1 | /** \file linkedcell.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class LinkedCell.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "linkedcell.hpp"
|
---|
9 | #include "molecules.hpp"
|
---|
10 | #include "tesselation.hpp"
|
---|
11 |
|
---|
12 | // ========================================================= class LinkedCell ===========================================
|
---|
13 |
|
---|
14 |
|
---|
15 | /** Constructor for class LinkedCell.
|
---|
16 | */
|
---|
17 | LinkedCell::LinkedCell()
|
---|
18 | {
|
---|
19 | LC = NULL;
|
---|
20 | for(int i=0;i<NDIM;i++)
|
---|
21 | N[i] = 0;
|
---|
22 | index = -1;
|
---|
23 | RADIUS = 0.;
|
---|
24 | max.Zero();
|
---|
25 | min.Zero();
|
---|
26 | };
|
---|
27 |
|
---|
28 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
29 | * \param *set LCNodeSet class with all LCNode's
|
---|
30 | * \param RADIUS edge length of cells
|
---|
31 | */
|
---|
32 | LinkedCell::LinkedCell(PointCloud *set, double radius)
|
---|
33 | {
|
---|
34 | TesselPoint *Walker = NULL;
|
---|
35 |
|
---|
36 | RADIUS = radius;
|
---|
37 | LC = NULL;
|
---|
38 | for(int i=0;i<NDIM;i++)
|
---|
39 | N[i] = 0;
|
---|
40 | index = -1;
|
---|
41 | max.Zero();
|
---|
42 | min.Zero();
|
---|
43 | cout << Verbose(1) << "Begin of LinkedCell" << endl;
|
---|
44 | if (set->IsEmpty()) {
|
---|
45 | cerr << "ERROR: set contains no linked cell nodes!" << endl;
|
---|
46 | return;
|
---|
47 | }
|
---|
48 | // 1. find max and min per axis of atoms
|
---|
49 | set->GoToFirst();
|
---|
50 | Walker = set->GetPoint();
|
---|
51 | for (int i=0;i<NDIM;i++) {
|
---|
52 | max.x[i] = Walker->node->x[i];
|
---|
53 | min.x[i] = Walker->node->x[i];
|
---|
54 | }
|
---|
55 | set->GoToFirst();
|
---|
56 | while (!set->IsEnd()) {
|
---|
57 | Walker = set->GetPoint();
|
---|
58 | for (int i=0;i<NDIM;i++) {
|
---|
59 | if (max.x[i] < Walker->node->x[i])
|
---|
60 | max.x[i] = Walker->node->x[i];
|
---|
61 | if (min.x[i] > Walker->node->x[i])
|
---|
62 | min.x[i] = Walker->node->x[i];
|
---|
63 | }
|
---|
64 | set->GoToNext();
|
---|
65 | }
|
---|
66 | cout << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
|
---|
67 |
|
---|
68 | // 2. find then number of cells per axis
|
---|
69 | for (int i=0;i<NDIM;i++) {
|
---|
70 | N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
|
---|
71 | }
|
---|
72 | cout << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
|
---|
73 |
|
---|
74 | // 3. allocate the lists
|
---|
75 | cout << Verbose(2) << "Allocating cells ... ";
|
---|
76 | if (LC != NULL) {
|
---|
77 | cout << Verbose(1) << "ERROR: Linked Cell list is already allocated, I do nothing." << endl;
|
---|
78 | return;
|
---|
79 | }
|
---|
80 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
81 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
82 | LC [index].clear();
|
---|
83 | }
|
---|
84 | cout << "done." << endl;
|
---|
85 |
|
---|
86 | // 4. put each atom into its respective cell
|
---|
87 | cout << Verbose(2) << "Filling cells ... ";
|
---|
88 | set->GoToFirst();
|
---|
89 | while (!set->IsEnd()) {
|
---|
90 | Walker = set->GetPoint();
|
---|
91 | for (int i=0;i<NDIM;i++) {
|
---|
92 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
93 | }
|
---|
94 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
95 | LC[index].push_back(Walker);
|
---|
96 | //cout << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
97 | set->GoToNext();
|
---|
98 | }
|
---|
99 | cout << "done." << endl;
|
---|
100 | cout << Verbose(1) << "End of LinkedCell" << endl;
|
---|
101 | };
|
---|
102 |
|
---|
103 | /** Destructor for class LinkedCell.
|
---|
104 | */
|
---|
105 | LinkedCell::~LinkedCell()
|
---|
106 | {
|
---|
107 | if (LC != NULL)
|
---|
108 | for (index=0;index<N[0]*N[1]*N[2];index++)
|
---|
109 | LC[index].clear();
|
---|
110 | delete[](LC);
|
---|
111 | for(int i=0;i<NDIM;i++)
|
---|
112 | N[i] = 0;
|
---|
113 | index = -1;
|
---|
114 | max.Zero();
|
---|
115 | min.Zero();
|
---|
116 | };
|
---|
117 |
|
---|
118 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
|
---|
119 | * \return if all in intervals - true, else -false
|
---|
120 | */
|
---|
121 | bool LinkedCell::CheckBounds()
|
---|
122 | {
|
---|
123 | bool status = true;
|
---|
124 | for(int i=0;i<NDIM;i++)
|
---|
125 | status = status && ((n[i] >=0) && (n[i] < N[i]));
|
---|
126 | if (!status)
|
---|
127 | cerr << "ERROR: indices are out of bounds!" << endl;
|
---|
128 | return status;
|
---|
129 | };
|
---|
130 |
|
---|
131 |
|
---|
132 | /** Returns a pointer to the current cell.
|
---|
133 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
|
---|
134 | */
|
---|
135 | LinkedNodes* LinkedCell::GetCurrentCell()
|
---|
136 | {
|
---|
137 | if (CheckBounds()) {
|
---|
138 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
139 | return (&(LC[index]));
|
---|
140 | } else {
|
---|
141 | return NULL;
|
---|
142 | }
|
---|
143 | };
|
---|
144 |
|
---|
145 | /** Calculates the index for a given LCNode *Walker.
|
---|
146 | * \param *Walker LCNode to set index tos
|
---|
147 | * \return if the atom is also found in this cell - true, else - false
|
---|
148 | */
|
---|
149 | bool LinkedCell::SetIndexToNode(const TesselPoint *Walker)
|
---|
150 | {
|
---|
151 | bool status = false;
|
---|
152 | for (int i=0;i<NDIM;i++) {
|
---|
153 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
154 | }
|
---|
155 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
156 | if (CheckBounds()) {
|
---|
157 | for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
|
---|
158 | status = status || ((*Runner) == Walker);
|
---|
159 | return status;
|
---|
160 | } else {
|
---|
161 | cerr << Verbose(1) << "ERROR: Node at " << *Walker << " is out of bounds." << endl;
|
---|
162 | return false;
|
---|
163 | }
|
---|
164 | };
|
---|
165 |
|
---|
166 | /** Calculates the interval bounds of the linked cell grid.
|
---|
167 | * \param *lower lower bounds
|
---|
168 | * \param *upper upper bounds
|
---|
169 | */
|
---|
170 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM])
|
---|
171 | {
|
---|
172 | for (int i=0;i<NDIM;i++) {
|
---|
173 | lower[i] = ((n[i]-1) >= 0) ? n[i]-1 : 0;
|
---|
174 | upper[i] = ((n[i]+1) < N[i]) ? n[i]+1 : N[i]-1;
|
---|
175 | //cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
176 | // check for this axis whether the point is outside of our grid
|
---|
177 | if (n[i] < 0)
|
---|
178 | upper[i] = lower[i];
|
---|
179 | if (n[i] > N[i])
|
---|
180 | lower[i] = upper[i];
|
---|
181 |
|
---|
182 | //cout << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
|
---|
183 | }
|
---|
184 | };
|
---|
185 |
|
---|
186 | /** Calculates the index for a given Vector *x.
|
---|
187 | * \param *x Vector with coordinates
|
---|
188 | * \return Vector is inside bounding box - true, else - false
|
---|
189 | */
|
---|
190 | bool LinkedCell::SetIndexToVector(const Vector *x)
|
---|
191 | {
|
---|
192 | bool status = true;
|
---|
193 | for (int i=0;i<NDIM;i++) {
|
---|
194 | n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
|
---|
195 | if (max.x[i] < x->x[i])
|
---|
196 | status = false;
|
---|
197 | if (min.x[i] > x->x[i])
|
---|
198 | status = false;
|
---|
199 | }
|
---|
200 | return status;
|
---|
201 | };
|
---|
202 |
|
---|