| 1 | /* | 
|---|
| 2 | * gslmatrix.cpp | 
|---|
| 3 | * | 
|---|
| 4 | *  Created on: Jan 8, 2010 | 
|---|
| 5 | *      Author: heber | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "Helpers/MemDebug.hpp" | 
|---|
| 9 |  | 
|---|
| 10 | using namespace std; | 
|---|
| 11 |  | 
|---|
| 12 | #include "LinearAlgebra/gslmatrix.hpp" | 
|---|
| 13 | #include "Helpers/helpers.hpp" | 
|---|
| 14 | #include "Helpers/fast_functions.hpp" | 
|---|
| 15 |  | 
|---|
| 16 | #include <cassert> | 
|---|
| 17 | #include <gsl/gsl_linalg.h> | 
|---|
| 18 |  | 
|---|
| 19 | /** Constructor of class GSLMatrix. | 
|---|
| 20 | * Allocates GSL structures | 
|---|
| 21 | * \param m dimension of matrix | 
|---|
| 22 | */ | 
|---|
| 23 | GSLMatrix::GSLMatrix(size_t m, size_t n) : rows(m), columns(n) | 
|---|
| 24 | { | 
|---|
| 25 | matrix = gsl_matrix_calloc(rows, columns); | 
|---|
| 26 | }; | 
|---|
| 27 |  | 
|---|
| 28 | /** Copy constructor of class GSLMatrix. | 
|---|
| 29 | * Allocates GSL structures and copies components from \a *src. | 
|---|
| 30 | * \param *src source matrix | 
|---|
| 31 | */ | 
|---|
| 32 | GSLMatrix::GSLMatrix(const GSLMatrix * const src) : rows(src->rows), columns(src->columns) | 
|---|
| 33 | { | 
|---|
| 34 | matrix = gsl_matrix_alloc(rows, columns); | 
|---|
| 35 | gsl_matrix_memcpy (matrix, src->matrix); | 
|---|
| 36 | }; | 
|---|
| 37 |  | 
|---|
| 38 | /** Destructor of class GSLMatrix. | 
|---|
| 39 | * Frees GSL structures | 
|---|
| 40 | */ | 
|---|
| 41 | GSLMatrix::~GSLMatrix() | 
|---|
| 42 | { | 
|---|
| 43 | gsl_matrix_free(matrix); | 
|---|
| 44 | rows = 0; | 
|---|
| 45 | columns = 0; | 
|---|
| 46 | }; | 
|---|
| 47 |  | 
|---|
| 48 | /** Assignment operator. | 
|---|
| 49 | * \param &rhs right hand side | 
|---|
| 50 | * \return object itself | 
|---|
| 51 | */ | 
|---|
| 52 | GSLMatrix& GSLMatrix::operator=(const GSLMatrix& rhs) | 
|---|
| 53 | { | 
|---|
| 54 | if (this == &rhs)   // not necessary here, but identity assignment check is generally a good idea | 
|---|
| 55 | return *this; | 
|---|
| 56 | assert(rows == rhs.rows && columns == rhs.columns && "Number of rows and columns do not match!"); | 
|---|
| 57 |  | 
|---|
| 58 | gsl_matrix_memcpy (matrix, rhs.matrix); | 
|---|
| 59 |  | 
|---|
| 60 | return *this; | 
|---|
| 61 | }; | 
|---|
| 62 |  | 
|---|
| 63 | /* ============================ Accessing =============================== */ | 
|---|
| 64 | /** This function sets the matrix from a double array. | 
|---|
| 65 | * Creates a matrix view of the array and performs a memcopy. | 
|---|
| 66 | * \param *x array of values (no dimension check is performed) | 
|---|
| 67 | */ | 
|---|
| 68 | void GSLMatrix::SetFromDoubleArray(double * x) | 
|---|
| 69 | { | 
|---|
| 70 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns); | 
|---|
| 71 | gsl_matrix_memcpy (matrix, &m.matrix); | 
|---|
| 72 | }; | 
|---|
| 73 |  | 
|---|
| 74 | /** This function returns the i-th element of a matrix. | 
|---|
| 75 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and 0 is returned. | 
|---|
| 76 | * \param m row index | 
|---|
| 77 | * \param n colum index | 
|---|
| 78 | * \return (m,n)-th element of matrix | 
|---|
| 79 | */ | 
|---|
| 80 | double GSLMatrix::Get(size_t m, size_t n) | 
|---|
| 81 | { | 
|---|
| 82 | return gsl_matrix_get (matrix, m, n); | 
|---|
| 83 | }; | 
|---|
| 84 |  | 
|---|
| 85 | /** This function sets the value of the \a m -th element of a matrix to \a x. | 
|---|
| 86 | *  If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked. | 
|---|
| 87 | * \param m row index | 
|---|
| 88 | * \param m column index | 
|---|
| 89 | * \param x value to set element (m,n) to | 
|---|
| 90 | */ | 
|---|
| 91 | void GSLMatrix::Set(size_t m, size_t n, double x) | 
|---|
| 92 | { | 
|---|
| 93 | gsl_matrix_set (matrix, m, n, x); | 
|---|
| 94 | }; | 
|---|
| 95 |  | 
|---|
| 96 | /** These functions return a pointer to the \a m-th element of a matrix. | 
|---|
| 97 | *  If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned. | 
|---|
| 98 | * \param m index | 
|---|
| 99 | * \return pointer to \a m-th element | 
|---|
| 100 | */ | 
|---|
| 101 | double *GSLMatrix::Pointer(size_t m, size_t n) | 
|---|
| 102 | { | 
|---|
| 103 | return gsl_matrix_ptr (matrix, m, n); | 
|---|
| 104 | }; | 
|---|
| 105 |  | 
|---|
| 106 | /** These functions return a constant pointer to the \a m-th element of a matrix. | 
|---|
| 107 | *  If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned. | 
|---|
| 108 | * \param m index | 
|---|
| 109 | * \return const pointer to \a m-th element | 
|---|
| 110 | */ | 
|---|
| 111 | const double *GSLMatrix::const_Pointer(size_t m, size_t n) | 
|---|
| 112 | { | 
|---|
| 113 | return gsl_matrix_const_ptr (matrix, m, n); | 
|---|
| 114 | }; | 
|---|
| 115 |  | 
|---|
| 116 | /* ========================== Initializing =============================== */ | 
|---|
| 117 | /** This function sets all the elements of the matrix to the value \a x. | 
|---|
| 118 | * \param *x | 
|---|
| 119 | */ | 
|---|
| 120 | void GSLMatrix::SetAll(double x) | 
|---|
| 121 | { | 
|---|
| 122 | gsl_matrix_set_all (matrix, x); | 
|---|
| 123 | }; | 
|---|
| 124 |  | 
|---|
| 125 | /** This function sets all the elements of the matrix to zero. | 
|---|
| 126 | */ | 
|---|
| 127 | void GSLMatrix::SetZero() | 
|---|
| 128 | { | 
|---|
| 129 | gsl_matrix_set_zero (matrix); | 
|---|
| 130 | }; | 
|---|
| 131 |  | 
|---|
| 132 | /** This function sets the elements of the matrix to the corresponding elements of the identity matrix, \f$m(i,j) = \delta(i,j)\f$, i.e. a unit diagonal with all off-diagonal elements zero. | 
|---|
| 133 | * This applies to both square and rectangular matrices. | 
|---|
| 134 | */ | 
|---|
| 135 | void GSLMatrix::SetIdentity() | 
|---|
| 136 | { | 
|---|
| 137 | gsl_matrix_set_identity (matrix); | 
|---|
| 138 | }; | 
|---|
| 139 |  | 
|---|
| 140 | /* ====================== Exchanging elements ============================ */ | 
|---|
| 141 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place. | 
|---|
| 142 | * \param i i-th row to swap with ... | 
|---|
| 143 | * \param j ... j-th row to swap against | 
|---|
| 144 | */ | 
|---|
| 145 | bool GSLMatrix::SwapRows(size_t i, size_t j) | 
|---|
| 146 | { | 
|---|
| 147 | return (gsl_matrix_swap_rows (matrix, i, j) == GSL_SUCCESS); | 
|---|
| 148 | }; | 
|---|
| 149 |  | 
|---|
| 150 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place. | 
|---|
| 151 | * \param i i-th column to swap with ... | 
|---|
| 152 | * \param j ... j-th column to swap against | 
|---|
| 153 | */ | 
|---|
| 154 | bool GSLMatrix::SwapColumns(size_t i, size_t j) | 
|---|
| 155 | { | 
|---|
| 156 | return (gsl_matrix_swap_columns (matrix, i, j) == GSL_SUCCESS); | 
|---|
| 157 | }; | 
|---|
| 158 |  | 
|---|
| 159 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place. | 
|---|
| 160 | * The matrix must be square for this operation to be possible. | 
|---|
| 161 | * \param i i-th row to swap with ... | 
|---|
| 162 | * \param j ... j-th column to swap against | 
|---|
| 163 | */ | 
|---|
| 164 | bool GSLMatrix::SwapRowColumn(size_t i, size_t j) | 
|---|
| 165 | { | 
|---|
| 166 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible."); | 
|---|
| 167 | return (gsl_matrix_swap_rowcol (matrix, i, j) == GSL_SUCCESS); | 
|---|
| 168 | }; | 
|---|
| 169 |  | 
|---|
| 170 | /** This function transposes the matrix. | 
|---|
| 171 | * Note that the function is extended to the non-square case, where the matrix is re-allocated and copied. | 
|---|
| 172 | */ | 
|---|
| 173 | bool GSLMatrix::Transpose() | 
|---|
| 174 | { | 
|---|
| 175 | if (rows == columns)// if square, use GSL | 
|---|
| 176 | return (gsl_matrix_transpose (matrix) == GSL_SUCCESS); | 
|---|
| 177 | else { // otherwise we have to copy a bit | 
|---|
| 178 | gsl_matrix *dest = gsl_matrix_alloc(columns, rows); | 
|---|
| 179 | for (size_t i=0;i<rows; i++) | 
|---|
| 180 | for (size_t j=0;j<columns;j++) { | 
|---|
| 181 | gsl_matrix_set(dest, j,i, gsl_matrix_get(matrix, i,j) ); | 
|---|
| 182 | } | 
|---|
| 183 | gsl_matrix_free(matrix); | 
|---|
| 184 | matrix = dest; | 
|---|
| 185 | flip(rows, columns); | 
|---|
| 186 | return true; | 
|---|
| 187 | } | 
|---|
| 188 | }; | 
|---|
| 189 |  | 
|---|
| 190 | /* ============================ Properties ============================== */ | 
|---|
| 191 | /** Checks whether matrix' elements are strictly null. | 
|---|
| 192 | * \return true - is null, false - else | 
|---|
| 193 | */ | 
|---|
| 194 | bool GSLMatrix::IsNull() | 
|---|
| 195 | { | 
|---|
| 196 | return gsl_matrix_isnull (matrix); | 
|---|
| 197 | }; | 
|---|
| 198 |  | 
|---|
| 199 | /** Checks whether matrix' elements are strictly positive. | 
|---|
| 200 | * \return true - is positive, false - else | 
|---|
| 201 | */ | 
|---|
| 202 | bool GSLMatrix::IsPositive() | 
|---|
| 203 | { | 
|---|
| 204 | return gsl_matrix_ispos (matrix); | 
|---|
| 205 | }; | 
|---|
| 206 |  | 
|---|
| 207 | /** Checks whether matrix' elements are strictly negative. | 
|---|
| 208 | * \return true - is negative, false - else | 
|---|
| 209 | */ | 
|---|
| 210 | bool GSLMatrix::IsNegative() | 
|---|
| 211 | { | 
|---|
| 212 | return gsl_matrix_isneg (matrix); | 
|---|
| 213 | }; | 
|---|
| 214 |  | 
|---|
| 215 | /** Checks whether matrix' elements are strictly non-negative. | 
|---|
| 216 | * \return true - is non-negative, false - else | 
|---|
| 217 | */ | 
|---|
| 218 | bool GSLMatrix::IsNonNegative() | 
|---|
| 219 | { | 
|---|
| 220 | return gsl_matrix_isnonneg (matrix); | 
|---|
| 221 | }; | 
|---|
| 222 |  | 
|---|
| 223 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite. | 
|---|
| 224 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite. | 
|---|
| 225 | * \return true - matrix is positive-definite, false - else | 
|---|
| 226 | */ | 
|---|
| 227 | bool GSLMatrix::IsPositiveDefinite() | 
|---|
| 228 | { | 
|---|
| 229 | if (rows != columns)  // only possible for square matrices. | 
|---|
| 230 | return false; | 
|---|
| 231 | else | 
|---|
| 232 | return (gsl_linalg_cholesky_decomp (matrix) != GSL_EDOM); | 
|---|
| 233 | }; | 
|---|
| 234 |  | 
|---|
| 235 |  | 
|---|
| 236 | /** Calculates the determinant of the matrix. | 
|---|
| 237 | * if matrix is square, uses LU decomposition. | 
|---|
| 238 | */ | 
|---|
| 239 | double GSLMatrix::Determinant() | 
|---|
| 240 | { | 
|---|
| 241 | int signum = 0; | 
|---|
| 242 | assert (rows == columns && "Determinant can only be calculated for square matrices."); | 
|---|
| 243 | gsl_permutation *p = gsl_permutation_alloc(rows); | 
|---|
| 244 | gsl_linalg_LU_decomp(matrix, p, &signum); | 
|---|
| 245 | gsl_permutation_free(p); | 
|---|
| 246 | return gsl_linalg_LU_det(matrix, signum); | 
|---|
| 247 | }; | 
|---|
| 248 |  | 
|---|