| 1 | /* | 
|---|
| 2 | * TrainingData.hpp | 
|---|
| 3 | * | 
|---|
| 4 | *  Created on: 15.10.2012 | 
|---|
| 5 | *      Author: heber | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef TRAININGDATA_HPP_ | 
|---|
| 9 | #define TRAININGDATA_HPP_ | 
|---|
| 10 |  | 
|---|
| 11 | // include config.h | 
|---|
| 12 | #ifdef HAVE_CONFIG_H | 
|---|
| 13 | #include <config.h> | 
|---|
| 14 | #endif | 
|---|
| 15 |  | 
|---|
| 16 | #include <iosfwd> | 
|---|
| 17 | #include <boost/function.hpp> | 
|---|
| 18 |  | 
|---|
| 19 | #include "Fragmentation/Homology/HomologyContainer.hpp" | 
|---|
| 20 | #include "FunctionApproximation/FunctionApproximation.hpp" | 
|---|
| 21 | #include "FunctionApproximation/FunctionModel.hpp" | 
|---|
| 22 |  | 
|---|
| 23 | /** This class encapsulates the training data for a given potential function | 
|---|
| 24 | * to learn. | 
|---|
| 25 | * | 
|---|
| 26 | * The data is added piece-wise by calling the operator() with a specific | 
|---|
| 27 | * Fragment. | 
|---|
| 28 | * | 
|---|
| 29 | * TrainingData::operator() takes the set of all possible pair-wise  distances | 
|---|
| 30 | * (InputVector_t) and transforms it via the given filter into a list of subsets | 
|---|
| 31 | * of distances (FilteredInputVector_t) that is feedable to the model. | 
|---|
| 32 | * | 
|---|
| 33 | */ | 
|---|
| 34 | class TrainingData | 
|---|
| 35 | { | 
|---|
| 36 | public: | 
|---|
| 37 | //!> typedef for a range within the HomologyContainer at which fragments to look at | 
|---|
| 38 | typedef std::pair< | 
|---|
| 39 | HomologyContainer::const_iterator, | 
|---|
| 40 | HomologyContainer::const_iterator> range_t; | 
|---|
| 41 | //!> Training tuple input vector pair | 
|---|
| 42 | typedef FunctionApproximation::inputs_t InputVector_t; | 
|---|
| 43 | //!> Training tuple modified input vector pair | 
|---|
| 44 | typedef FunctionApproximation::filtered_inputs_t FilteredInputVector_t; | 
|---|
| 45 | //!> Training tuple output vector pair | 
|---|
| 46 | typedef FunctionApproximation::outputs_t OutputVector_t; | 
|---|
| 47 | //!> Typedef for a table with columns of all distances and the energy | 
|---|
| 48 | typedef std::vector< std::vector<double> > DistanceEnergyTable_t; | 
|---|
| 49 | //!> Typedef for a map of each fragment with error. | 
|---|
| 50 | typedef std::multimap< double, size_t > L2ErrorConfigurationIndexMap_t; | 
|---|
| 51 |  | 
|---|
| 52 | public: | 
|---|
| 53 | /** Constructor for class TrainingData. | 
|---|
| 54 | * | 
|---|
| 55 | */ | 
|---|
| 56 | explicit TrainingData(const FunctionModel::filter_t &_filter) : | 
|---|
| 57 | filter(_filter) | 
|---|
| 58 | {} | 
|---|
| 59 |  | 
|---|
| 60 | /** Destructor for class TrainingData. | 
|---|
| 61 | * | 
|---|
| 62 | */ | 
|---|
| 63 | ~TrainingData() | 
|---|
| 64 | {} | 
|---|
| 65 |  | 
|---|
| 66 | /** We go through the given \a range of homologous fragments and call | 
|---|
| 67 | * TrainingData::filter on them in order to gather the distance and | 
|---|
| 68 | * the energy value, stored internally. | 
|---|
| 69 | * | 
|---|
| 70 | * \param range given range within a HomologyContainer of homologous fragments | 
|---|
| 71 | */ | 
|---|
| 72 | void operator()(const range_t &range); | 
|---|
| 73 |  | 
|---|
| 74 | /** Getter for const access to internal training data inputs. | 
|---|
| 75 | * | 
|---|
| 76 | * \return const ref to training tuple of input vector | 
|---|
| 77 | */ | 
|---|
| 78 | const FilteredInputVector_t& getTrainingInputs() const { | 
|---|
| 79 | return ArgumentVector; | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | /** Getter for const access to internal list of all pair-wise distances. | 
|---|
| 83 | * | 
|---|
| 84 | * \return const ref to all arguments | 
|---|
| 85 | */ | 
|---|
| 86 | const InputVector_t& getAllArguments() const { | 
|---|
| 87 | return DistanceVector; | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | /** Getter for const access to internal training data outputs. | 
|---|
| 91 | * | 
|---|
| 92 | * \return const ref to training tuple of output vector | 
|---|
| 93 | */ | 
|---|
| 94 | const OutputVector_t& getTrainingOutputs() const { | 
|---|
| 95 | return EnergyVector; | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | /** Returns the average of each component over all OutputVectors. | 
|---|
| 99 | * | 
|---|
| 100 | * This is useful for initializing the offset of the potential. | 
|---|
| 101 | * | 
|---|
| 102 | * @return average output vector | 
|---|
| 103 | */ | 
|---|
| 104 | const FunctionModel::results_t getTrainingOutputAverage() const; | 
|---|
| 105 |  | 
|---|
| 106 | /** Calculate the L2 error of a given \a model against the stored training data. | 
|---|
| 107 | * | 
|---|
| 108 | * \param model model whose L2 error to calculate | 
|---|
| 109 | * \return sum of squared differences at training tuples | 
|---|
| 110 | */ | 
|---|
| 111 | const double getL2Error(const FunctionModel &model) const; | 
|---|
| 112 |  | 
|---|
| 113 | /** Calculate the Lmax error of a given \a model against the stored training data. | 
|---|
| 114 | * | 
|---|
| 115 | * \param model model whose Lmax error to calculate | 
|---|
| 116 | * \return maximum difference over all training tuples | 
|---|
| 117 | */ | 
|---|
| 118 | const double getLMaxError(const FunctionModel &model) const; | 
|---|
| 119 |  | 
|---|
| 120 | /** Calculate the Lmax error of a given \a model against the stored training data. | 
|---|
| 121 | * | 
|---|
| 122 | * \param model model whose Lmax error to calculate | 
|---|
| 123 | * \param range given range within a HomologyContainer of homologous fragments | 
|---|
| 124 | * \return map with L2 error per configuration | 
|---|
| 125 | */ | 
|---|
| 126 | const L2ErrorConfigurationIndexMap_t getWorstFragmentMap( | 
|---|
| 127 | const FunctionModel &model, | 
|---|
| 128 | const range_t &range) const; | 
|---|
| 129 |  | 
|---|
| 130 | /** Creates a table of columns with all distances and the energy. | 
|---|
| 131 | * | 
|---|
| 132 | * \return array with first columns containing distances, last column energy | 
|---|
| 133 | */ | 
|---|
| 134 | const DistanceEnergyTable_t getDistanceEnergyTable() const; | 
|---|
| 135 |  | 
|---|
| 136 | private: | 
|---|
| 137 | // prohibit use of default constructor, as we always require extraction functor. | 
|---|
| 138 | TrainingData(); | 
|---|
| 139 |  | 
|---|
| 140 | private: | 
|---|
| 141 | //!> private training data vector | 
|---|
| 142 | InputVector_t DistanceVector; | 
|---|
| 143 | OutputVector_t EnergyVector; | 
|---|
| 144 | //!> list of all filtered arguments over all tuples | 
|---|
| 145 | FilteredInputVector_t ArgumentVector; | 
|---|
| 146 | //!> function to be used for training input data extraction from a fragment | 
|---|
| 147 | const FunctionModel::filter_t filter; | 
|---|
| 148 | }; | 
|---|
| 149 |  | 
|---|
| 150 | // print training data for debugging | 
|---|
| 151 | std::ostream &operator<<(std::ostream &out, const TrainingData &data); | 
|---|
| 152 |  | 
|---|
| 153 | #endif /* TRAININGDATA_HPP_ */ | 
|---|