| 1 | /* | 
|---|
| 2 | * linearsystemofequations.cpp | 
|---|
| 3 | * | 
|---|
| 4 | *  Created on: Jan 8, 2010 | 
|---|
| 5 | *      Author: heber | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "Helpers/MemDebug.hpp" | 
|---|
| 9 |  | 
|---|
| 10 | #include "defs.hpp" | 
|---|
| 11 | #include "gslmatrix.hpp" | 
|---|
| 12 | #include "gslvector.hpp" | 
|---|
| 13 | #include "linearsystemofequations.hpp" | 
|---|
| 14 | #include "logger.hpp" | 
|---|
| 15 | #include "vector.hpp" | 
|---|
| 16 |  | 
|---|
| 17 | #include <cassert> | 
|---|
| 18 | #include <gsl/gsl_permutation.h> | 
|---|
| 19 |  | 
|---|
| 20 | /** Constructor for class LinearSystemOfEquations. | 
|---|
| 21 | * Allocates Vector and Matrix classes. | 
|---|
| 22 | * \param m column dimension | 
|---|
| 23 | * \param n row dimension | 
|---|
| 24 | */ | 
|---|
| 25 | LinearSystemOfEquations::LinearSystemOfEquations(int m, int n) : rows(m), columns(n), IsSymmetric(false) | 
|---|
| 26 | { | 
|---|
| 27 | A = new GSLMatrix(m, n); | 
|---|
| 28 | b = new GSLVector(m); | 
|---|
| 29 | x = new GSLVector(n); | 
|---|
| 30 | }; | 
|---|
| 31 |  | 
|---|
| 32 | /** Destructor for class LinearSystemOfEquations. | 
|---|
| 33 | * Destructs Vector and Matrix classes. | 
|---|
| 34 | */ | 
|---|
| 35 | LinearSystemOfEquations::~LinearSystemOfEquations() | 
|---|
| 36 | { | 
|---|
| 37 | delete(A); | 
|---|
| 38 | delete(b); | 
|---|
| 39 | delete(x); | 
|---|
| 40 | }; | 
|---|
| 41 |  | 
|---|
| 42 | /** Sets whether matrix is to be regarded as symmetric. | 
|---|
| 43 | * Note that we do not check whether it really is, just take upper diagonal. | 
|---|
| 44 | * \param symmetric true or false | 
|---|
| 45 | */ | 
|---|
| 46 | bool LinearSystemOfEquations::SetSymmetric(bool symmetric) | 
|---|
| 47 | { | 
|---|
| 48 | assert (rows == columns && "Rows and columns don't have equal size! Setting symmetric not possible."); | 
|---|
| 49 | return (IsSymmetric = symmetric); | 
|---|
| 50 | }; | 
|---|
| 51 |  | 
|---|
| 52 | /** Initializes vector b to the components of the given vector. | 
|---|
| 53 | * \param *x Vector with equal dimension (no check!) | 
|---|
| 54 | */ | 
|---|
| 55 | void LinearSystemOfEquations::Setb(Vector *x) | 
|---|
| 56 | { | 
|---|
| 57 | assert ( columns == NDIM && "Vector class is always three-dimensional, unlike this LEqS!"); | 
|---|
| 58 | b->SetFromVector(*x); | 
|---|
| 59 | }; | 
|---|
| 60 |  | 
|---|
| 61 | /** Initializes vector b to the components of the given vector. | 
|---|
| 62 | * \param *x array with equal dimension (no check!) | 
|---|
| 63 | */ | 
|---|
| 64 | void LinearSystemOfEquations::Setb(double *x) | 
|---|
| 65 | { | 
|---|
| 66 | b->SetFromDoubleArray(x); | 
|---|
| 67 | }; | 
|---|
| 68 |  | 
|---|
| 69 | /** Initializes matrix a to the components of the given array. | 
|---|
| 70 | * note that sort order should be | 
|---|
| 71 | * \param *x array with equal dimension (no check!) | 
|---|
| 72 | */ | 
|---|
| 73 | void LinearSystemOfEquations::SetA(double *x) | 
|---|
| 74 | { | 
|---|
| 75 | A->SetFromDoubleArray(x); | 
|---|
| 76 | }; | 
|---|
| 77 |  | 
|---|
| 78 | /** Returns the solution vector x \f$A \cdot x = b\f$ as an array of doubles. | 
|---|
| 79 | * \param *array pointer allocated array for solution on return (no bounds check, dimension must match) | 
|---|
| 80 | * \return true - solving possible, false - some error occured. | 
|---|
| 81 | */ | 
|---|
| 82 | bool LinearSystemOfEquations::GetSolutionAsArray(double *&array) | 
|---|
| 83 | { | 
|---|
| 84 | bool status = Solve(); | 
|---|
| 85 |  | 
|---|
| 86 | // copy solution | 
|---|
| 87 | for (size_t i=0;i<x->dimension;i++) { | 
|---|
| 88 | array[i] = x->Get(i); | 
|---|
| 89 | } | 
|---|
| 90 | return status; | 
|---|
| 91 | }; | 
|---|
| 92 |  | 
|---|
| 93 | /** Returns the solution vector x \f$A \cdot x = b\f$ as an array of doubles. | 
|---|
| 94 | * \param &x solution vector on return (must be 3-dimensional) | 
|---|
| 95 | * \return true - solving possible, false - some error occured. | 
|---|
| 96 | */ | 
|---|
| 97 | bool LinearSystemOfEquations::GetSolutionAsVector(Vector &v) | 
|---|
| 98 | { | 
|---|
| 99 | assert(rows == NDIM && "Solution can only be returned as vector if number of columns is NDIM."); | 
|---|
| 100 | bool status = Solve(); | 
|---|
| 101 |  | 
|---|
| 102 | // copy solution | 
|---|
| 103 | for (size_t i=0;i<x->dimension;i++) | 
|---|
| 104 | v[i] = x->Get(i); | 
|---|
| 105 | return status; | 
|---|
| 106 | }; | 
|---|
| 107 |  | 
|---|
| 108 | /** Solves the given system of \f$A \cdot x = b\f$. | 
|---|
| 109 | * Use either LU or Householder decomposition. | 
|---|
| 110 | * Solution is stored in LinearSystemOfEquations::x | 
|---|
| 111 | * \return true - solving possible, false - some error occured. | 
|---|
| 112 | */ | 
|---|
| 113 | bool LinearSystemOfEquations::Solve() | 
|---|
| 114 | { | 
|---|
| 115 | // calculate solution | 
|---|
| 116 | int s; | 
|---|
| 117 | if (IsSymmetric) { // use LU | 
|---|
| 118 | gsl_permutation * p = gsl_permutation_alloc (x->dimension); | 
|---|
| 119 | gsl_linalg_LU_decomp (A->matrix, p, &s); | 
|---|
| 120 | gsl_linalg_LU_solve (A->matrix, p, b->vector, x->vector); | 
|---|
| 121 | gsl_permutation_free (p); | 
|---|
| 122 | } else {  // use Householder | 
|---|
| 123 | //GSLMatrix *backup = new GSLMatrix(rows,columns); | 
|---|
| 124 | //*backup = *A; | 
|---|
| 125 | gsl_linalg_HH_solve (A->matrix, b->vector, x->vector); | 
|---|
| 126 | //*A = *backup; | 
|---|
| 127 | //delete(backup); | 
|---|
| 128 | } | 
|---|
| 129 | return true; | 
|---|
| 130 | }; | 
|---|
| 131 |  | 
|---|