source: src/boundary.cpp@ caf5d6

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since caf5d6 was caf5d6, checked in by Christian Neuen <neuen@…>, 16 years ago

Atom indices are now correctly processed.

  • Property mode set to 100644
File size: 63.9 KB
Line 
1#include "molecules.hpp"
2#include "boundary.hpp"
3
4
5
6
7// ======================================== Points on Boundary =================================
8
9BoundaryPointSet::BoundaryPointSet()
10{
11 LinesCount = 0;
12 Nr = -1;
13};
14
15BoundaryPointSet::BoundaryPointSet(atom *Walker)
16{
17 node = Walker;
18 LinesCount = 0;
19 Nr = Walker->nr;
20};
21
22BoundaryPointSet::~BoundaryPointSet()
23{
24 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
25 node = NULL;
26};
27
28void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
29{
30 cout << Verbose(6) << "Adding line " << *line << " to " << *this << "." << endl;
31 if (line->endpoints[0] == this) {
32 lines.insert ( LinePair( line->endpoints[1]->Nr, line) );
33 } else {
34 lines.insert ( LinePair( line->endpoints[0]->Nr, line) );
35 }
36 LinesCount++;
37};
38
39ostream & operator << (ostream &ost, BoundaryPointSet &a)
40{
41 ost << "[" << a.Nr << "|" << a.node->Name << "]";
42 return ost;
43};
44
45// ======================================== Lines on Boundary =================================
46
47BoundaryLineSet::BoundaryLineSet()
48{
49 for (int i=0;i<2;i++)
50 endpoints[i] = NULL;
51 TrianglesCount = 0;
52 Nr = -1;
53};
54
55BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
56{
57 // set number
58 Nr = number;
59 // set endpoints in ascending order
60 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
61 // add this line to the hash maps of both endpoints
62 Point[0]->AddLine(this);
63 Point[1]->AddLine(this);
64 // clear triangles list
65 TrianglesCount = 0;
66 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
67};
68
69BoundaryLineSet::~BoundaryLineSet()
70{
71 for (int i=0;i<2;i++) {
72 cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
73 endpoints[i]->lines.erase(Nr);
74 LineMap::iterator tester = endpoints[i]->lines.begin();
75 tester++;
76 if (tester == endpoints[i]->lines.end()) {
77 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
78 delete(endpoints[i]);
79 } else
80 cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
81 }
82};
83
84void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
85{
86 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
87 triangles.insert ( TrianglePair( TrianglesCount, triangle) );
88 TrianglesCount++;
89};
90
91ostream & operator << (ostream &ost, BoundaryLineSet &a)
92{
93 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
94 return ost;
95};
96
97// ======================================== Triangles on Boundary =================================
98
99
100BoundaryTriangleSet::BoundaryTriangleSet()
101{
102 for (int i=0;i<3;i++) {
103 endpoints[i] = NULL;
104 lines[i] = NULL;
105 }
106 Nr = -1;
107};
108
109BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
110{
111 // set number
112 Nr = number;
113 // set lines
114 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
115 for (int i=0;i<3;i++) {
116 lines[i] = line[i];
117 lines[i]->AddTriangle(this);
118 }
119 // get ascending order of endpoints
120 map <int, class BoundaryPointSet * > OrderMap;
121 for(int i=0;i<3;i++) // for all three lines
122 for (int j=0;j<2;j++) { // for both endpoints
123 OrderMap.insert ( pair <int, class BoundaryPointSet * >( line[i]->endpoints[j]->Nr, line[i]->endpoints[j]) );
124 // and we don't care whether insertion fails
125 }
126 // set endpoints
127 int Counter = 0;
128 cout << Verbose(6) << " with end points ";
129 for (map <int, class BoundaryPointSet * >::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
130 endpoints[Counter] = runner->second;
131 cout << " " << *endpoints[Counter];
132 Counter++;
133 }
134 if (Counter < 3) {
135 cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
136 //exit(1);
137 }
138 cout << "." << endl;
139};
140
141BoundaryTriangleSet::~BoundaryTriangleSet()
142{
143 for (int i=0;i<3;i++) {
144 cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
145 lines[i]->triangles.erase(Nr);
146 TriangleMap::iterator tester = lines[i]->triangles.begin();
147 tester++;
148 if (tester == lines[i]->triangles.end()) {
149 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
150 delete(lines[i]);
151 } else
152 cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
153 }
154};
155
156void BoundaryTriangleSet::GetNormalVector(Vector &NormalVector)
157{
158 // get normal vector
159 NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x);
160
161 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
162 if (endpoints[0]->node->x.Projection(&NormalVector) > 0)
163 NormalVector.Scale(-1.);
164};
165
166ostream & operator << (ostream &ost, BoundaryTriangleSet &a)
167{
168 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
169 return ost;
170};
171
172// ========================================== F U N C T I O N S =================================
173
174/** Finds the endpoint two lines are sharing.
175 * \param *line1 first line
176 * \param *line2 second line
177 * \return point which is shared or NULL if none
178 */
179class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
180{
181 class BoundaryLineSet * lines[2] = {line1, line2};
182 class BoundaryPointSet *node = NULL;
183 map <int, class BoundaryPointSet * > OrderMap;
184 pair < map <int, class BoundaryPointSet * >::iterator, bool > OrderTest;
185 for(int i=0;i<2;i++) // for both lines
186 for (int j=0;j<2;j++) { // for both endpoints
187 OrderTest = OrderMap.insert ( pair <int, class BoundaryPointSet * >( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]) );
188 if (!OrderTest.second) { // if insertion fails, we have common endpoint
189 node = OrderTest.first->second;
190 cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
191 j=2;
192 i=2;
193 break;
194 }
195 }
196 return node;
197};
198
199/** Determines the boundary points of a cluster.
200 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
201 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
202 * center and first and last point in the triple, it is thrown out.
203 * \param *out output stream for debugging
204 * \param *mol molecule structure representing the cluster
205 */
206Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol)
207{
208 atom *Walker = NULL;
209 PointMap PointsOnBoundary;
210 LineMap LinesOnBoundary;
211 TriangleMap TrianglesOnBoundary;
212
213 *out << Verbose(1) << "Finding all boundary points." << endl;
214 Boundaries *BoundaryPoints = new Boundaries [NDIM]; // first is alpha, second is (r, nr)
215 BoundariesTestPair BoundaryTestPair;
216 Vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
217 double radius, angle;
218 // 3a. Go through every axis
219 for (int axis=0; axis<NDIM; axis++) {
220 AxisVector.Zero();
221 AngleReferenceVector.Zero();
222 AngleReferenceNormalVector.Zero();
223 AxisVector.x[axis] = 1.;
224 AngleReferenceVector.x[(axis+1)%NDIM] = 1.;
225 AngleReferenceNormalVector.x[(axis+2)%NDIM] = 1.;
226 // *out << Verbose(1) << "Axisvector is ";
227 // AxisVector.Output(out);
228 // *out << " and AngleReferenceVector is ";
229 // AngleReferenceVector.Output(out);
230 // *out << "." << endl;
231 // *out << " and AngleReferenceNormalVector is ";
232 // AngleReferenceNormalVector.Output(out);
233 // *out << "." << endl;
234 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
235 Walker = mol->start;
236 while (Walker->next != mol->end) {
237 Walker = Walker->next;
238 Vector ProjectedVector;
239 ProjectedVector.CopyVector(&Walker->x);
240 ProjectedVector.ProjectOntoPlane(&AxisVector);
241 // correct for negative side
242 //if (Projection(y) < 0)
243 //angle = 2.*M_PI - angle;
244 radius = ProjectedVector.Norm();
245 if (fabs(radius) > MYEPSILON)
246 angle = ProjectedVector.Angle(&AngleReferenceVector);
247 else
248 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
249
250 //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
251 if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) {
252 angle = 2.*M_PI - angle;
253 }
254 //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
255 //ProjectedVector.Output(out);
256 //*out << endl;
257 BoundaryTestPair = BoundaryPoints[axis].insert( BoundariesPair (angle, DistancePair (radius, Walker) ) );
258 if (BoundaryTestPair.second) { // successfully inserted
259 } else { // same point exists, check first r, then distance of original vectors to center of gravity
260 *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl;
261 *out << Verbose(2) << "Present vector: ";
262 BoundaryTestPair.first->second.second->x.Output(out);
263 *out << endl;
264 *out << Verbose(2) << "New vector: ";
265 Walker->x.Output(out);
266 *out << endl;
267 double tmp = ProjectedVector.Norm();
268 if (tmp > BoundaryTestPair.first->second.first) {
269 BoundaryTestPair.first->second.first = tmp;
270 BoundaryTestPair.first->second.second = Walker;
271 *out << Verbose(2) << "Keeping new vector." << endl;
272 } else if (tmp == BoundaryTestPair.first->second.first) {
273 if (BoundaryTestPair.first->second.second->x.ScalarProduct(&BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower
274 BoundaryTestPair.first->second.second = Walker;
275 *out << Verbose(2) << "Keeping new vector." << endl;
276 } else {
277 *out << Verbose(2) << "Keeping present vector." << endl;
278 }
279 } else {
280 *out << Verbose(2) << "Keeping present vector." << endl;
281 }
282 }
283 }
284 // printing all inserted for debugging
285 // {
286 // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
287 // int i=0;
288 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
289 // if (runner != BoundaryPoints[axis].begin())
290 // *out << ", " << i << ": " << *runner->second.second;
291 // else
292 // *out << i << ": " << *runner->second.second;
293 // i++;
294 // }
295 // *out << endl;
296 // }
297 // 3c. throw out points whose distance is less than the mean of left and right neighbours
298 bool flag = false;
299 do { // do as long as we still throw one out per round
300 *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl;
301 flag = false;
302 Boundaries::iterator left = BoundaryPoints[axis].end();
303 Boundaries::iterator right = BoundaryPoints[axis].end();
304 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
305 // set neighbours correctly
306 if (runner == BoundaryPoints[axis].begin()) {
307 left = BoundaryPoints[axis].end();
308 } else {
309 left = runner;
310 }
311 left--;
312 right = runner;
313 right++;
314 if (right == BoundaryPoints[axis].end()) {
315 right = BoundaryPoints[axis].begin();
316 }
317 // check distance
318
319 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
320 {
321 Vector SideA, SideB, SideC, SideH;
322 SideA.CopyVector(&left->second.second->x);
323 SideA.ProjectOntoPlane(&AxisVector);
324 // *out << "SideA: ";
325 // SideA.Output(out);
326 // *out << endl;
327
328 SideB.CopyVector(&right->second.second->x);
329 SideB.ProjectOntoPlane(&AxisVector);
330 // *out << "SideB: ";
331 // SideB.Output(out);
332 // *out << endl;
333
334 SideC.CopyVector(&left->second.second->x);
335 SideC.SubtractVector(&right->second.second->x);
336 SideC.ProjectOntoPlane(&AxisVector);
337 // *out << "SideC: ";
338 // SideC.Output(out);
339 // *out << endl;
340
341 SideH.CopyVector(&runner->second.second->x);
342 SideH.ProjectOntoPlane(&AxisVector);
343 // *out << "SideH: ";
344 // SideH.Output(out);
345 // *out << endl;
346
347 // calculate each length
348 double a = SideA.Norm();
349 //double b = SideB.Norm();
350 //double c = SideC.Norm();
351 double h = SideH.Norm();
352 // calculate the angles
353 double alpha = SideA.Angle(&SideH);
354 double beta = SideA.Angle(&SideC);
355 double gamma = SideB.Angle(&SideH);
356 double delta = SideC.Angle(&SideH);
357 double MinDistance = a * sin(beta)/(sin(delta)) * (((alpha < M_PI/2.) || (gamma < M_PI/2.)) ? 1. : -1.);
358 // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
359 //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
360 if ((fabs(h/fabs(h) - MinDistance/fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) {
361 // throw out point
362 //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
363 BoundaryPoints[axis].erase(runner);
364 flag = true;
365 }
366 }
367 }
368 } while (flag);
369 }
370 return BoundaryPoints;
371};
372
373/** Determines greatest diameters of a cluster defined by its convex envelope.
374 * Looks at lines parallel to one axis and where they intersect on the projected planes
375 * \param *out output stream for debugging
376 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
377 * \param *mol molecule structure representing the cluster
378 * \param IsAngstroem whether we have angstroem or atomic units
379 * \return NDIM array of the diameters
380 */
381double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol, bool IsAngstroem)
382{
383 // get points on boundary of NULL was given as parameter
384 bool BoundaryFreeFlag = false;
385 Boundaries *BoundaryPoints = BoundaryPtr;
386 if (BoundaryPoints == NULL) {
387 BoundaryFreeFlag = true;
388 BoundaryPoints = GetBoundaryPoints(out, mol);
389 } else {
390 *out << Verbose(1) << "Using given boundary points set." << endl;
391 }
392
393 // determine biggest "diameter" of cluster for each axis
394 Boundaries::iterator Neighbour, OtherNeighbour;
395 double *GreatestDiameter = new double[NDIM];
396 for(int i=0;i<NDIM;i++)
397 GreatestDiameter[i] = 0.;
398 double OldComponent, tmp, w1, w2;
399 Vector DistanceVector, OtherVector;
400 int component, Othercomponent;
401 for(int axis=0;axis<NDIM;axis++) { // regard each projected plane
402 //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
403 for (int j=0;j<2;j++) { // and for both axis on the current plane
404 component = (axis+j+1)%NDIM;
405 Othercomponent = (axis+1+((j+1) & 1))%NDIM;
406 //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
407 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
408 //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
409 // seek for the neighbours pair where the Othercomponent sign flips
410 Neighbour = runner;
411 Neighbour++;
412 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
413 Neighbour = BoundaryPoints[axis].begin();
414 DistanceVector.CopyVector(&runner->second.second->x);
415 DistanceVector.SubtractVector(&Neighbour->second.second->x);
416 do { // seek for neighbour pair where it flips
417 OldComponent = DistanceVector.x[Othercomponent];
418 Neighbour++;
419 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
420 Neighbour = BoundaryPoints[axis].begin();
421 DistanceVector.CopyVector(&runner->second.second->x);
422 DistanceVector.SubtractVector(&Neighbour->second.second->x);
423 //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
424 } while ((runner != Neighbour) && ( fabs( OldComponent/fabs(OldComponent) - DistanceVector.x[Othercomponent]/fabs(DistanceVector.x[Othercomponent]) ) < MYEPSILON)); // as long as sign does not flip
425 if (runner != Neighbour) {
426 OtherNeighbour = Neighbour;
427 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
428 OtherNeighbour = BoundaryPoints[axis].end();
429 OtherNeighbour--;
430 //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
431 // now we have found the pair: Neighbour and OtherNeighbour
432 OtherVector.CopyVector(&runner->second.second->x);
433 OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
434 //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
435 //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
436 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
437 w1 = fabs(OtherVector.x[Othercomponent]);
438 w2 = fabs(DistanceVector.x[Othercomponent]);
439 tmp = fabs((w1*DistanceVector.x[component] + w2*OtherVector.x[component])/(w1+w2));
440 // mark if it has greater diameter
441 //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
442 GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp;
443 } //else
444 //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
445 }
446 }
447 }
448 *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl;
449
450 // free reference lists
451 if (BoundaryFreeFlag)
452 delete[](BoundaryPoints);
453
454 return GreatestDiameter;
455};
456
457
458/*
459 * This function creates the tecplot file, displaying the tesselation of the hull.
460 * \param *out output stream for debugging
461 * \param *tecplot output stream for tecplot data
462 */
463void write_tecplot_file(ofstream *out, ofstream *tecplot, class Tesselation *TesselStruct, class molecule *mol)
464{
465 // 8. Store triangles in tecplot file
466 if (tecplot != NULL) {
467 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
468 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
469 *tecplot << "ZONE T=\"TRIANGLES\", N=" << TesselStruct->PointsOnBoundaryCount << ", E=" << TesselStruct->TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
470 int *LookupList = new int[mol->AtomCount];
471 for (int i=0;i<mol->AtomCount;i++)
472 LookupList[i] = -1;
473
474 // print atom coordinates
475 *out << Verbose(2) << "The following triangles were created:";
476 int Counter = 1;
477 atom *Walker = NULL;
478 for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
479 Walker = target->second->node;
480 LookupList[Walker->nr] = Counter++;
481 *tecplot << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl;
482 }
483 *tecplot << endl;
484 // print connectivity
485 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
486 *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
487 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
488 }
489 delete[](LookupList);
490 *out << endl;
491 }
492}
493
494/** Determines the volume of a cluster.
495 * Determines first the convex envelope, then tesselates it and calculates its volume.
496 * \param *out output stream for debugging
497 * \param *tecplot output stream for tecplot data
498 * \param *configuration needed for path to store convex envelope file
499 * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
500 * \param *mol molecule structure representing the cluster
501 * \return determined volume of the cluster in cubed config:GetIsAngstroem()
502 */
503double VolumeOfConvexEnvelope(ofstream *out, ofstream *tecplot, config *configuration, Boundaries *BoundaryPtr, molecule *mol)
504{
505 bool IsAngstroem = configuration->GetIsAngstroem();
506 atom *Walker = NULL;
507 struct Tesselation *TesselStruct = new Tesselation;
508 bool BoundaryFreeFlag = false;
509 Boundaries *BoundaryPoints = BoundaryPtr;
510 double volume = 0.;
511 double PyramidVolume = 0.;
512 double G,h;
513 Vector x,y;
514 double a,b,c;
515
516 //Find_non_convex_border(out, tecplot, *TesselStruct, mol); // Is now called from command line.
517
518 // 1. calculate center of gravity
519 *out << endl;
520 Vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
521
522 // 2. translate all points into CoG
523 *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
524 Walker = mol->start;
525 while (Walker->next != mol->end) {
526 Walker = Walker->next;
527 Walker->x.Translate(CenterOfGravity);
528 }
529
530 // 3. Find all points on the boundary
531 if (BoundaryPoints == NULL) {
532 BoundaryFreeFlag = true;
533 BoundaryPoints = GetBoundaryPoints(out, mol);
534 } else {
535 *out << Verbose(1) << "Using given boundary points set." << endl;
536 }
537
538 // 4. fill the boundary point list
539 for (int axis=0;axis<NDIM;axis++)
540 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
541 TesselStruct->AddPoint(runner->second.second);
542 }
543
544 *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl;
545 // now we have the whole set of edge points in the BoundaryList
546
547 // listing for debugging
548// *out << Verbose(1) << "Listing PointsOnBoundary:";
549// for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
550// *out << " " << *runner->second;
551// }
552// *out << endl;
553
554 // 5a. guess starting triangle
555 TesselStruct->GuessStartingTriangle(out);
556
557 // 5b. go through all lines, that are not yet part of two triangles (only of one so far)
558 TesselStruct->TesselateOnBoundary(out, configuration, mol);
559
560 *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl;
561
562
563
564 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
565 *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl;
566 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak
567 x.CopyVector(&runner->second->endpoints[0]->node->x);
568 x.SubtractVector(&runner->second->endpoints[1]->node->x);
569 y.CopyVector(&runner->second->endpoints[0]->node->x);
570 y.SubtractVector(&runner->second->endpoints[2]->node->x);
571 a = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[1]->node->x));
572 b = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[2]->node->x));
573 c = sqrt(runner->second->endpoints[2]->node->x.Distance(&runner->second->endpoints[1]->node->x));
574 G = sqrt( ( (a*a+b*b+c*c)*(a*a+b*b+c*c) - 2*(a*a*a*a + b*b*b*b + c*c*c*c) )/16.); // area of tesselated triangle
575 x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x);
576 x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
577 h = x.Norm(); // distance of CoG to triangle
578 PyramidVolume = (1./3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
579 *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
580 volume += PyramidVolume;
581 }
582 *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
583
584
585 // 7. translate all points back from CoG
586 *out << Verbose(1) << "Translating system back from Center of Gravity." << endl;
587 CenterOfGravity->Scale(-1);
588 Walker = mol->start;
589 while (Walker->next != mol->end) {
590 Walker = Walker->next;
591 Walker->x.Translate(CenterOfGravity);
592 }
593
594
595
596
597
598 write_tecplot_file(out, tecplot, TesselStruct, mol);
599
600
601 // free reference lists
602 if (BoundaryFreeFlag)
603 delete[](BoundaryPoints);
604
605 return volume;
606};
607
608
609/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
610 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
611 * \param *out output stream for debugging
612 * \param *configuration needed for path to store convex envelope file
613 * \param *mol molecule structure representing the cluster
614 * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
615 * \param celldensity desired average density in final cell
616 */
617void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, double ClusterVolume, double celldensity)
618{
619 // transform to PAS
620 mol->PrincipalAxisSystem(out, true);
621
622 // some preparations beforehand
623 bool IsAngstroem = configuration->GetIsAngstroem();
624 Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
625 double clustervolume;
626 if (ClusterVolume == 0)
627 clustervolume = VolumeOfConvexEnvelope(out, NULL, configuration, BoundaryPoints, mol);
628 else
629 clustervolume = ClusterVolume;
630 double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol, IsAngstroem);
631 Vector BoxLengths;
632 int repetition[NDIM] = {1, 1, 1};
633 int TotalNoClusters = 1;
634 for (int i=0;i<NDIM;i++)
635 TotalNoClusters *= repetition[i];
636
637 // sum up the atomic masses
638 double totalmass = 0.;
639 atom *Walker = mol->start;
640 while (Walker->next != mol->end) {
641 Walker = Walker->next;
642 totalmass += Walker->type->mass;
643 }
644 *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl;
645
646 *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass/clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
647
648 // solve cubic polynomial
649 *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl;
650 double cellvolume;
651 if (IsAngstroem)
652 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_A - (totalmass/clustervolume))/(celldensity-1);
653 else
654 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_a0 - (totalmass/clustervolume))/(celldensity-1);
655 *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
656
657 double minimumvolume = TotalNoClusters*(GreatestDiameter[0]*GreatestDiameter[1]*GreatestDiameter[2]);
658 *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
659 if (minimumvolume > cellvolume) {
660 cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl;
661 cout << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl;
662 for(int i=0;i<NDIM;i++)
663 BoxLengths.x[i] = GreatestDiameter[i];
664 mol->CenterEdge(out, &BoxLengths);
665 } else {
666 BoxLengths.x[0] = (repetition[0]*GreatestDiameter[0] + repetition[1]*GreatestDiameter[1] + repetition[2]*GreatestDiameter[2]);
667 BoxLengths.x[1] = (repetition[0]*repetition[1]*GreatestDiameter[0]*GreatestDiameter[1]
668 + repetition[0]*repetition[2]*GreatestDiameter[0]*GreatestDiameter[2]
669 + repetition[1]*repetition[2]*GreatestDiameter[1]*GreatestDiameter[2]);
670 BoxLengths.x[2] = minimumvolume - cellvolume;
671 double x0 = 0.,x1 = 0.,x2 = 0.;
672 if (gsl_poly_solve_cubic(BoxLengths.x[0],BoxLengths.x[1],BoxLengths.x[2],&x0,&x1,&x2) == 1) // either 1 or 3 on return
673 *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl;
674 else {
675 *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl;
676 x0 = x2; // sorted in ascending order
677 }
678
679 cellvolume = 1;
680 for(int i=0;i<NDIM;i++) {
681 BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]);
682 cellvolume *= BoxLengths.x[i];
683 }
684
685 // set new box dimensions
686 *out << Verbose(0) << "Translating to box with these boundaries." << endl;
687 mol->CenterInBox((ofstream *)&cout, &BoxLengths);
688 }
689 // update Box of atoms by boundary
690 mol->SetBoxDimension(&BoxLengths);
691 *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and " << BoxLengths.x[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
692};
693
694
695// =========================================================== class TESSELATION ===========================================
696
697/** Constructor of class Tesselation.
698 */
699Tesselation::Tesselation()
700{
701 PointsOnBoundaryCount = 0;
702 LinesOnBoundaryCount = 0;
703 TrianglesOnBoundaryCount = 0;
704};
705
706/** Constructor of class Tesselation.
707 * We have to free all points, lines and triangles.
708 */
709Tesselation::~Tesselation()
710{
711 cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
712 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
713 delete(runner->second);
714 }
715};
716
717/** Gueses first starting triangle of the convex envelope.
718 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
719 * \param *out output stream for debugging
720 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
721 */
722void Tesselation::GuessStartingTriangle(ofstream *out)
723{
724 // 4b. create a starting triangle
725 // 4b1. create all distances
726 DistanceMultiMap DistanceMMap;
727 double distance, tmp;
728 Vector PlaneVector, TrialVector;
729 PointMap::iterator A, B, C; // three nodes of the first triangle
730 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
731
732 // with A chosen, take each pair B,C and sort
733 if (A != PointsOnBoundary.end()) {
734 B = A;
735 B++;
736 for (; B != PointsOnBoundary.end(); B++) {
737 C = B;
738 C++;
739 for (; C != PointsOnBoundary.end(); C++) {
740 tmp = A->second->node->x.Distance(&B->second->node->x);
741 distance = tmp*tmp;
742 tmp = A->second->node->x.Distance(&C->second->node->x);
743 distance += tmp*tmp;
744 tmp = B->second->node->x.Distance(&C->second->node->x);
745 distance += tmp*tmp;
746 DistanceMMap.insert( DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator>(B,C) ) );
747 }
748 }
749 }
750// // listing distances
751// *out << Verbose(1) << "Listing DistanceMMap:";
752// for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
753// *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
754// }
755// *out << endl;
756
757 // 4b2. pick three baselines forming a triangle
758 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
759 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
760 for (; baseline != DistanceMMap.end(); baseline++) {
761 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
762 // 2. next, we have to check whether all points reside on only one side of the triangle
763 // 3. construct plane vector
764 PlaneVector.MakeNormalVector(&A->second->node->x, &baseline->second.first->second->node->x, &baseline->second.second->second->node->x);
765 *out << Verbose(2) << "Plane vector of candidate triangle is ";
766 PlaneVector.Output(out);
767 *out << endl;
768 // 4. loop over all points
769 double sign = 0.;
770 PointMap::iterator checker = PointsOnBoundary.begin();
771 for (; checker != PointsOnBoundary.end(); checker++) {
772 // (neglecting A,B,C)
773 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
774 continue;
775 // 4a. project onto plane vector
776 TrialVector.CopyVector(&checker->second->node->x);
777 TrialVector.SubtractVector(&A->second->node->x);
778 distance = TrialVector.Projection(&PlaneVector);
779 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
780 continue;
781 *out << Verbose(3) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl;
782 tmp = distance/fabs(distance);
783 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
784 if ((sign != 0) && (tmp != sign)) {
785 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
786 *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " outside the convex hull." << endl;
787 break;
788 } else { // note the sign for later
789 *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl;
790 sign = tmp;
791 }
792 // 4d. Check whether the point is inside the triangle (check distance to each node
793 tmp = checker->second->node->x.Distance(&A->second->node->x);
794 int innerpoint = 0;
795 if ((tmp < A->second->node->x.Distance(&baseline->second.first->second->node->x))
796 && (tmp < A->second->node->x.Distance(&baseline->second.second->second->node->x)))
797 innerpoint++;
798 tmp = checker->second->node->x.Distance(&baseline->second.first->second->node->x);
799 if ((tmp < baseline->second.first->second->node->x.Distance(&A->second->node->x))
800 && (tmp < baseline->second.first->second->node->x.Distance(&baseline->second.second->second->node->x)))
801 innerpoint++;
802 tmp = checker->second->node->x.Distance(&baseline->second.second->second->node->x);
803 if ((tmp < baseline->second.second->second->node->x.Distance(&baseline->second.first->second->node->x))
804 && (tmp < baseline->second.second->second->node->x.Distance(&A->second->node->x)))
805 innerpoint++;
806 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
807 if (innerpoint == 3)
808 break;
809 }
810 // 5. come this far, all on same side? Then break 1. loop and construct triangle
811 if (checker == PointsOnBoundary.end()) {
812 *out << "Looks like we have a candidate!" << endl;
813 break;
814 }
815 }
816 if (baseline != DistanceMMap.end()) {
817 BPS[0] = baseline->second.first->second;
818 BPS[1] = baseline->second.second->second;
819 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
820 BPS[0] = A->second;
821 BPS[1] = baseline->second.second->second;
822 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
823 BPS[0] = baseline->second.first->second;
824 BPS[1] = A->second;
825 BLS[2] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
826
827 // 4b3. insert created triangle
828 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
829 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
830 TrianglesOnBoundaryCount++;
831 for(int i=0;i<NDIM;i++) {
832 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
833 LinesOnBoundaryCount++;
834 }
835
836 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
837 } else {
838 *out << Verbose(1) << "No starting triangle found." << endl;
839 exit(255);
840 }
841};
842
843
844/** Tesselates the convex envelope of a cluster from a single starting triangle.
845 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
846 * 2 triangles. Hence, we go through all current lines:
847 * -# if the lines contains to only one triangle
848 * -# We search all points in the boundary
849 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
850 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
851 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
852 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
853 * \param *out output stream for debugging
854 * \param *configuration for IsAngstroem
855 * \param *mol the cluster as a molecule structure
856 */
857void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol)
858{
859 bool flag;
860 PointMap::iterator winner;
861 class BoundaryPointSet *peak = NULL;
862 double SmallestAngle, TempAngle;
863 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector;
864 LineMap::iterator LineChecker[2];
865 do {
866 flag = false;
867 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
868 if (baseline->second->TrianglesCount == 1) {
869 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
870 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
871 SmallestAngle = M_PI;
872 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
873 // get peak point with respect to this base line's only triangle
874 for(int i=0;i<3;i++)
875 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
876 peak = BTS->endpoints[i];
877 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
878 // normal vector of triangle
879 BTS->GetNormalVector(NormalVector);
880 *out << Verbose(4) << "NormalVector of base triangle is ";
881 NormalVector.Output(out);
882 *out << endl;
883 // offset to center of triangle
884 CenterVector.Zero();
885 for(int i=0;i<3;i++)
886 CenterVector.AddVector(&BTS->endpoints[i]->node->x);
887 CenterVector.Scale(1./3.);
888 *out << Verbose(4) << "CenterVector of base triangle is ";
889 CenterVector.Output(out);
890 *out << endl;
891 // vector in propagation direction (out of triangle)
892 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
893 TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
894 TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
895 PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
896 TempVector.CopyVector(&CenterVector);
897 TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
898 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
899 if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
900 PropagationVector.Scale(-1.);
901 *out << Verbose(4) << "PropagationVector of base triangle is ";
902 PropagationVector.Output(out);
903 *out << endl;
904 winner = PointsOnBoundary.end();
905 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++)
906 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
907 *out << Verbose(3) << "Target point is " << *(target->second) << ":";
908 bool continueflag = true;
909
910 VirtualNormalVector.CopyVector(&baseline->second->endpoints[0]->node->x);
911 VirtualNormalVector.AddVector(&baseline->second->endpoints[0]->node->x);
912 VirtualNormalVector.Scale(-1./2.); // points now to center of base line
913 VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
914 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
915 continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
916 if (!continueflag) {
917 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
918 continue;
919 } else
920 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
921 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
922 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
923 // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
924 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
925 // else
926 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
927 // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
928 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
929 // else
930 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
931 // check first endpoint (if any connecting line goes to target or at least not more than 1)
932 continueflag = continueflag && (( (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1)));
933 if (!continueflag) {
934 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
935 continue;
936 }
937 // check second endpoint (if any connecting line goes to target or at least not more than 1)
938 continueflag = continueflag && (( (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1)));
939 if (!continueflag) {
940 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
941 continue;
942 }
943 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
944 continueflag = continueflag && (!(
945 ((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
946 && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak))
947 ));
948 if (!continueflag) {
949 *out << Verbose(4) << "Current target is peak!" << endl;
950 continue;
951 }
952 // in case NOT both were found
953 if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle
954 flag = true;
955 VirtualNormalVector.MakeNormalVector(&baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x);
956 // make it always point inward
957 if (baseline->second->endpoints[0]->node->x.Projection(&VirtualNormalVector) > 0)
958 VirtualNormalVector.Scale(-1.);
959 // calculate angle
960 TempAngle = NormalVector.Angle(&VirtualNormalVector);
961 *out << Verbose(4) << "NormalVector is ";
962 VirtualNormalVector.Output(out);
963 *out << " and the angle is " << TempAngle << "." << endl;
964 if (SmallestAngle > TempAngle) { // set to new possible winner
965 SmallestAngle = TempAngle;
966 winner = target;
967 }
968 }
969 }
970 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
971 if (winner != PointsOnBoundary.end()) {
972 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
973 // create the lins of not yet present
974 BLS[0] = baseline->second;
975 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
976 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
977 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
978 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
979 BPS[0] = baseline->second->endpoints[0];
980 BPS[1] = winner->second;
981 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
982 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[1]) );
983 LinesOnBoundaryCount++;
984 } else
985 BLS[1] = LineChecker[0]->second;
986 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
987 BPS[0] = baseline->second->endpoints[1];
988 BPS[1] = winner->second;
989 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
990 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[2]) );
991 LinesOnBoundaryCount++;
992 } else
993 BLS[2] = LineChecker[1]->second;
994 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
995 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
996 TrianglesOnBoundaryCount++;
997 } else {
998 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
999 }
1000
1001 // 5d. If the set of lines is not yet empty, go to 5. and continue
1002 } else
1003 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl;
1004 } while (flag);
1005
1006};
1007
1008/** Adds an atom to the tesselation::PointsOnBoundary list.
1009 * \param *Walker atom to add
1010 */
1011void Tesselation::AddPoint(atom *Walker)
1012{
1013 PointTestPair InsertUnique;
1014 BPS[0] = new class BoundaryPointSet(Walker);
1015 InsertUnique = PointsOnBoundary.insert( PointPair(Walker->nr, BPS[0]) );
1016 if (InsertUnique.second) // if new point was not present before, increase counter
1017 PointsOnBoundaryCount++;
1018};
1019
1020void Tesselation::AddTrianglePoint(atom* Candidate, int n)
1021{
1022 PointTestPair InsertUnique;
1023 TPS[n] = new class BoundaryPointSet(Candidate);
1024 InsertUnique = PointsOnBoundary.insert( PointPair(Candidate->nr, TPS[n]) );
1025 if (InsertUnique.second) // if new point was not present before, increase counter
1026 {
1027 PointsOnBoundaryCount++;
1028 }
1029 else
1030 {
1031 delete TPS[n];
1032 cout << Verbose(2) << "Atom " << *((InsertUnique.first)->second->node) << " gibt's schon in der PointMap." << endl;
1033 TPS[n] = (InsertUnique.first)->second;
1034 }
1035};
1036
1037/*
1038 * Function tries to add line from current Points in BPS to BoundaryLineSet.
1039 * If succesfull it raises the line count and iserts the new line into the BLS,
1040 * if unsuccesfull, it writes the line which had been present into the BLS, deleting the new constructed one.
1041 */
1042
1043void Tesselation::AddTriangleLine(int n)
1044{
1045 LineMap::iterator LineWalker;
1046 BLS[n] = new class BoundaryLineSet(BPS, BPS[1]->node->nr);
1047 if ((BPS[0]->lines.find(BPS[1]->node->nr))->second->endpoints[0] == BLS[n]->endpoints[0]
1048 and (BPS[0]->lines.find(BPS[1]->node->nr))->second->endpoints[1] == BLS[n]->endpoints[1])
1049 //If a line is there, how do I recognize that beyond a shadow of a doubt?
1050 {
1051 delete BLS[n];
1052 cout << Verbose(2) << "Tried to add an existing line, handled it." << endl;
1053 LineWalker = LinesOnBoundary.end();
1054
1055 while(LineWalker->second->endpoints[0] != BLS[n]->endpoints[0] or LineWalker->second->endpoints[1] != BLS[n]->endpoints[1])
1056 {
1057 cout << Verbose(1) << "Looking for line which already exists"<< endl;
1058 LineWalker--;
1059 }
1060 BLS[n]=LineWalker->second;
1061 }
1062 else
1063 {
1064 cout << Verbose(2) << "Adding line which has not been used before." << endl;
1065 BPS[1]->lines.insert( LinePair(BPS[0]->node->nr, BLS[n]) );
1066 BPS[2]->lines.insert( LinePair(BPS[1]->node->nr, BLS[n]) );
1067
1068 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[n]));
1069 LinesOnBoundaryCount++;
1070
1071 }
1072};
1073
1074/*
1075 * Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
1076 * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
1077 */
1078
1079void Tesselation::AddTriangleToLines()
1080{
1081 cout <<Verbose(1) << "Adding triangle to its lines" <<endl;
1082 int i=0;
1083 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1084 TrianglesOnBoundaryCount++;
1085 for (i=0; i<3; i++)
1086 {
1087 BLS[i]->AddTriangle(BTS);
1088 }
1089};
1090
1091
1092
1093/*!
1094 * This recursive function finds a third point, to form a triangle with two given ones.
1095 * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \
1096 * supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \
1097 * upon which we operate.
1098 * If the candidate is more fitting to support the sphere than the already stored atom is, then we write its id, its general \
1099 * direction and angle into Storage.
1100 * We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \
1101 * with all neighbours of the candidate.
1102 */
1103void Find_next_suitable_point(atom* a, atom* b, atom* Candidate, atom* Parent, int n, Vector *Chord, Vector *d1, Vector *OldNormal, atom*& Opt_Candidate, double *Storage, const double RADIUS, molecule* mol, bool problem)
1104{
1105 /* OldNormal is normal vector on the old triangle
1106 * d1 is normal on the triangle line, from which we come, as well as on OldNormal.
1107 */
1108 Vector dif_a; //Vector from a to candidate
1109 Vector dif_b; //Vector from b to candidate
1110 Vector AngleCheck; // Projection of a difference vector on plane orthogonal on triangle side.
1111 atom *Walker; // variable atom point
1112
1113 dif_a.CopyVector(&(a->x));
1114 dif_a.SubtractVector(&(Candidate->x));
1115 dif_b.CopyVector(&(b->x));
1116 dif_b.SubtractVector(&(Candidate->x));
1117 AngleCheck.CopyVector(&dif_a);
1118 AngleCheck.ProjectOntoPlane(Chord);
1119
1120 if (problem)
1121 {
1122 cout << "Atom number" << Candidate->nr << endl;
1123 Candidate->x.Output((ofstream *)&cout);
1124 cout << "number of bonds " << mol->NumberOfBondsPerAtom[Candidate->nr] << endl;
1125 }
1126
1127 if (a != Candidate and b != Candidate)
1128 {
1129
1130 if (Chord->Norm()/(2*sin(0.5*dif_a.Angle(&dif_b)))<RADIUS) //Using Formula for relation of chord length with inner angle to find if Ball will touch atom
1131 {
1132 if (dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1))>Storage[0]) //This will give absolute preference to those in "right-hand" quadrants
1133 {
1134 Opt_Candidate = Candidate;
1135 Storage[0]=dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1));
1136 Storage[1]=AngleCheck.Angle(OldNormal);
1137 }
1138 else
1139 {
1140 if ((dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1)) == Storage[0] && Storage[0]>0 && Storage[1]> AngleCheck.Angle(OldNormal)) or \
1141 (dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1)) == Storage[0] && Storage[0]<0 && Storage[1]< AngleCheck.Angle(OldNormal)))
1142 //Depending on quadrant we prefer higher or lower atom with respect to Triangle normal first.
1143 {
1144 Opt_Candidate = Candidate;
1145 Storage[0]=dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1));
1146 Storage[1]=AngleCheck.Angle(OldNormal);
1147 }
1148 else
1149 {
1150 if (problem)
1151 cout << "Looses to better candidate" << endl;
1152 }
1153 }
1154 }
1155 else
1156 {
1157 if (problem)
1158 cout << "erfuellt Dreiecksbedingung fuer sehne nicht" <<endl;
1159 }
1160 }
1161 else
1162 {
1163 if (problem)
1164 cout << "identisch mit Ursprungslinie" << endl;
1165 }
1166
1167 if (n<5) // Five is the recursion level threshold.
1168 {
1169 for(int i=0; i<mol->NumberOfBondsPerAtom[Candidate->nr];i++) // go through all bond
1170 {
1171 Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate);
1172 if (Walker->nr == Parent->nr){
1173 continue;
1174 }
1175 else{
1176 Find_next_suitable_point(a, b, Walker, Candidate, n+1, Chord, d1, OldNormal, Opt_Candidate, Storage, RADIUS, mol, problem); //call function again
1177 }
1178 }
1179 }
1180};
1181
1182/*!
1183 * this function fins a triangle to a line, adjacent to an existing one.
1184 */
1185void Tesselation::Find_next_suitable_triangle(ofstream *out, ofstream *tecplot, molecule* mol, BoundaryLineSet &Line, BoundaryTriangleSet &T, const double& RADIUS, int N)
1186{
1187 cout << Verbose(1) << "Looking for next suitable triangle \n";
1188 Vector direction1;
1189 Vector helper;
1190 Vector Chord;
1191 //atom* Walker;
1192
1193 double Storage[2];
1194 Storage[0]=-2.; // This direction is either +1 or -1 one, so any result will take precedence over initial values
1195 Storage[1]=9999999.; // This is also lower then any value produced by an eligible atom, which are all positive
1196 atom* Opt_Candidate = NULL;
1197
1198
1199 cout << Verbose(1) << "Constructing helpful vectors ... " << endl;
1200 helper.CopyVector(&(Line.endpoints[0]->node->x));
1201 for (int i =0; i<3; i++)
1202 {
1203 if (T.endpoints[i]->node->nr != Line.endpoints[0]->node->nr && T.endpoints[i]->node->nr!=Line.endpoints[1]->node->nr)
1204 {
1205 helper.SubtractVector(&T.endpoints[i]->node->x);
1206 break;
1207 }
1208 }
1209
1210
1211 direction1.CopyVector(&Line.endpoints[0]->node->x);
1212 direction1.SubtractVector(&Line.endpoints[1]->node->x);
1213 direction1.VectorProduct(&(T.NormalVector));
1214
1215 if (direction1.ScalarProduct(&helper)<0)
1216 {
1217 direction1.Scale(-1);
1218 }
1219
1220 Chord.CopyVector(&(Line.endpoints[0]->node->x)); // bring into calling function
1221 Chord.SubtractVector(&(Line.endpoints[1]->node->x));
1222
1223 cout << Verbose(1) << "Looking for third point candidates for triangle ... " << endl;
1224 Find_next_suitable_point(Line.endpoints[0]->node, Line.endpoints[1]->node, Line.endpoints[0]->node, Line.endpoints[1]->node, 0, &Chord, &direction1, &(T.NormalVector), Opt_Candidate, Storage, RADIUS, mol,0);
1225 Find_next_suitable_point(Line.endpoints[0]->node, Line.endpoints[1]->node, Line.endpoints[1]->node, Line.endpoints[0]->node, 0, &Chord, &direction1, &(T.NormalVector), Opt_Candidate, Storage, RADIUS, mol,0);
1226
1227 if (N>7)
1228 {
1229 cout << Verbose(1) << "No new Atom found, triangle construction will crash" << endl;
1230 write_tecplot_file(out, tecplot, this, mol);
1231 tecplot->flush();
1232 Find_next_suitable_point(Line.endpoints[0]->node, Line.endpoints[1]->node, Line.endpoints[0]->node, Line.endpoints[1]->node, 0, &Chord, &direction1, &(T.NormalVector), Opt_Candidate, Storage, RADIUS, mol, 1);
1233 Find_next_suitable_point(Line.endpoints[0]->node, Line.endpoints[1]->node, Line.endpoints[1]->node, Line.endpoints[0]->node, 0, &Chord, &direction1, &(T.NormalVector), Opt_Candidate, Storage, RADIUS, mol, 1);
1234 }
1235 // Konstruiere nun neues Dreieck am Ende der Liste der Dreiecke
1236
1237 cout << Verbose(1) << "Adding exactly one Walker for reasons completely unknown to me ... " << endl;
1238 cout << " Optimal candidate is " << *Opt_Candidate << endl;
1239
1240 AddTrianglePoint(Opt_Candidate, 0);
1241 AddTrianglePoint(Line.endpoints[0]->node, 1);
1242 AddTrianglePoint(Line.endpoints[1]->node, 2);
1243
1244 BPS[0] = TPS[0];
1245 BPS[1] = TPS[1];
1246 AddTriangleLine(0);
1247 BPS[0] = TPS[0];
1248 BPS[1] = TPS[2];
1249 AddTriangleLine(1);
1250 BPS[0] = TPS[1];
1251 BPS[1] = TPS[2];
1252 AddTriangleLine(2);
1253
1254 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1255 AddTriangleToLines();
1256
1257
1258 cout << Verbose(1) << "Constructing normal vector for this triangle ... " << endl;
1259
1260 BTS->GetNormalVector(BTS->NormalVector);
1261
1262 if ((BTS->NormalVector.ScalarProduct(&(T.NormalVector))<0 && Storage[0]>0) ||
1263 ((BTS->NormalVector.ScalarProduct(&(T.NormalVector))>0 && Storage[0]<0)) )
1264 {
1265 BTS->NormalVector.Scale(-1);
1266 };
1267
1268};
1269
1270
1271void Find_second_point_for_Tesselation(atom* a, atom* Candidate, atom* Parent, int n, Vector Oben, atom*& Opt_Candidate, double Storage[2], molecule* mol, double RADIUS)
1272{
1273 cout << Verbose(1) << "Looking for second point of starting triangle, recursive level "<< n <<endl;;
1274 int i;
1275 Vector AngleCheck;
1276 atom* Walker;
1277
1278 if (a->nr !=Candidate->nr)
1279 {
1280 AngleCheck.CopyVector(&(Candidate->x));
1281 AngleCheck.SubtractVector(&(a->x));
1282 if (AngleCheck.Norm() < RADIUS and AngleCheck.Angle(&Oben) < Storage[0])
1283 {
1284 //cout << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
1285 Opt_Candidate=Candidate;
1286 Storage[0]=AngleCheck.Angle(&Oben);
1287 //cout << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[1]);
1288 }
1289 else{
1290 if (AngleCheck.Norm() > RADIUS)
1291 {
1292 cout << Verbose(1) << "refused due to Radius" << AngleCheck.Norm() << endl;
1293 }
1294 else{
1295 cout << Verbose(1) << "Supposedly looses to a better candidate" << Opt_Candidate->nr << endl;
1296 }
1297 }
1298 }
1299
1300 if (n<5)
1301 {
1302 for (i = 0; i< mol->NumberOfBondsPerAtom[Candidate->nr]; i++)
1303 {
1304 Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate);
1305 if (Walker->nr == Parent->nr)
1306 continue;
1307 else
1308 Find_second_point_for_Tesselation(a, Walker, Candidate, n+1, Oben, Opt_Candidate, Storage, mol, RADIUS);
1309 };
1310 };
1311
1312
1313};
1314
1315
1316void Tesselation::Find_starting_triangle(molecule* mol, const double RADIUS)
1317{
1318 cout << Verbose(1) << "Looking for starting triangle \n";
1319 int i=0;
1320 atom* Walker;
1321 atom* FirstPoint;
1322 atom* SecondPoint;
1323 int max_index[3];
1324 double max_coordinate[3];
1325 Vector Oben;
1326 Vector helper;
1327 Vector Chord;
1328
1329 Oben.Zero();
1330
1331
1332 for(i =0; i<3; i++)
1333 {
1334 max_index[i] =-1;
1335 max_coordinate[i] =-1;
1336 }
1337cout << Verbose(1) << "Molecule mol is there and has " << mol->AtomCount << " Atoms \n";
1338 Walker = mol->start;
1339 while (Walker->next != mol->end)
1340 {
1341 Walker = Walker->next;
1342 for (i=0; i<3; i++)
1343 {
1344 if (Walker->x.x[i] > max_coordinate[i])
1345 {
1346 max_coordinate[i]=Walker->x.x[i];
1347 max_index[i]=Walker->nr;
1348 }
1349 }
1350 }
1351
1352 cout << Verbose(1) << "Found maximum coordinates. "<< endl;
1353 //Koennen dies fuer alle Richtungen, legen hier erstmal Richtung auf k=0
1354 const int k=0;
1355
1356 Oben.x[k]=1.;
1357 FirstPoint = mol->start;
1358 FirstPoint = FirstPoint->next;
1359 while (FirstPoint->nr != max_index[k])
1360 {
1361 FirstPoint = FirstPoint->next;
1362 }
1363 cout << Verbose(1) << "Coordinates of start atom: " << FirstPoint->x.x[0] << endl;
1364 double Storage[2];
1365 atom* Opt_Candidate = NULL;
1366 Storage[0]=999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1367 Storage[1]=999999.; // This will be an angle looking for the third point.
1368 cout << Verbose(1) << "Number of Bonds: " << mol->NumberOfBondsPerAtom[FirstPoint->nr] << endl;
1369
1370 Find_second_point_for_Tesselation(FirstPoint, mol->ListOfBondsPerAtom[FirstPoint->nr][0]->GetOtherAtom(FirstPoint), FirstPoint, 0, Oben, Opt_Candidate, Storage, mol, RADIUS);
1371
1372
1373 SecondPoint = Opt_Candidate;
1374 Opt_Candidate=NULL;
1375 helper.CopyVector(&(FirstPoint->x));
1376 helper.SubtractVector(&(SecondPoint->x));
1377 Oben.ProjectOntoPlane(&helper);
1378 helper.VectorProduct(&Oben);
1379 Storage[0]=-2.; // This will indicate the quadrant.
1380 Storage[1]= 9999999.; // This will be an angle looking for the third point.
1381
1382 Chord.CopyVector(&(FirstPoint->x)); // bring into calling function
1383 Chord.SubtractVector(&(SecondPoint->x));
1384
1385 cout << Verbose(1) << "Looking for third point candidates \n";
1386 Find_next_suitable_point(FirstPoint, SecondPoint, SecondPoint, FirstPoint, 0, &Chord, &helper, &Oben, Opt_Candidate, Storage, RADIUS, mol, 0);
1387
1388
1389 //Starting Triangle is Walker, SecondPoint, Opt_Candidate
1390
1391 cout << Verbose(1) << "The found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and " << *Opt_Candidate << "." << endl;
1392
1393 AddTrianglePoint(FirstPoint, 0);
1394 AddTrianglePoint(SecondPoint, 1);
1395 AddTrianglePoint(Opt_Candidate, 2);
1396
1397 BPS[0] = TPS[0];
1398 BPS[1] = TPS[1];
1399 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1400 BPS[0] = TPS[1];
1401 BPS[1] = TPS[2];
1402 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1403 BPS[0] = TPS[0];
1404 BPS[1] = TPS[2];
1405 BLS[2] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1406
1407 Tesselation::BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1408 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
1409 TrianglesOnBoundaryCount++;
1410
1411 for(int i=0;i<NDIM;i++)
1412 {
1413 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
1414 LinesOnBoundaryCount++;
1415 };
1416
1417 BTS->GetNormalVector(BTS->NormalVector);
1418
1419 if( BTS->NormalVector.ScalarProduct(&Oben)<0)
1420 {
1421 BTS->NormalVector.Scale(-1);
1422 }
1423};
1424
1425
1426void Find_non_convex_border(ofstream *out, ofstream *tecplot, molecule* mol)
1427{
1428 int N =0;
1429 struct Tesselation *Tess = new Tesselation;
1430 cout << Verbose(1) << "Entering search for non convex hull. " << endl;
1431 cout << flush;
1432 const double RADIUS =6.;
1433 LineMap::iterator baseline;
1434 Tess->Find_starting_triangle(mol, RADIUS);
1435
1436 baseline = Tess->LinesOnBoundary.begin();
1437 while (baseline != Tess->LinesOnBoundary.end()) {
1438 if (baseline->second->TrianglesCount == 1)
1439 {
1440 cout << Verbose(1) << "Begin of Tesselation ... " << endl;
1441 Tess->Find_next_suitable_triangle(out, tecplot, mol, *(baseline->second), *(baseline->second->triangles.begin()->second), RADIUS, N); //the line is there, so there is a triangle, but only one.
1442 cout << Verbose(1) << "End of Tesselation ... " << endl;
1443 }
1444 else
1445 {
1446 cout << Verbose(1) << "There is a line with " << baseline->second->TrianglesCount << " triangles adjacent";
1447 }
1448 N++;
1449 baseline++;
1450 }
1451
1452};
Note: See TracBrowser for help on using the repository browser.