| [98d166] | 1 | /*
|
|---|
| 2 | * Project: MoleCuilder
|
|---|
| 3 | * Description: creates and alters molecular systems
|
|---|
| 4 | * Copyright (C) 2014 Frederik Heber. All rights reserved.
|
|---|
| 5 | *
|
|---|
| 6 | *
|
|---|
| 7 | * This file is part of MoleCuilder.
|
|---|
| 8 | *
|
|---|
| 9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
|---|
| 10 | * it under the terms of the GNU General Public License as published by
|
|---|
| 11 | * the Free Software Foundation, either version 2 of the License, or
|
|---|
| 12 | * (at your option) any later version.
|
|---|
| 13 | *
|
|---|
| 14 | * MoleCuilder is distributed in the hope that it will be useful,
|
|---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 17 | * GNU General Public License for more details.
|
|---|
| 18 | *
|
|---|
| 19 | * You should have received a copy of the GNU General Public License
|
|---|
| 20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
|---|
| 21 | */
|
|---|
| 22 |
|
|---|
| 23 | /*
|
|---|
| 24 | * PotentialTrainer.cpp
|
|---|
| 25 | *
|
|---|
| 26 | * Created on: Sep 11, 2014
|
|---|
| 27 | * Author: heber
|
|---|
| 28 | */
|
|---|
| 29 |
|
|---|
| 30 | // include config.h
|
|---|
| 31 | #ifdef HAVE_CONFIG_H
|
|---|
| 32 | #include <config.h>
|
|---|
| 33 | #endif
|
|---|
| 34 |
|
|---|
| 35 | // needs to come before MemDebug due to placement new
|
|---|
| 36 | #include <boost/archive/text_iarchive.hpp>
|
|---|
| 37 |
|
|---|
| [9eb71b3] | 38 | //#include "CodePatterns/MemDebug.hpp"
|
|---|
| [98d166] | 39 |
|
|---|
| 40 | #include "PotentialTrainer.hpp"
|
|---|
| 41 |
|
|---|
| 42 | #include <algorithm>
|
|---|
| 43 | #include <boost/lambda/lambda.hpp>
|
|---|
| 44 | #include <boost/filesystem.hpp>
|
|---|
| 45 | #include <fstream>
|
|---|
| 46 | #include <sstream>
|
|---|
| 47 |
|
|---|
| 48 | #include "CodePatterns/Assert.hpp"
|
|---|
| 49 | #include "CodePatterns/Log.hpp"
|
|---|
| 50 |
|
|---|
| 51 | #include "Element/element.hpp"
|
|---|
| 52 | #include "Fragmentation/Homology/HomologyContainer.hpp"
|
|---|
| 53 | #include "Fragmentation/Homology/HomologyGraph.hpp"
|
|---|
| 54 | #include "FunctionApproximation/Extractors.hpp"
|
|---|
| 55 | #include "FunctionApproximation/FunctionApproximation.hpp"
|
|---|
| 56 | #include "FunctionApproximation/FunctionModel.hpp"
|
|---|
| 57 | #include "FunctionApproximation/TrainingData.hpp"
|
|---|
| 58 | #include "FunctionApproximation/writeDistanceEnergyTable.hpp"
|
|---|
| 59 | #include "Potentials/CompoundPotential.hpp"
|
|---|
| [fde8e7] | 60 | #include "Potentials/RegistrySerializer.hpp"
|
|---|
| [98d166] | 61 | #include "Potentials/SerializablePotential.hpp"
|
|---|
| 62 |
|
|---|
| 63 | PotentialTrainer::PotentialTrainer()
|
|---|
| 64 | {}
|
|---|
| 65 |
|
|---|
| 66 | PotentialTrainer::~PotentialTrainer()
|
|---|
| 67 | {}
|
|---|
| 68 |
|
|---|
| 69 | bool PotentialTrainer::operator()(
|
|---|
| 70 | const HomologyContainer &_homologies,
|
|---|
| 71 | const HomologyGraph &_graph,
|
|---|
| 72 | const boost::filesystem::path &_trainingfile,
|
|---|
| [82e5fb] | 73 | const boost::filesystem::path &_errorfile,
|
|---|
| [b40690] | 74 | const unsigned int _maxiterations,
|
|---|
| [98d166] | 75 | const double _threshold,
|
|---|
| 76 | const unsigned int _best_of_howmany) const
|
|---|
| 77 | {
|
|---|
| 78 | // fit potential
|
|---|
| [3400bb] | 79 | CompoundPotential compound(_graph);
|
|---|
| 80 | FunctionModel &model = assert_cast<FunctionModel &>(compound);
|
|---|
| [98d166] | 81 |
|
|---|
| [3400bb] | 82 | if (compound.begin() == compound.end()) {
|
|---|
| 83 | ELOG(1, "Could not find any suitable potentials for the compound potential.");
|
|---|
| 84 | return false;
|
|---|
| [29ce5f] | 85 | }
|
|---|
| 86 |
|
|---|
| [98d166] | 87 | /******************** TRAINING ********************/
|
|---|
| 88 | // fit potential
|
|---|
| [3400bb] | 89 | FunctionModel::parameters_t bestparams(model.getParameterDimension(), 0.);
|
|---|
| [98d166] | 90 | {
|
|---|
| 91 | // Afterwards we go through all of this type and gather the distance and the energy value
|
|---|
| [3400bb] | 92 | TrainingData data(model.getSpecificFilter());
|
|---|
| [98d166] | 93 | data(_homologies.getHomologousGraphs(_graph));
|
|---|
| 94 |
|
|---|
| [d33f24] | 95 | // check data
|
|---|
| 96 | const TrainingData::FilteredInputVector_t &inputs = data.getTrainingInputs();
|
|---|
| 97 | for (TrainingData::FilteredInputVector_t::const_iterator iter = inputs.begin();
|
|---|
| 98 | iter != inputs.end(); ++iter)
|
|---|
| 99 | if (((*iter).empty()) || ((*iter).front().empty())) {
|
|---|
| 100 | ELOG(1, "At least one of the training inputs is empty! Correct fragment and potential charges selected?");
|
|---|
| 101 | return false;
|
|---|
| 102 | }
|
|---|
| 103 | const TrainingData::OutputVector_t &outputs = data.getTrainingOutputs();
|
|---|
| 104 | for (TrainingData::OutputVector_t::const_iterator iter = outputs.begin();
|
|---|
| 105 | iter != outputs.end(); ++iter)
|
|---|
| 106 | if ((*iter).empty()) {
|
|---|
| 107 | ELOG(1, "At least one of the training outputs is empty! Correct fragment and potential charges selected?");
|
|---|
| 108 | return false;
|
|---|
| 109 | }
|
|---|
| 110 |
|
|---|
| [98d166] | 111 | // print distances and energies if desired for debugging
|
|---|
| 112 | if (!data.getTrainingInputs().empty()) {
|
|---|
| 113 | // print which distance is which
|
|---|
| 114 | size_t counter=1;
|
|---|
| 115 | if (DoLog(3)) {
|
|---|
| 116 | const FunctionModel::arguments_t &inputs = data.getAllArguments()[0];
|
|---|
| 117 | for (FunctionModel::arguments_t::const_iterator iter = inputs.begin();
|
|---|
| 118 | iter != inputs.end(); ++iter) {
|
|---|
| 119 | const argument_t &arg = *iter;
|
|---|
| 120 | LOG(3, "DEBUG: distance " << counter++ << " is between (#"
|
|---|
| 121 | << arg.indices.first << "c" << arg.types.first << ","
|
|---|
| 122 | << arg.indices.second << "c" << arg.types.second << ").");
|
|---|
| 123 | }
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | // print table
|
|---|
| 127 | if (_trainingfile.string().empty()) {
|
|---|
| 128 | LOG(3, "DEBUG: I gathered the following training data:\n" <<
|
|---|
| 129 | _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable()));
|
|---|
| 130 | } else {
|
|---|
| 131 | std::ofstream trainingstream(_trainingfile.string().c_str());
|
|---|
| 132 | if (trainingstream.good()) {
|
|---|
| 133 | LOG(3, "DEBUG: Writing training data to file " <<
|
|---|
| 134 | _trainingfile.string() << ".");
|
|---|
| 135 | trainingstream << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable());
|
|---|
| 136 | }
|
|---|
| 137 | trainingstream.close();
|
|---|
| 138 | }
|
|---|
| 139 | }
|
|---|
| 140 |
|
|---|
| 141 | if ((_threshold < 1.) && (_best_of_howmany))
|
|---|
| 142 | ELOG(2, "threshold parameter always overrules max_runs, both are specified.");
|
|---|
| 143 | // now perform the function approximation by optimizing the model function
|
|---|
| [3400bb] | 144 | FunctionApproximation approximator(data, model, _threshold, _maxiterations);
|
|---|
| 145 | if (model.isBoxConstraint() && approximator.checkParameterDerivatives()) {
|
|---|
| [98d166] | 146 | double l2error = std::numeric_limits<double>::max();
|
|---|
| 147 | // seed with current time
|
|---|
| 148 | srand((unsigned)time(0));
|
|---|
| 149 | unsigned int runs=0;
|
|---|
| 150 | // threshold overrules max_runs
|
|---|
| 151 | const double threshold = _threshold;
|
|---|
| [20fc6f] | 152 | const unsigned int max_runs = (threshold >= 1.) ? _best_of_howmany : std::numeric_limits<unsigned int>::max();
|
|---|
| [98d166] | 153 | LOG(1, "INFO: Maximum runs is " << max_runs << " and threshold set to " << threshold << ".");
|
|---|
| 154 | do {
|
|---|
| 155 | // generate new random initial parameter values
|
|---|
| [3400bb] | 156 | model.setParametersToRandomInitialValues(data);
|
|---|
| [98d166] | 157 | LOG(1, "INFO: Initial parameters of run " << runs << " are "
|
|---|
| [3400bb] | 158 | << model.getParameters() << ".");
|
|---|
| [98d166] | 159 | approximator(FunctionApproximation::ParameterDerivative);
|
|---|
| 160 | LOG(1, "INFO: Final parameters of run " << runs << " are "
|
|---|
| [3400bb] | 161 | << model.getParameters() << ".");
|
|---|
| 162 | const double new_l2error = data.getL2Error(model);
|
|---|
| [98d166] | 163 | if (new_l2error < l2error) {
|
|---|
| 164 | // store currently best parameters
|
|---|
| 165 | l2error = new_l2error;
|
|---|
| [3400bb] | 166 | bestparams = model.getParameters();
|
|---|
| [98d166] | 167 | LOG(1, "STATUS: New fit from run " << runs
|
|---|
| 168 | << " has better error of " << l2error << ".");
|
|---|
| 169 | }
|
|---|
| [20fc6f] | 170 | } while (( ++runs < max_runs) && (l2error > threshold));
|
|---|
| [98d166] | 171 | // reset parameters from best fit
|
|---|
| [3400bb] | 172 | model.setParameters(bestparams);
|
|---|
| [98d166] | 173 | LOG(1, "INFO: Best parameters with L2 error of "
|
|---|
| [3400bb] | 174 | << l2error << " are " << model.getParameters() << ".");
|
|---|
| [98d166] | 175 | } else {
|
|---|
| 176 | return false;
|
|---|
| 177 | }
|
|---|
| 178 |
|
|---|
| 179 | // create a map of each fragment with error.
|
|---|
| 180 | HomologyContainer::range_t fragmentrange = _homologies.getHomologousGraphs(_graph);
|
|---|
| 181 | TrainingData::L2ErrorConfigurationIndexMap_t WorseFragmentMap =
|
|---|
| [3400bb] | 182 | data.getWorstFragmentMap(model, fragmentrange);
|
|---|
| [82e5fb] | 183 | if (_errorfile.string().empty()) {
|
|---|
| 184 | LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << ".");
|
|---|
| 185 | } else {
|
|---|
| 186 | std::ofstream errorstream(_errorfile.string().c_str());
|
|---|
| 187 | if (errorstream.good()) {
|
|---|
| 188 | LOG(3, "DEBUG: Writing error data to file " <<
|
|---|
| 189 | _errorfile.string() << ".");
|
|---|
| 190 | errorstream << "step\terror" << std::endl;
|
|---|
| 191 | // resort into step as key
|
|---|
| 192 | typedef std::map< size_t, double > step_error_t;
|
|---|
| 193 | step_error_t step_error;
|
|---|
| 194 | for (TrainingData::L2ErrorConfigurationIndexMap_t::const_reverse_iterator iter = WorseFragmentMap.rbegin();
|
|---|
| 195 | iter != WorseFragmentMap.rend(); ++iter)
|
|---|
| 196 | step_error.insert( std::make_pair(iter->second, iter->first) );
|
|---|
| 197 | for (step_error_t::const_iterator iter = step_error.begin();
|
|---|
| 198 | iter != step_error.end(); ++iter)
|
|---|
| 199 | errorstream << iter->first << "\t" << iter->second << std::endl;
|
|---|
| 200 | }
|
|---|
| 201 | errorstream.close();
|
|---|
| 202 | }
|
|---|
| [98d166] | 203 | }
|
|---|
| 204 |
|
|---|
| 205 | return true;
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | HomologyGraph PotentialTrainer::getFirstGraphwithSpecifiedElements(
|
|---|
| 209 | const HomologyContainer &homologies,
|
|---|
| 210 | const SerializablePotential::ParticleTypes_t &types)
|
|---|
| 211 | {
|
|---|
| 212 | ASSERT( !types.empty(),
|
|---|
| 213 | "getFirstGraphwithSpecifiedElements() - charges is empty?");
|
|---|
| [c5e75f3] | 214 |
|
|---|
| [98d166] | 215 | // convert into count map
|
|---|
| [c5e75f3] | 216 | Extractors::elementcounts_t counts_per_element =
|
|---|
| 217 | Extractors::_detail::getElementCounts(types);
|
|---|
| 218 | ASSERT( !counts_per_element.empty(),
|
|---|
| 219 | "getFirstGraphwithSpecifiedElements() - element counts are empty?");
|
|---|
| 220 | LOG(1, "DEBUG: counts_per_element is " << counts_per_element << ".");
|
|---|
| [98d166] | 221 | // we want to check each (unique) key only once
|
|---|
| 222 | HomologyContainer::const_key_iterator olditer = homologies.key_end();
|
|---|
| 223 | for (HomologyContainer::const_key_iterator iter =
|
|---|
| [e63edb] | 224 | homologies.key_begin(); iter != homologies.key_end();
|
|---|
| 225 | iter = homologies.getNextKey(iter)) {
|
|---|
| [98d166] | 226 | // if it's the same as the old one, skip it
|
|---|
| [e63edb] | 227 | if (olditer == iter)
|
|---|
| [98d166] | 228 | continue;
|
|---|
| [e63edb] | 229 | else
|
|---|
| 230 | olditer = iter;
|
|---|
| [945797] | 231 | // check whether we have the same set of atomic numbers
|
|---|
| 232 | const HomologyGraph::nodes_t &nodes = (*iter).getNodes();
|
|---|
| [c5e75f3] | 233 | Extractors::elementcounts_t nodes_counts_per_element;
|
|---|
| [945797] | 234 | for (HomologyGraph::nodes_t::const_iterator nodeiter = nodes.begin();
|
|---|
| 235 | nodeiter != nodes.end(); ++nodeiter) {
|
|---|
| 236 | const Extractors::element_t elem = nodeiter->first.getAtomicNumber();
|
|---|
| 237 | const std::pair<Extractors::elementcounts_t::iterator, bool> inserter =
|
|---|
| [c5e75f3] | 238 | nodes_counts_per_element.insert( std::make_pair(elem, (Extractors::count_t)nodeiter->second ) );
|
|---|
| [945797] | 239 | if (!inserter.second)
|
|---|
| 240 | inserter.first->second += (Extractors::count_t)nodeiter->second;
|
|---|
| 241 | }
|
|---|
| [c5e75f3] | 242 | LOG(1, "DEBUG: Node (" << *iter << ")'s counts_per_element is " << nodes_counts_per_element << ".");
|
|---|
| 243 | if (counts_per_element == nodes_counts_per_element)
|
|---|
| [98d166] | 244 | return *iter;
|
|---|
| 245 | }
|
|---|
| 246 | return HomologyGraph();
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 | SerializablePotential::ParticleTypes_t PotentialTrainer::getNumbersFromElements(
|
|---|
| 250 | const std::vector<const element *> &fragment)
|
|---|
| 251 | {
|
|---|
| 252 | SerializablePotential::ParticleTypes_t fragmentnumbers;
|
|---|
| 253 | std::transform(fragment.begin(), fragment.end(), std::back_inserter(fragmentnumbers),
|
|---|
| 254 | boost::bind(&element::getAtomicNumber, _1));
|
|---|
| 255 | return fragmentnumbers;
|
|---|
| 256 | }
|
|---|