| 1 | /*
 | 
|---|
| 2 |  * Project: MoleCuilder
 | 
|---|
| 3 |  * Description: creates and alters molecular systems
 | 
|---|
| 4 |  * Copyright (C)  2014 Frederik Heber. All rights reserved.
 | 
|---|
| 5 |  *
 | 
|---|
| 6 |  *
 | 
|---|
| 7 |  *   This file is part of MoleCuilder.
 | 
|---|
| 8 |  *
 | 
|---|
| 9 |  *    MoleCuilder is free software: you can redistribute it and/or modify
 | 
|---|
| 10 |  *    it under the terms of the GNU General Public License as published by
 | 
|---|
| 11 |  *    the Free Software Foundation, either version 2 of the License, or
 | 
|---|
| 12 |  *    (at your option) any later version.
 | 
|---|
| 13 |  *
 | 
|---|
| 14 |  *    MoleCuilder is distributed in the hope that it will be useful,
 | 
|---|
| 15 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 16 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 17 |  *    GNU General Public License for more details.
 | 
|---|
| 18 |  *
 | 
|---|
| 19 |  *    You should have received a copy of the GNU General Public License
 | 
|---|
| 20 |  *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>.
 | 
|---|
| 21 |  */
 | 
|---|
| 22 | 
 | 
|---|
| 23 | /*
 | 
|---|
| 24 |  * PotentialTrainer.cpp
 | 
|---|
| 25 |  *
 | 
|---|
| 26 |  *  Created on: Sep 11, 2014
 | 
|---|
| 27 |  *      Author: heber
 | 
|---|
| 28 |  */
 | 
|---|
| 29 | 
 | 
|---|
| 30 | // include config.h
 | 
|---|
| 31 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 32 | #include <config.h>
 | 
|---|
| 33 | #endif
 | 
|---|
| 34 | 
 | 
|---|
| 35 | // needs to come before MemDebug due to placement new
 | 
|---|
| 36 | #include <boost/archive/text_iarchive.hpp>
 | 
|---|
| 37 | 
 | 
|---|
| 38 | //#include "CodePatterns/MemDebug.hpp"
 | 
|---|
| 39 | 
 | 
|---|
| 40 | #include "PotentialTrainer.hpp"
 | 
|---|
| 41 | 
 | 
|---|
| 42 | #include <algorithm>
 | 
|---|
| 43 | #include <boost/lambda/lambda.hpp>
 | 
|---|
| 44 | #include <boost/filesystem.hpp>
 | 
|---|
| 45 | #include <fstream>
 | 
|---|
| 46 | #include <sstream>
 | 
|---|
| 47 | 
 | 
|---|
| 48 | #include "CodePatterns/Assert.hpp"
 | 
|---|
| 49 | #include "CodePatterns/Log.hpp"
 | 
|---|
| 50 | 
 | 
|---|
| 51 | #include "Element/element.hpp"
 | 
|---|
| 52 | #include "Fragmentation/Homology/HomologyContainer.hpp"
 | 
|---|
| 53 | #include "Fragmentation/Homology/HomologyGraph.hpp"
 | 
|---|
| 54 | #include "FunctionApproximation/Extractors.hpp"
 | 
|---|
| 55 | #include "FunctionApproximation/FunctionApproximation.hpp"
 | 
|---|
| 56 | #include "FunctionApproximation/FunctionModel.hpp"
 | 
|---|
| 57 | #include "FunctionApproximation/TrainingData.hpp"
 | 
|---|
| 58 | #include "FunctionApproximation/writeDistanceEnergyTable.hpp"
 | 
|---|
| 59 | #include "Potentials/CompoundPotential.hpp"
 | 
|---|
| 60 | #include "Potentials/RegistrySerializer.hpp"
 | 
|---|
| 61 | #include "Potentials/SerializablePotential.hpp"
 | 
|---|
| 62 | 
 | 
|---|
| 63 | PotentialTrainer::PotentialTrainer()
 | 
|---|
| 64 | {}
 | 
|---|
| 65 | 
 | 
|---|
| 66 | PotentialTrainer::~PotentialTrainer()
 | 
|---|
| 67 | {}
 | 
|---|
| 68 | 
 | 
|---|
| 69 | bool PotentialTrainer::operator()(
 | 
|---|
| 70 |     const HomologyContainer &_homologies,
 | 
|---|
| 71 |     const HomologyGraph &_graph,
 | 
|---|
| 72 |     const boost::filesystem::path &_trainingfile,
 | 
|---|
| 73 |     const unsigned int _maxiterations,
 | 
|---|
| 74 |     const double _threshold,
 | 
|---|
| 75 |     const unsigned int _best_of_howmany) const
 | 
|---|
| 76 | {
 | 
|---|
| 77 |   // fit potential
 | 
|---|
| 78 |   CompoundPotential compound(_graph);
 | 
|---|
| 79 |   FunctionModel &model = assert_cast<FunctionModel &>(compound);
 | 
|---|
| 80 | 
 | 
|---|
| 81 |   if (compound.begin() == compound.end()) {
 | 
|---|
| 82 |     ELOG(1, "Could not find any suitable potentials for the compound potential.");
 | 
|---|
| 83 |     return false;
 | 
|---|
| 84 |   }
 | 
|---|
| 85 | 
 | 
|---|
| 86 |   /******************** TRAINING ********************/
 | 
|---|
| 87 |   // fit potential
 | 
|---|
| 88 |   FunctionModel::parameters_t bestparams(model.getParameterDimension(), 0.);
 | 
|---|
| 89 |   {
 | 
|---|
| 90 |     // Afterwards we go through all of this type and gather the distance and the energy value
 | 
|---|
| 91 |     TrainingData data(model.getSpecificFilter());
 | 
|---|
| 92 |     data(_homologies.getHomologousGraphs(_graph));
 | 
|---|
| 93 | 
 | 
|---|
| 94 |     // check data
 | 
|---|
| 95 |     const TrainingData::FilteredInputVector_t &inputs = data.getTrainingInputs();
 | 
|---|
| 96 |     for (TrainingData::FilteredInputVector_t::const_iterator iter = inputs.begin();
 | 
|---|
| 97 |         iter != inputs.end(); ++iter)
 | 
|---|
| 98 |       if (((*iter).empty()) || ((*iter).front().empty())) {
 | 
|---|
| 99 |         ELOG(1, "At least one of the training inputs is empty! Correct fragment and potential charges selected?");
 | 
|---|
| 100 |         return false;
 | 
|---|
| 101 |       }
 | 
|---|
| 102 |     const TrainingData::OutputVector_t &outputs = data.getTrainingOutputs();
 | 
|---|
| 103 |     for (TrainingData::OutputVector_t::const_iterator iter = outputs.begin();
 | 
|---|
| 104 |         iter != outputs.end(); ++iter)
 | 
|---|
| 105 |       if ((*iter).empty()) {
 | 
|---|
| 106 |         ELOG(1, "At least one of the training outputs is empty! Correct fragment and potential charges selected?");
 | 
|---|
| 107 |         return false;
 | 
|---|
| 108 |       }
 | 
|---|
| 109 | 
 | 
|---|
| 110 |     // print distances and energies if desired for debugging
 | 
|---|
| 111 |     if (!data.getTrainingInputs().empty()) {
 | 
|---|
| 112 |       // print which distance is which
 | 
|---|
| 113 |       size_t counter=1;
 | 
|---|
| 114 |       if (DoLog(3)) {
 | 
|---|
| 115 |         const FunctionModel::arguments_t &inputs = data.getAllArguments()[0];
 | 
|---|
| 116 |         for (FunctionModel::arguments_t::const_iterator iter = inputs.begin();
 | 
|---|
| 117 |             iter != inputs.end(); ++iter) {
 | 
|---|
| 118 |           const argument_t &arg = *iter;
 | 
|---|
| 119 |           LOG(3, "DEBUG: distance " << counter++ << " is between (#"
 | 
|---|
| 120 |               << arg.indices.first << "c" << arg.types.first << ","
 | 
|---|
| 121 |               << arg.indices.second << "c" << arg.types.second << ").");
 | 
|---|
| 122 |         }
 | 
|---|
| 123 |       }
 | 
|---|
| 124 | 
 | 
|---|
| 125 |       // print table
 | 
|---|
| 126 |       if (_trainingfile.string().empty()) {
 | 
|---|
| 127 |         LOG(3, "DEBUG: I gathered the following training data:\n" <<
 | 
|---|
| 128 |             _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable()));
 | 
|---|
| 129 |       } else {
 | 
|---|
| 130 |         std::ofstream trainingstream(_trainingfile.string().c_str());
 | 
|---|
| 131 |         if (trainingstream.good()) {
 | 
|---|
| 132 |           LOG(3, "DEBUG: Writing training data to file " <<
 | 
|---|
| 133 |               _trainingfile.string() << ".");
 | 
|---|
| 134 |           trainingstream << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable());
 | 
|---|
| 135 |         }
 | 
|---|
| 136 |         trainingstream.close();
 | 
|---|
| 137 |       }
 | 
|---|
| 138 |     }
 | 
|---|
| 139 | 
 | 
|---|
| 140 |     if ((_threshold < 1.) && (_best_of_howmany))
 | 
|---|
| 141 |       ELOG(2, "threshold parameter always overrules max_runs, both are specified.");
 | 
|---|
| 142 |     // now perform the function approximation by optimizing the model function
 | 
|---|
| 143 |     FunctionApproximation approximator(data, model, _threshold, _maxiterations);
 | 
|---|
| 144 |     if (model.isBoxConstraint() && approximator.checkParameterDerivatives()) {
 | 
|---|
| 145 |       double l2error = std::numeric_limits<double>::max();
 | 
|---|
| 146 |       // seed with current time
 | 
|---|
| 147 |       srand((unsigned)time(0));
 | 
|---|
| 148 |       unsigned int runs=0;
 | 
|---|
| 149 |       // threshold overrules max_runs
 | 
|---|
| 150 |       const double threshold = _threshold;
 | 
|---|
| 151 |       const unsigned int max_runs = (threshold >= 1.) ? _best_of_howmany : std::numeric_limits<unsigned int>::max();
 | 
|---|
| 152 |       LOG(1, "INFO: Maximum runs is " << max_runs << " and threshold set to " << threshold << ".");
 | 
|---|
| 153 |       do {
 | 
|---|
| 154 |         // generate new random initial parameter values
 | 
|---|
| 155 |         model.setParametersToRandomInitialValues(data);
 | 
|---|
| 156 |         LOG(1, "INFO: Initial parameters of run " << runs << " are "
 | 
|---|
| 157 |             << model.getParameters() << ".");
 | 
|---|
| 158 |         approximator(FunctionApproximation::ParameterDerivative);
 | 
|---|
| 159 |         LOG(1, "INFO: Final parameters of run " << runs << " are "
 | 
|---|
| 160 |             << model.getParameters() << ".");
 | 
|---|
| 161 |         const double new_l2error = data.getL2Error(model);
 | 
|---|
| 162 |         if (new_l2error < l2error) {
 | 
|---|
| 163 |           // store currently best parameters
 | 
|---|
| 164 |           l2error = new_l2error;
 | 
|---|
| 165 |           bestparams = model.getParameters();
 | 
|---|
| 166 |           LOG(1, "STATUS: New fit from run " << runs
 | 
|---|
| 167 |               << " has better error of " << l2error << ".");
 | 
|---|
| 168 |         }
 | 
|---|
| 169 |       } while (( ++runs < max_runs) && (l2error > threshold));
 | 
|---|
| 170 |       // reset parameters from best fit
 | 
|---|
| 171 |       model.setParameters(bestparams);
 | 
|---|
| 172 |       LOG(1, "INFO: Best parameters with L2 error of "
 | 
|---|
| 173 |           << l2error << " are " << model.getParameters() << ".");
 | 
|---|
| 174 |     } else {
 | 
|---|
| 175 |       return false;
 | 
|---|
| 176 |     }
 | 
|---|
| 177 | 
 | 
|---|
| 178 |     // create a map of each fragment with error.
 | 
|---|
| 179 |     HomologyContainer::range_t fragmentrange = _homologies.getHomologousGraphs(_graph);
 | 
|---|
| 180 |     TrainingData::L2ErrorConfigurationIndexMap_t WorseFragmentMap =
 | 
|---|
| 181 |         data.getWorstFragmentMap(model, fragmentrange);
 | 
|---|
| 182 |     LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << ".");
 | 
|---|
| 183 | 
 | 
|---|
| 184 |   }
 | 
|---|
| 185 | 
 | 
|---|
| 186 |   return true;
 | 
|---|
| 187 | }
 | 
|---|
| 188 | 
 | 
|---|
| 189 | HomologyGraph PotentialTrainer::getFirstGraphwithSpecifiedElements(
 | 
|---|
| 190 |     const HomologyContainer &homologies,
 | 
|---|
| 191 |     const SerializablePotential::ParticleTypes_t &types)
 | 
|---|
| 192 | {
 | 
|---|
| 193 |   ASSERT( !types.empty(),
 | 
|---|
| 194 |       "getFirstGraphwithSpecifiedElements() - charges is empty?");
 | 
|---|
| 195 | 
 | 
|---|
| 196 |   // convert into count map
 | 
|---|
| 197 |   Extractors::elementcounts_t counts_per_element =
 | 
|---|
| 198 |       Extractors::_detail::getElementCounts(types);
 | 
|---|
| 199 |   ASSERT( !counts_per_element.empty(),
 | 
|---|
| 200 |       "getFirstGraphwithSpecifiedElements() - element counts are empty?");
 | 
|---|
| 201 |   LOG(1, "DEBUG: counts_per_element is " << counts_per_element << ".");
 | 
|---|
| 202 |   // we want to check each (unique) key only once
 | 
|---|
| 203 |   HomologyContainer::const_key_iterator olditer = homologies.key_end();
 | 
|---|
| 204 |   for (HomologyContainer::const_key_iterator iter =
 | 
|---|
| 205 |       homologies.key_begin(); iter != homologies.key_end();
 | 
|---|
| 206 |       iter = homologies.getNextKey(iter)) {
 | 
|---|
| 207 |     // if it's the same as the old one, skip it
 | 
|---|
| 208 |     if (olditer == iter)
 | 
|---|
| 209 |       continue;
 | 
|---|
| 210 |     else
 | 
|---|
| 211 |       olditer = iter;
 | 
|---|
| 212 |     // check whether we have the same set of atomic numbers
 | 
|---|
| 213 |     const HomologyGraph::nodes_t &nodes = (*iter).getNodes();
 | 
|---|
| 214 |     Extractors::elementcounts_t nodes_counts_per_element;
 | 
|---|
| 215 |     for (HomologyGraph::nodes_t::const_iterator nodeiter = nodes.begin();
 | 
|---|
| 216 |         nodeiter != nodes.end(); ++nodeiter) {
 | 
|---|
| 217 |       const Extractors::element_t elem = nodeiter->first.getAtomicNumber();
 | 
|---|
| 218 |       const std::pair<Extractors::elementcounts_t::iterator, bool> inserter =
 | 
|---|
| 219 |           nodes_counts_per_element.insert( std::make_pair(elem, (Extractors::count_t)nodeiter->second ) );
 | 
|---|
| 220 |       if (!inserter.second)
 | 
|---|
| 221 |         inserter.first->second += (Extractors::count_t)nodeiter->second;
 | 
|---|
| 222 |     }
 | 
|---|
| 223 |     LOG(1, "DEBUG: Node (" << *iter << ")'s counts_per_element is " << nodes_counts_per_element << ".");
 | 
|---|
| 224 |     if (counts_per_element == nodes_counts_per_element)
 | 
|---|
| 225 |       return *iter;
 | 
|---|
| 226 |   }
 | 
|---|
| 227 |   return HomologyGraph();
 | 
|---|
| 228 | }
 | 
|---|
| 229 | 
 | 
|---|
| 230 | SerializablePotential::ParticleTypes_t PotentialTrainer::getNumbersFromElements(
 | 
|---|
| 231 |     const std::vector<const element *> &fragment)
 | 
|---|
| 232 | {
 | 
|---|
| 233 |   SerializablePotential::ParticleTypes_t fragmentnumbers;
 | 
|---|
| 234 |   std::transform(fragment.begin(), fragment.end(), std::back_inserter(fragmentnumbers),
 | 
|---|
| 235 |       boost::bind(&element::getAtomicNumber, _1));
 | 
|---|
| 236 |   return fragmentnumbers;
 | 
|---|
| 237 | }
 | 
|---|