider++) | 
|---|
| [cee0b57] | 404 | if (Rider->second == Sprinter) | 
|---|
|  | 405 | break; | 
|---|
| [ccd9f5] | 406 | if (Rider != Params.DistanceList[Runner->nr]->end()) { // if we have found one | 
|---|
| [e138de] | 407 | //Log() << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl; | 
|---|
| [cee0b57] | 408 | // exchange both | 
|---|
| [ccd9f5] | 409 | Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap | 
|---|
|  | 410 | Params.PermutationMap[Runner->nr] = Sprinter;  // and hand the old target to its respective owner | 
|---|
| [e138de] | 411 | PrintPermutationMap(AtomCount, Params); | 
|---|
| [cee0b57] | 412 | // calculate the new potential | 
|---|
| [e138de] | 413 | //Log() << Verbose(2) << "Checking new potential ..." << endl; | 
|---|
|  | 414 | Potential = ConstrainedPotential(Params); | 
|---|
| [cee0b57] | 415 | if (Potential > OldPotential) { // we made everything worse! Undo ... | 
|---|
| [e138de] | 416 | //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl; | 
|---|
|  | 417 | //Log() << Verbose(3) << "Setting " << *Runner << "'s source to " << *Params.DistanceIterators[Runner->nr]->second << "." << endl; | 
|---|
| [cee0b57] | 418 | // Undo for Runner (note, we haven't moved the iteration yet, we may use this) | 
|---|
| [ccd9f5] | 419 | Params.PermutationMap[Runner->nr] = Params.DistanceIterators[Runner->nr]->second; | 
|---|
| [cee0b57] | 420 | // Undo for Walker | 
|---|
| [ccd9f5] | 421 | Params.DistanceIterators[Walker->nr] = Strider;  // take next farther distance target | 
|---|
| [e138de] | 422 | //Log() << Verbose(3) << "Setting " << *Walker << "'s source to " << *Params.DistanceIterators[Walker->nr]->second << "." << endl; | 
|---|
| [ccd9f5] | 423 | Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; | 
|---|
| [cee0b57] | 424 | } else { | 
|---|
| [ccd9f5] | 425 | Params.DistanceIterators[Runner->nr] = Rider;  // if successful also move the pointer in the iterator list | 
|---|
| [e138de] | 426 | Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl; | 
|---|
| [cee0b57] | 427 | OldPotential = Potential; | 
|---|
|  | 428 | } | 
|---|
| [ccd9f5] | 429 | if (Potential > Params.PenaltyConstants[2]) { | 
|---|
| [717e0c] | 430 | eLog() << Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl; | 
|---|
| [cee0b57] | 431 | exit(255); | 
|---|
|  | 432 | } | 
|---|
| [e138de] | 433 | //Log() << Verbose(0) << endl; | 
|---|
| [cee0b57] | 434 | } else { | 
|---|
| [717e0c] | 435 | eLog() << Verbose(1) << *Runner << " was not the owner of " << *Sprinter << "!" << endl; | 
|---|
| [cee0b57] | 436 | exit(255); | 
|---|
|  | 437 | } | 
|---|
|  | 438 | } else { | 
|---|
| [ccd9f5] | 439 | Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // new target has no source! | 
|---|
| [cee0b57] | 440 | } | 
|---|
| [ccd9f5] | 441 | Params.StepList[Walker->nr]++; // take next farther distance target | 
|---|
| [cee0b57] | 442 | } | 
|---|
|  | 443 | } while (Walker->next != end); | 
|---|
|  | 444 | } while ((OlderPotential - OldPotential) > 1e-3); | 
|---|
| [e138de] | 445 | Log() << Verbose(1) << "done." << endl; | 
|---|
| [cee0b57] | 446 |  | 
|---|
|  | 447 |  | 
|---|
|  | 448 | /// free memory and return with evaluated potential | 
|---|
|  | 449 | for (int i=AtomCount; i--;) | 
|---|
| [ccd9f5] | 450 | Params.DistanceList[i]->clear(); | 
|---|
|  | 451 | Free(&Params.DistanceList); | 
|---|
|  | 452 | Free(&Params.DistanceIterators); | 
|---|
| [e138de] | 453 | return ConstrainedPotential(Params); | 
|---|
| [cee0b57] | 454 | }; | 
|---|
|  | 455 |  | 
|---|
| [ccd9f5] | 456 |  | 
|---|
| [cee0b57] | 457 | /** Evaluates the (distance-related part) of the constrained potential for the constrained forces. | 
|---|
|  | 458 | * \param *out output stream for debugging | 
|---|
|  | 459 | * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) | 
|---|
|  | 460 | * \param endstep step giving final position in constrained MD | 
|---|
|  | 461 | * \param **PermutationMap mapping between the atom label of the initial and the final configuration | 
|---|
|  | 462 | * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation. | 
|---|
|  | 463 | * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential() | 
|---|
|  | 464 | */ | 
|---|
| [e138de] | 465 | void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) | 
|---|
| [cee0b57] | 466 | { | 
|---|
|  | 467 | /// evaluate forces (only the distance to target dependent part) with the final PermutationMap | 
|---|
| [e138de] | 468 | Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl; | 
|---|
| [ccd9f5] | 469 | ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force ); | 
|---|
| [e138de] | 470 | Log() << Verbose(1) << "done." << endl; | 
|---|
| [cee0b57] | 471 | }; | 
|---|
|  | 472 |  | 
|---|
|  | 473 | /** Performs a linear interpolation between two desired atomic configurations with a given number of steps. | 
|---|
|  | 474 | * Note, step number is config::MaxOuterStep | 
|---|
|  | 475 | * \param *out output stream for debugging | 
|---|
|  | 476 | * \param startstep stating initial configuration in molecule::Trajectories | 
|---|
|  | 477 | * \param endstep stating final configuration in molecule::Trajectories | 
|---|
|  | 478 | * \param &config configuration structure | 
|---|
|  | 479 | * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential() | 
|---|
|  | 480 | * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories | 
|---|
|  | 481 | */ | 
|---|
| [e138de] | 482 | bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity) | 
|---|
| [cee0b57] | 483 | { | 
|---|
|  | 484 | molecule *mol = NULL; | 
|---|
|  | 485 | bool status = true; | 
|---|
|  | 486 | int MaxSteps = configuration.MaxOuterStep; | 
|---|
|  | 487 | MoleculeListClass *MoleculePerStep = new MoleculeListClass(); | 
|---|
|  | 488 | // Get the Permutation Map by MinimiseConstrainedPotential | 
|---|
|  | 489 | atom **PermutationMap = NULL; | 
|---|
|  | 490 | atom *Walker = NULL, *Sprinter = NULL; | 
|---|
|  | 491 | if (!MapByIdentity) | 
|---|
| [e138de] | 492 | MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem()); | 
|---|
| [cee0b57] | 493 | else { | 
|---|
|  | 494 | PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap"); | 
|---|
| [4a7776a] | 495 | SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr ); | 
|---|
| [cee0b57] | 496 | } | 
|---|
|  | 497 |  | 
|---|
|  | 498 | // check whether we have sufficient space in Trajectories for each atom | 
|---|
| [4a7776a] | 499 | ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps ); | 
|---|
| [cee0b57] | 500 | // push endstep to last one | 
|---|
| [4a7776a] | 501 | ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep ); | 
|---|
| [cee0b57] | 502 | endstep = MaxSteps; | 
|---|
|  | 503 |  | 
|---|
|  | 504 | // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule | 
|---|
| [e138de] | 505 | Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl; | 
|---|
| [cee0b57] | 506 | for (int step = 0; step <= MaxSteps; step++) { | 
|---|
|  | 507 | mol = new molecule(elemente); | 
|---|
|  | 508 | MoleculePerStep->insert(mol); | 
|---|
|  | 509 | Walker = start; | 
|---|
|  | 510 | while (Walker->next != end) { | 
|---|
|  | 511 | Walker = Walker->next; | 
|---|
|  | 512 | // add to molecule list | 
|---|
|  | 513 | Sprinter = mol->AddCopyAtom(Walker); | 
|---|
|  | 514 | for (int n=NDIM;n--;) { | 
|---|
| [fcd7b6] | 515 | Sprinter->x.x[n] = Walker->Trajectory.R.at(startstep).x[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep).x[n] - Walker->Trajectory.R.at(startstep).x[n])*((double)step/(double)MaxSteps); | 
|---|
| [cee0b57] | 516 | // add to Trajectories | 
|---|
| [e138de] | 517 | //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl; | 
|---|
| [cee0b57] | 518 | if (step < MaxSteps) { | 
|---|
| [fcd7b6] | 519 | Walker->Trajectory.R.at(step).x[n] = Walker->Trajectory.R.at(startstep).x[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep).x[n] - Walker->Trajectory.R.at(startstep).x[n])*((double)step/(double)MaxSteps); | 
|---|
|  | 520 | Walker->Trajectory.U.at(step).x[n] = 0.; | 
|---|
|  | 521 | Walker->Trajectory.F.at(step).x[n] = 0.; | 
|---|
| [cee0b57] | 522 | } | 
|---|
|  | 523 | } | 
|---|
|  | 524 | } | 
|---|
|  | 525 | } | 
|---|
|  | 526 | MDSteps = MaxSteps+1;   // otherwise new Trajectories' points aren't stored on save&exit | 
|---|
|  | 527 |  | 
|---|
|  | 528 | // store the list to single step files | 
|---|
|  | 529 | int *SortIndex = Malloc<int>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: *SortIndex"); | 
|---|
|  | 530 | for (int i=AtomCount; i--; ) | 
|---|
|  | 531 | SortIndex[i] = i; | 
|---|
| [e138de] | 532 | status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex); | 
|---|
| [cee0b57] | 533 |  | 
|---|
|  | 534 | // free and return | 
|---|
|  | 535 | Free(&PermutationMap); | 
|---|
|  | 536 | delete(MoleculePerStep); | 
|---|
|  | 537 | return status; | 
|---|
|  | 538 | }; | 
|---|
|  | 539 |  | 
|---|
|  | 540 | /** Parses nuclear forces from file and performs Verlet integration. | 
|---|
|  | 541 | * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we | 
|---|
|  | 542 | * have to transform them). | 
|---|
|  | 543 | * This adds a new MD step to the config file. | 
|---|
|  | 544 | * \param *out output stream for debugging | 
|---|
|  | 545 | * \param *file filename | 
|---|
|  | 546 | * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained | 
|---|
|  | 547 | * \param delta_t time step width in atomic units | 
|---|
|  | 548 | * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) | 
|---|
|  | 549 | * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential() | 
|---|
|  | 550 | * \return true - file found and parsed, false - file not found or imparsable | 
|---|
|  | 551 | * \todo This is not yet checked if it is correctly working with DoConstrained set to true. | 
|---|
|  | 552 | */ | 
|---|
| [e138de] | 553 | bool molecule::VerletForceIntegration(char *file, config &configuration) | 
|---|
| [cee0b57] | 554 | { | 
|---|
|  | 555 | ifstream input(file); | 
|---|
|  | 556 | string token; | 
|---|
|  | 557 | stringstream item; | 
|---|
| [4a7776a] | 558 | double IonMass, ConstrainedPotentialEnergy, ActualTemp; | 
|---|
|  | 559 | Vector Velocity; | 
|---|
| [cee0b57] | 560 | ForceMatrix Force; | 
|---|
|  | 561 |  | 
|---|
|  | 562 | CountElements();  // make sure ElementsInMolecule is up to date | 
|---|
|  | 563 |  | 
|---|
|  | 564 | // check file | 
|---|
|  | 565 | if (input == NULL) { | 
|---|
|  | 566 | return false; | 
|---|
|  | 567 | } else { | 
|---|
|  | 568 | // parse file into ForceMatrix | 
|---|
|  | 569 | if (!Force.ParseMatrix(file, 0,0,0)) { | 
|---|
| [e138de] | 570 | eLog() << Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl; | 
|---|
| [e359a8] | 571 | performCriticalExit(); | 
|---|
| [cee0b57] | 572 | return false; | 
|---|
|  | 573 | } | 
|---|
|  | 574 | if (Force.RowCounter[0] != AtomCount) { | 
|---|
| [e138de] | 575 | eLog() << Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl; | 
|---|
| [e359a8] | 576 | performCriticalExit(); | 
|---|
| [cee0b57] | 577 | return false; | 
|---|
|  | 578 | } | 
|---|
|  | 579 | // correct Forces | 
|---|
| [4a7776a] | 580 | Velocity.Zero(); | 
|---|
| [cee0b57] | 581 | for(int i=0;i<AtomCount;i++) | 
|---|
|  | 582 | for(int d=0;d<NDIM;d++) { | 
|---|
| [4a7776a] | 583 | Velocity.x[d] += Force.Matrix[0][i][d+5]; | 
|---|
| [cee0b57] | 584 | } | 
|---|
|  | 585 | for(int i=0;i<AtomCount;i++) | 
|---|
|  | 586 | for(int d=0;d<NDIM;d++) { | 
|---|
| [4a7776a] | 587 | Force.Matrix[0][i][d+5] -= Velocity.x[d]/(double)AtomCount; | 
|---|
| [cee0b57] | 588 | } | 
|---|
|  | 589 | // solve a constrained potential if we are meant to | 
|---|
|  | 590 | if (configuration.DoConstrainedMD) { | 
|---|
|  | 591 | // calculate forces and potential | 
|---|
|  | 592 | atom **PermutationMap = NULL; | 
|---|
| [e138de] | 593 | ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem()); | 
|---|
|  | 594 | EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force); | 
|---|
| [cee0b57] | 595 | Free(&PermutationMap); | 
|---|
|  | 596 | } | 
|---|
|  | 597 |  | 
|---|
|  | 598 | // and perform Verlet integration for each atom with position, velocity and force vector | 
|---|
| [4a7776a] | 599 | // check size of vectors | 
|---|
|  | 600 | ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 ); | 
|---|
| [cee0b57] | 601 |  | 
|---|
| [4a7776a] | 602 | ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps, &configuration, &Force); | 
|---|
| [cee0b57] | 603 | } | 
|---|
|  | 604 | // correct velocities (rather momenta) so that center of mass remains motionless | 
|---|
| [4a7776a] | 605 | Velocity.Zero(); | 
|---|
| [cee0b57] | 606 | IonMass = 0.; | 
|---|
| [4a7776a] | 607 | ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps, &IonMass, &Velocity ); | 
|---|
|  | 608 |  | 
|---|
| [cee0b57] | 609 | // correct velocities (rather momenta) so that center of mass remains motionless | 
|---|
| [4a7776a] | 610 | Velocity.Scale(1./IonMass); | 
|---|
| [cee0b57] | 611 | ActualTemp = 0.; | 
|---|
| [4a7776a] | 612 | ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps, &Velocity ); | 
|---|
| [cee0b57] | 613 | Thermostats(configuration, ActualTemp, Berendsen); | 
|---|
|  | 614 | MDSteps++; | 
|---|
|  | 615 |  | 
|---|
|  | 616 | // exit | 
|---|
|  | 617 | return true; | 
|---|
|  | 618 | }; | 
|---|
|  | 619 |  | 
|---|
|  | 620 | /** Implementation of various thermostats. | 
|---|
|  | 621 | * All these thermostats apply an additional force which has the following forms: | 
|---|
|  | 622 | * -# Woodcock | 
|---|
|  | 623 | *  \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$ | 
|---|
|  | 624 | * -# Gaussian | 
|---|
|  | 625 | *  \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$ | 
|---|
|  | 626 | * -# Langevin | 
|---|
|  | 627 | *  \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$ | 
|---|
|  | 628 | * -# Berendsen | 
|---|
|  | 629 | *  \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$ | 
|---|
|  | 630 | * -# Nose-Hoover | 
|---|
|  | 631 | *  \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$ | 
|---|
|  | 632 | * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or | 
|---|
|  | 633 | * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified | 
|---|
|  | 634 | * belatedly and the constraint force set. | 
|---|
|  | 635 | * \param *P Problem at hand | 
|---|
|  | 636 | * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover | 
|---|
|  | 637 | * \sa InitThermostat() | 
|---|
|  | 638 | */ | 
|---|
|  | 639 | void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat) | 
|---|
|  | 640 | { | 
|---|
|  | 641 | double ekin = 0.; | 
|---|
|  | 642 | double E = 0., G = 0.; | 
|---|
|  | 643 | double delta_alpha = 0.; | 
|---|
|  | 644 | double ScaleTempFactor; | 
|---|
|  | 645 | gsl_rng * r; | 
|---|
|  | 646 | const gsl_rng_type * T; | 
|---|
|  | 647 |  | 
|---|
|  | 648 | // calculate scale configuration | 
|---|
|  | 649 | ScaleTempFactor = configuration.TargetTemp/ActualTemp; | 
|---|
|  | 650 |  | 
|---|
|  | 651 | // differentating between the various thermostats | 
|---|
|  | 652 | switch(Thermostat) { | 
|---|
|  | 653 | case None: | 
|---|
| [e138de] | 654 | Log() << Verbose(2) <<  "Applying no thermostat..." << endl; | 
|---|
| [cee0b57] | 655 | break; | 
|---|
|  | 656 | case Woodcock: | 
|---|
|  | 657 | if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) { | 
|---|
| [e138de] | 658 | Log() << Verbose(2) <<  "Applying Woodcock thermostat..." << endl; | 
|---|
| [4a7776a] | 659 | ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin ); | 
|---|
| [cee0b57] | 660 | } | 
|---|
|  | 661 | break; | 
|---|
|  | 662 | case Gaussian: | 
|---|
| [e138de] | 663 | Log() << Verbose(2) <<  "Applying Gaussian thermostat..." << endl; | 
|---|
| [4a7776a] | 664 | ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E ); | 
|---|
|  | 665 |  | 
|---|
| [e138de] | 666 | Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl; | 
|---|
| [4a7776a] | 667 | ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration); | 
|---|
|  | 668 |  | 
|---|
| [cee0b57] | 669 | break; | 
|---|
|  | 670 | case Langevin: | 
|---|
| [e138de] | 671 | Log() << Verbose(2) <<  "Applying Langevin thermostat..." << endl; | 
|---|
| [cee0b57] | 672 | // init random number generator | 
|---|
|  | 673 | gsl_rng_env_setup(); | 
|---|
|  | 674 | T = gsl_rng_default; | 
|---|
|  | 675 | r = gsl_rng_alloc (T); | 
|---|
|  | 676 | // Go through each ion | 
|---|
| [4a7776a] | 677 | ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration ); | 
|---|
| [cee0b57] | 678 | break; | 
|---|
| [4a7776a] | 679 |  | 
|---|
| [cee0b57] | 680 | case Berendsen: | 
|---|
| [e138de] | 681 | Log() << Verbose(2) <<  "Applying Berendsen-VanGunsteren thermostat..." << endl; | 
|---|
| [4a7776a] | 682 | ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration ); | 
|---|
| [cee0b57] | 683 | break; | 
|---|
| [4a7776a] | 684 |  | 
|---|
| [cee0b57] | 685 | case NoseHoover: | 
|---|
| [e138de] | 686 | Log() << Verbose(2) <<  "Applying Nose-Hoover thermostat..." << endl; | 
|---|
| [cee0b57] | 687 | // dynamically evolve alpha (the additional degree of freedom) | 
|---|
|  | 688 | delta_alpha = 0.; | 
|---|
| [4a7776a] | 689 | ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha ); | 
|---|
| [cee0b57] | 690 | delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass); | 
|---|
|  | 691 | configuration.alpha += delta_alpha*configuration.Deltat; | 
|---|
| [e138de] | 692 | Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl; | 
|---|
| [cee0b57] | 693 | // apply updated alpha as additional force | 
|---|
| [4a7776a] | 694 | ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration ); | 
|---|
| [cee0b57] | 695 | break; | 
|---|
|  | 696 | } | 
|---|
| [e138de] | 697 | Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl; | 
|---|
| [cee0b57] | 698 | }; | 
|---|