/*
 * Project: MoleCuilder
 * Description: creates and alters molecular systems
 * Copyright (C)  2010-2012 University of Bonn. All rights reserved.
 * Copyright (C)  2013 Frederik Heber. All rights reserved.
 * 
 *
 *   This file is part of MoleCuilder.
 *
 *    MoleCuilder is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    MoleCuilder is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with MoleCuilder.  If not, see .
 */
/*
 * BaseShapes_impl.cpp
 *
 *  Created on: Jun 18, 2010
 *      Author: crueger
 */
// include config.h
#ifdef HAVE_CONFIG_H
#include 
#endif
//#include "CodePatterns/MemDebug.hpp"
#include "Shapes/BaseShapes.hpp"
#include "Shapes/BaseShapes_impl.hpp"
#include "Shapes/ShapeExceptions.hpp"
#include "Shapes/ShapeOps.hpp"
#include "Helpers/defs.hpp"
#include "CodePatterns/Assert.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinearAlgebra/Line.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "LinearAlgebra/LineSegment.hpp"
#include "LinearAlgebra/LineSegmentSet.hpp"
#include 
#include 
// CYLINDER CODE
// ----------------------------------------------------------------------------
bool Cylinder_impl::isInside(const Vector &point) const {
  return (Vector(point[0], point[1], 0.0).NormSquared() < 1.0+MYEPSILON) &&
      (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON);
}
bool Cylinder_impl::isOnSurface(const Vector &point) const {
  // on the side?
  if (fabs(Vector(point[0], point[1], 0.0).NormSquared()-1.0) -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON))
    return true;
  // on top/bottom?
  if ((Vector(point[0], point[1], 0.0).NormSquared()< 1.0 + MYEPSILON) &&
      ((fabs(point[2]-1) solutions;
    // Common routine to solve quadratic equations, anywhere?
    const double neg_p_half = -B/(2.0*A);
    const double q = C/A;
    const double radicant = neg_p_half*neg_p_half-q;
    if (radicant > 0.0) {
        const double root = sqrt(radicant);
        solutions.push_back(neg_p_half+root);
        const double sln2 = neg_p_half-root;
        if (sln2 != solutions.back())
            solutions.push_back(sln2);
    }
    // Now get parameter for intersection with z-Planes.
    const double origin_z = origin[2];
    const double dir_z = direction[2];
    if (dir_z != 0.0) {
        solutions.push_back((-1.0-origin_z)/dir_z);
        solutions.push_back((1.0-origin_z)/dir_z);
    }
    // Calculate actual vectors from obtained parameters and check,
    // if they are actual intersections.
    std::vector intersections;
    for(unsigned int i=0; i Cylinder_impl::getHomogeneousPointsOnSurface(const size_t N) const {
    const double nz_float = sqrt(N/M_PI);
    const int nu = round(N/nz_float);
    const int nz = round(nz_float);
    const double dphi = 2.0*M_PI/nu;
    const double dz = 2.0/nz;
    std::vector result;
    
    for(int useg=0; useg Cylinder_impl::getHomogeneousPointsInVolume(const size_t N) const {
    const double nz_float = pow(N/(2.0*M_PI), 1.0/3.0);
    const int nu = round(nz_float*M_PI);
    const int nr = round(nz_float*0.5);
    const int nz = round(nz_float);
    
    const double dphi = 2.0*M_PI/nu;
    const double dz = 2.0/nz;
    const double dr = 1.0/nr;
    std::vector result;
    
    for(int useg=0; useg intersections = line.getSphereIntersections();
  if(intersections.size()==2){
    res.insert(LineSegment(intersections[0],intersections[1]));
  }
  return res;
}
std::string Sphere_impl::toString() const{
  return "Sphere()";
}
enum ShapeType Sphere_impl::getType() const
{
	return SphereType;
}
/**
 * algorithm taken from http://www.cgafaq.info/wiki/Evenly_distributed_points_on_sphere
 * \param N number of points on surface
 */
std::vector Sphere_impl::getHomogeneousPointsOnSurface(const size_t N) const
{
  std::vector PointsOnSurface;
  if (true) {
    // Exactly N points but not symmetric.
    // This formula is derived by finding a curve on the sphere that spirals down from
    // the north pole to the south pole keeping a constant distance between consecutive turns.
    // The curve is then parametrized by arch length and evaluated in constant intervals.
    double a = sqrt(N) * 2;
    for (size_t i=0; i Sphere_impl::getHomogeneousPointsInVolume(const size_t N) const {
	ASSERT(0,
			"Sphere_impl::getHomogeneousPointsInVolume() - not implemented.");
	return std::vector();
}
Shape Sphere(){
  Shape::impl_ptr impl = Shape::impl_ptr(new Sphere_impl());
  return Shape(impl);
}
Shape Sphere(const Vector ¢er,double radius){
  return translate(resize(Sphere(),radius),center);
}
Shape Ellipsoid(const Vector ¢er, const Vector &radius){
  return translate(stretch(Sphere(),radius),center);
}
bool Cuboid_impl::isInside(const Vector &point) const{
  return (point[0]>=-MYEPSILON && point[0]<=1+MYEPSILON) && (point[1]>=-MYEPSILON && point[1]<=1+MYEPSILON) && (point[2]>=-MYEPSILON && point[2]<=1+MYEPSILON);
}
bool Cuboid_impl::isOnSurface(const Vector &point) const{
  bool retVal = isInside(point);
  // test all borders of the cuboid
  // double fabs
  retVal = retVal &&
           (((fabs(point[0]-1.)  < MYEPSILON) || (fabs(point[0])  < MYEPSILON)) ||
            ((fabs(point[1]-1.)  < MYEPSILON) || (fabs(point[1])  < MYEPSILON)) ||
            ((fabs(point[2]-1.)  < MYEPSILON) || (fabs(point[2])  < MYEPSILON)));
  return retVal;
}
Vector Cuboid_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){
  if(!isOnSurface(point)){
    throw NotOnSurfaceException() << ShapeVector(&point);
  }
  Vector res;
  // figure out on which sides the Vector lies (maximum 3, when it is in a corner)
  for(int i=NDIM;i--;){
    if((fabs(point[i])= -MYEPSILON)
      && (fabs(res.NormSquared() - 3.) >= -MYEPSILON),
      "To many or to few sides found for this Vector");
  res.Normalize();
  return res;
}
Vector Cuboid_impl::getCenter() const
{
  return Vector(0.5,0.5,0.5);
}
double Cuboid_impl::getRadius() const
{
  return .5;
}
double Cuboid_impl::getVolume() const
{
	return 1.; // l^3
}
double Cuboid_impl::getSurfaceArea() const
{
	return 6.;	// 6 * l^2
}
LineSegmentSet Cuboid_impl::getLineIntersections(const Line &line) const{
  LineSegmentSet res(line);
  // get the intersection on each of the six faces
  std::vector intersections;
  intersections.resize(2);
  int c=0;
  int x[2]={-1,+1};
  for(int i=NDIM;i--;){
    for(int j=0;j<2;++j){
      if(c==2) goto end; // I know this sucks, but breaking two loops is stupid
      Vector base;
      base[i]=x[j];
      // base now points to the surface and is normal to it at the same time
      Plane p(base,base);
      Vector intersection = p.GetIntersection(line);
      if(isInside(intersection)){
        // if we have a point on the edge it might already be contained
        if(c==1 && intersections[0]==intersection)
          continue;
        intersections[c++]=intersection;
      }
    }
  }
  end:
  if(c==2){
    res.insert(LineSegment(intersections[0],intersections[1]));
  }
  return res;
}
std::string Cuboid_impl::toString() const{
  return "Cuboid()";
}
enum ShapeType Cuboid_impl::getType() const
{
	return CuboidType;
}
/**
 * \param N number of points on surface
 */
std::vector Cuboid_impl::getHomogeneousPointsOnSurface(const size_t N) const {
  std::vector PointsOnSurface;
  // sides
  int n = sqrt((N - 1) / 6) + 1;
  for (int i=0; i<=n; i++){
    double ii = (double)i / (double)n;
    for (int k=0; k Cuboid_impl::getHomogeneousPointsInVolume(const size_t N) const {
	ASSERT(0,
			"Cuboid_impl::getHomogeneousPointsInVolume() - not implemented.");
	return std::vector();
}
Shape Cuboid(){
  Shape::impl_ptr impl = Shape::impl_ptr(new Cuboid_impl());
  return Shape(impl);
}
Shape Cuboid(const Vector &corner1, const Vector &corner2){
  // make sure the two edges are upper left front and lower right back
  Vector sortedC1;
  Vector sortedC2;
  for(int i=NDIM;i--;){
    sortedC1[i] = std::min(corner1[i],corner2[i]);
    sortedC2[i] = std::max(corner1[i],corner2[i]);
    ASSERT(corner1[i]!=corner2[i],"Given points for cuboid edges did not define a valid space");
  }
  // get the middle point
  Vector middle = (1./2.)*(sortedC1+sortedC2);
  Vector factors = sortedC2-middle;
  return translate(stretch(Cuboid(),factors),middle);
}