| 1 | /** \file linkedcell.cpp
 | 
|---|
| 2 |  *
 | 
|---|
| 3 |  * Function implementations for the class LinkedCell.
 | 
|---|
| 4 |  *
 | 
|---|
| 5 |  */
 | 
|---|
| 6 | 
 | 
|---|
| 7 | 
 | 
|---|
| 8 | #include "atom.hpp"
 | 
|---|
| 9 | #include "helpers.hpp"
 | 
|---|
| 10 | #include "linkedcell.hpp"
 | 
|---|
| 11 | #include "log.hpp"
 | 
|---|
| 12 | #include "molecule.hpp"
 | 
|---|
| 13 | #include "tesselation.hpp"
 | 
|---|
| 14 | #include "vector.hpp"
 | 
|---|
| 15 | 
 | 
|---|
| 16 | // ========================================================= class LinkedCell ===========================================
 | 
|---|
| 17 | 
 | 
|---|
| 18 | 
 | 
|---|
| 19 | /** Constructor for class LinkedCell.
 | 
|---|
| 20 |  */
 | 
|---|
| 21 | LinkedCell::LinkedCell()
 | 
|---|
| 22 | {
 | 
|---|
| 23 |   LC = NULL;
 | 
|---|
| 24 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 25 |     N[i] = 0;
 | 
|---|
| 26 |   index = -1;
 | 
|---|
| 27 |   RADIUS = 0.;
 | 
|---|
| 28 |   max.Zero();
 | 
|---|
| 29 |   min.Zero();
 | 
|---|
| 30 | };
 | 
|---|
| 31 | 
 | 
|---|
| 32 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
 | 
|---|
| 33 |  * \param *set LCNodeSet class with all LCNode's
 | 
|---|
| 34 |  * \param RADIUS edge length of cells
 | 
|---|
| 35 |  */
 | 
|---|
| 36 | LinkedCell::LinkedCell(const PointCloud * const set, const double radius)
 | 
|---|
| 37 | {
 | 
|---|
| 38 |   TesselPoint *Walker = NULL;
 | 
|---|
| 39 | 
 | 
|---|
| 40 |   RADIUS = radius;
 | 
|---|
| 41 |   LC = NULL;
 | 
|---|
| 42 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 43 |     N[i] = 0;
 | 
|---|
| 44 |   index = -1;
 | 
|---|
| 45 |   max.Zero();
 | 
|---|
| 46 |   min.Zero();
 | 
|---|
| 47 |   Log() << Verbose(1) << "Begin of LinkedCell" << endl;
 | 
|---|
| 48 |   if (set->IsEmpty()) {
 | 
|---|
| 49 |     eLog() << Verbose(0) << "ERROR: set contains no linked cell nodes!" << endl;
 | 
|---|
| 50 |     return;
 | 
|---|
| 51 |   }
 | 
|---|
| 52 |   // 1. find max and min per axis of atoms
 | 
|---|
| 53 |   set->GoToFirst();
 | 
|---|
| 54 |   Walker = set->GetPoint();
 | 
|---|
| 55 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 56 |     max.x[i] = Walker->node->x[i];
 | 
|---|
| 57 |     min.x[i] = Walker->node->x[i];
 | 
|---|
| 58 |   }
 | 
|---|
| 59 |   set->GoToFirst();
 | 
|---|
| 60 |   while (!set->IsEnd()) {
 | 
|---|
| 61 |     Walker = set->GetPoint();
 | 
|---|
| 62 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 63 |       if (max.x[i] < Walker->node->x[i])
 | 
|---|
| 64 |         max.x[i] = Walker->node->x[i];
 | 
|---|
| 65 |       if (min.x[i] > Walker->node->x[i])
 | 
|---|
| 66 |         min.x[i] = Walker->node->x[i];
 | 
|---|
| 67 |     }
 | 
|---|
| 68 |     set->GoToNext();
 | 
|---|
| 69 |   }
 | 
|---|
| 70 |   Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
 | 
|---|
| 71 | 
 | 
|---|
| 72 |   // 2. find then number of cells per axis
 | 
|---|
| 73 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 74 |     N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
 | 
|---|
| 75 |   }
 | 
|---|
| 76 |   Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
 | 
|---|
| 77 | 
 | 
|---|
| 78 |   // 3. allocate the lists
 | 
|---|
| 79 |   Log() << Verbose(2) << "Allocating cells ... ";
 | 
|---|
| 80 |   if (LC != NULL) {
 | 
|---|
| 81 |     Log() << Verbose(1) << "ERROR: Linked Cell list is already allocated, I do nothing." << endl;
 | 
|---|
| 82 |     return;
 | 
|---|
| 83 |   }
 | 
|---|
| 84 |   LC = new LinkedNodes[N[0]*N[1]*N[2]];
 | 
|---|
| 85 |   for (index=0;index<N[0]*N[1]*N[2];index++) {
 | 
|---|
| 86 |     LC [index].clear();
 | 
|---|
| 87 |   }
 | 
|---|
| 88 |   Log() << Verbose(0) << "done."  << endl;
 | 
|---|
| 89 | 
 | 
|---|
| 90 |   // 4. put each atom into its respective cell
 | 
|---|
| 91 |   Log() << Verbose(2) << "Filling cells ... ";
 | 
|---|
| 92 |   set->GoToFirst();
 | 
|---|
| 93 |   while (!set->IsEnd()) {
 | 
|---|
| 94 |     Walker = set->GetPoint();
 | 
|---|
| 95 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 96 |       n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
 | 
|---|
| 97 |     }
 | 
|---|
| 98 |     index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 99 |     LC[index].push_back(Walker);
 | 
|---|
| 100 |     //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
 | 
|---|
| 101 |     set->GoToNext();
 | 
|---|
| 102 |   }
 | 
|---|
| 103 |   Log() << Verbose(0) << "done."  << endl;
 | 
|---|
| 104 |   Log() << Verbose(1) << "End of LinkedCell" << endl;
 | 
|---|
| 105 | };
 | 
|---|
| 106 | 
 | 
|---|
| 107 | 
 | 
|---|
| 108 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
 | 
|---|
| 109 |  * \param *set LCNodeSet class with all LCNode's
 | 
|---|
| 110 |  * \param RADIUS edge length of cells
 | 
|---|
| 111 |  */
 | 
|---|
| 112 | LinkedCell::LinkedCell(LinkedNodes *set, const double radius)
 | 
|---|
| 113 | {
 | 
|---|
| 114 |   class TesselPoint *Walker = NULL;
 | 
|---|
| 115 |   RADIUS = radius;
 | 
|---|
| 116 |   LC = NULL;
 | 
|---|
| 117 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 118 |     N[i] = 0;
 | 
|---|
| 119 |   index = -1;
 | 
|---|
| 120 |   max.Zero();
 | 
|---|
| 121 |   min.Zero();
 | 
|---|
| 122 |   Log() << Verbose(1) << "Begin of LinkedCell" << endl;
 | 
|---|
| 123 |   if (set->empty()) {
 | 
|---|
| 124 |     eLog() << Verbose(0) << "ERROR: set contains no linked cell nodes!" << endl;
 | 
|---|
| 125 |     return;
 | 
|---|
| 126 |   }
 | 
|---|
| 127 |   // 1. find max and min per axis of atoms
 | 
|---|
| 128 |   LinkedNodes::iterator Runner = set->begin();
 | 
|---|
| 129 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 130 |     max.x[i] = (*Runner)->node->x[i];
 | 
|---|
| 131 |     min.x[i] = (*Runner)->node->x[i];
 | 
|---|
| 132 |   }
 | 
|---|
| 133 |   for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
 | 
|---|
| 134 |     Walker = *Runner;
 | 
|---|
| 135 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 136 |       if (max.x[i] < Walker->node->x[i])
 | 
|---|
| 137 |         max.x[i] = Walker->node->x[i];
 | 
|---|
| 138 |       if (min.x[i] > Walker->node->x[i])
 | 
|---|
| 139 |         min.x[i] = Walker->node->x[i];
 | 
|---|
| 140 |     }
 | 
|---|
| 141 |   }
 | 
|---|
| 142 |   Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
 | 
|---|
| 143 | 
 | 
|---|
| 144 |   // 2. find then number of cells per axis
 | 
|---|
| 145 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 146 |     N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
 | 
|---|
| 147 |   }
 | 
|---|
| 148 |   Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
 | 
|---|
| 149 | 
 | 
|---|
| 150 |   // 3. allocate the lists
 | 
|---|
| 151 |   Log() << Verbose(2) << "Allocating cells ... ";
 | 
|---|
| 152 |   if (LC != NULL) {
 | 
|---|
| 153 |     Log() << Verbose(1) << "ERROR: Linked Cell list is already allocated, I do nothing." << endl;
 | 
|---|
| 154 |     return;
 | 
|---|
| 155 |   }
 | 
|---|
| 156 |   LC = new LinkedNodes[N[0]*N[1]*N[2]];
 | 
|---|
| 157 |   for (index=0;index<N[0]*N[1]*N[2];index++) {
 | 
|---|
| 158 |     LC [index].clear();
 | 
|---|
| 159 |   }
 | 
|---|
| 160 |   Log() << Verbose(0) << "done."  << endl;
 | 
|---|
| 161 | 
 | 
|---|
| 162 |   // 4. put each atom into its respective cell
 | 
|---|
| 163 |   Log() << Verbose(2) << "Filling cells ... ";
 | 
|---|
| 164 |   for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
 | 
|---|
| 165 |     Walker = *Runner;
 | 
|---|
| 166 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 167 |       n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
 | 
|---|
| 168 |     }
 | 
|---|
| 169 |     index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 170 |     LC[index].push_back(Walker);
 | 
|---|
| 171 |     //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
 | 
|---|
| 172 |   }
 | 
|---|
| 173 |   Log() << Verbose(0) << "done."  << endl;
 | 
|---|
| 174 |   Log() << Verbose(1) << "End of LinkedCell" << endl;
 | 
|---|
| 175 | };
 | 
|---|
| 176 | 
 | 
|---|
| 177 | /** Destructor for class LinkedCell.
 | 
|---|
| 178 |  */
 | 
|---|
| 179 | LinkedCell::~LinkedCell()
 | 
|---|
| 180 | {
 | 
|---|
| 181 |   if (LC != NULL)
 | 
|---|
| 182 |   for (index=0;index<N[0]*N[1]*N[2];index++)
 | 
|---|
| 183 |     LC[index].clear();
 | 
|---|
| 184 |   delete[](LC);
 | 
|---|
| 185 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 186 |     N[i] = 0;
 | 
|---|
| 187 |   index = -1;
 | 
|---|
| 188 |   max.Zero();
 | 
|---|
| 189 |   min.Zero();
 | 
|---|
| 190 | };
 | 
|---|
| 191 | 
 | 
|---|
| 192 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
 | 
|---|
| 193 |  * \return if all in intervals - true, else -false
 | 
|---|
| 194 |  */
 | 
|---|
| 195 | bool LinkedCell::CheckBounds() const
 | 
|---|
| 196 | {
 | 
|---|
| 197 |   bool status = true;
 | 
|---|
| 198 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 199 |     status = status && ((n[i] >=0) && (n[i] < N[i]));
 | 
|---|
| 200 |   if (!status)
 | 
|---|
| 201 |   eLog() << Verbose(0) << "ERROR: indices are out of bounds!" << endl;
 | 
|---|
| 202 |   return status;
 | 
|---|
| 203 | };
 | 
|---|
| 204 | 
 | 
|---|
| 205 | /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
 | 
|---|
| 206 |  * Note that for this check we don't admonish if out of bounds.
 | 
|---|
| 207 |  * \param relative[NDIM] relative offset to current cell
 | 
|---|
| 208 |  * \return if all in intervals - true, else -false
 | 
|---|
| 209 |  */
 | 
|---|
| 210 | bool LinkedCell::CheckBounds(const int relative[NDIM]) const
 | 
|---|
| 211 | {
 | 
|---|
| 212 |   bool status = true;
 | 
|---|
| 213 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 214 |     status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
 | 
|---|
| 215 |   return status;
 | 
|---|
| 216 | };
 | 
|---|
| 217 | 
 | 
|---|
| 218 | 
 | 
|---|
| 219 | /** Returns a pointer to the current cell.
 | 
|---|
| 220 |  * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
 | 
|---|
| 221 |  */
 | 
|---|
| 222 | const LinkedNodes* LinkedCell::GetCurrentCell() const
 | 
|---|
| 223 | {
 | 
|---|
| 224 |   if (CheckBounds()) {
 | 
|---|
| 225 |     index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 226 |     return (&(LC[index]));
 | 
|---|
| 227 |   } else {
 | 
|---|
| 228 |     return NULL;
 | 
|---|
| 229 |   }
 | 
|---|
| 230 | };
 | 
|---|
| 231 | 
 | 
|---|
| 232 | /** Returns a pointer to the current cell.
 | 
|---|
| 233 |  * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
 | 
|---|
| 234 |  * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
 | 
|---|
| 235 |  */
 | 
|---|
| 236 | const LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
 | 
|---|
| 237 | {
 | 
|---|
| 238 |   if (CheckBounds(relative)) {
 | 
|---|
| 239 |     index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
 | 
|---|
| 240 |     return (&(LC[index]));
 | 
|---|
| 241 |   } else {
 | 
|---|
| 242 |     return NULL;
 | 
|---|
| 243 |   }
 | 
|---|
| 244 | };
 | 
|---|
| 245 | 
 | 
|---|
| 246 | /** Calculates the index for a given LCNode *Walker.
 | 
|---|
| 247 |  * \param *Walker LCNode to set index tos
 | 
|---|
| 248 |  * \return if the atom is also found in this cell - true, else - false
 | 
|---|
| 249 |  */
 | 
|---|
| 250 | bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
 | 
|---|
| 251 | {
 | 
|---|
| 252 |   bool status = false;
 | 
|---|
| 253 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 254 |     n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
 | 
|---|
| 255 |   }
 | 
|---|
| 256 |   index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 257 |   if (CheckBounds()) {
 | 
|---|
| 258 |     for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
 | 
|---|
| 259 |       status = status || ((*Runner) == Walker);
 | 
|---|
| 260 |     return status;
 | 
|---|
| 261 |   } else {
 | 
|---|
| 262 |     eLog() << Verbose(1) << "ERROR: Node at " << *Walker << " is out of bounds." << endl;
 | 
|---|
| 263 |     return false;
 | 
|---|
| 264 |   }
 | 
|---|
| 265 | };
 | 
|---|
| 266 | 
 | 
|---|
| 267 | /** Calculates the interval bounds of the linked cell grid.
 | 
|---|
| 268 |  * \param *lower lower bounds
 | 
|---|
| 269 |  * \param *upper upper bounds
 | 
|---|
| 270 |  */
 | 
|---|
| 271 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM]) const
 | 
|---|
| 272 | {
 | 
|---|
| 273 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 274 |     lower[i] = ((n[i]-1) >= 0) ? n[i]-1 : 0;
 | 
|---|
| 275 |     upper[i] = ((n[i]+1) < N[i]) ? n[i]+1 : N[i]-1;
 | 
|---|
| 276 |     //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ";
 | 
|---|
| 277 |     // check for this axis whether the point is outside of our grid
 | 
|---|
| 278 |     if (n[i] < 0)
 | 
|---|
| 279 |       upper[i] = lower[i];
 | 
|---|
| 280 |     if (n[i] > N[i])
 | 
|---|
| 281 |       lower[i] = upper[i];
 | 
|---|
| 282 | 
 | 
|---|
| 283 |     //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
 | 
|---|
| 284 |   }
 | 
|---|
| 285 | };
 | 
|---|
| 286 | 
 | 
|---|
| 287 | /** Calculates the index for a given Vector *x.
 | 
|---|
| 288 |  * \param *x Vector with coordinates
 | 
|---|
| 289 |  * \return Vector is inside bounding box - true, else - false
 | 
|---|
| 290 |  */
 | 
|---|
| 291 | bool LinkedCell::SetIndexToVector(const Vector * const x) const
 | 
|---|
| 292 | {
 | 
|---|
| 293 |   bool status = true;
 | 
|---|
| 294 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 295 |     n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
 | 
|---|
| 296 |     if (max.x[i] < x->x[i])
 | 
|---|
| 297 |       status = false;
 | 
|---|
| 298 |     if (min.x[i] > x->x[i])
 | 
|---|
| 299 |       status = false;
 | 
|---|
| 300 |   }
 | 
|---|
| 301 |   return status;
 | 
|---|
| 302 | };
 | 
|---|
| 303 | 
 | 
|---|