| 1 | /*
 | 
|---|
| 2 |  * TrainingData.hpp
 | 
|---|
| 3 |  *
 | 
|---|
| 4 |  *  Created on: 15.10.2012
 | 
|---|
| 5 |  *      Author: heber
 | 
|---|
| 6 |  */
 | 
|---|
| 7 | 
 | 
|---|
| 8 | #ifndef TRAININGDATA_HPP_
 | 
|---|
| 9 | #define TRAININGDATA_HPP_
 | 
|---|
| 10 | 
 | 
|---|
| 11 | // include config.h
 | 
|---|
| 12 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 13 | #include <config.h>
 | 
|---|
| 14 | #endif
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #include <iosfwd>
 | 
|---|
| 17 | #include <boost/function.hpp>
 | 
|---|
| 18 | 
 | 
|---|
| 19 | #include "Fragmentation/Homology/HomologyContainer.hpp"
 | 
|---|
| 20 | #include "FunctionApproximation/FunctionApproximation.hpp"
 | 
|---|
| 21 | 
 | 
|---|
| 22 | class Fragment;
 | 
|---|
| 23 | 
 | 
|---|
| 24 | /** This class encapsulates the training data for a given potential function
 | 
|---|
| 25 |  * to learn.
 | 
|---|
| 26 |  *
 | 
|---|
| 27 |  * The data is added piece-wise by calling the operator() with a specific
 | 
|---|
| 28 |  * Fragment.
 | 
|---|
| 29 |  */
 | 
|---|
| 30 | class TrainingData
 | 
|---|
| 31 | {
 | 
|---|
| 32 | public:
 | 
|---|
| 33 |   //!> typedef for a range within the HomologyContainer at which fragments to look at
 | 
|---|
| 34 |   typedef std::pair<
 | 
|---|
| 35 |       HomologyContainer::const_iterator,
 | 
|---|
| 36 |       HomologyContainer::const_iterator> range_t;
 | 
|---|
| 37 |   //!> Training tuple input vector pair
 | 
|---|
| 38 |   typedef FunctionApproximation::inputs_t InputVector_t;
 | 
|---|
| 39 |   //!> Training tuple output vector pair
 | 
|---|
| 40 |   typedef FunctionApproximation::outputs_t OutputVector_t;
 | 
|---|
| 41 |   //!> Typedef for a function containing how to extract required information from a Fragment.
 | 
|---|
| 42 |   typedef boost::function< FunctionModel::arguments_t (const Fragment &, const size_t)> extractor_t;
 | 
|---|
| 43 |   //!> Typedef for a table with columns of all distances and the energy
 | 
|---|
| 44 |   typedef std::vector< std::vector<double> > DistanceEnergyTable_t;
 | 
|---|
| 45 | 
 | 
|---|
| 46 | public:
 | 
|---|
| 47 |   /** Constructor for class TrainingData.
 | 
|---|
| 48 |    *
 | 
|---|
| 49 |    */
 | 
|---|
| 50 |   explicit TrainingData(const extractor_t &_extractor) :
 | 
|---|
| 51 |       extractor(_extractor)
 | 
|---|
| 52 |   {}
 | 
|---|
| 53 |   /** Destructor for class TrainingData.
 | 
|---|
| 54 |    *
 | 
|---|
| 55 |    */
 | 
|---|
| 56 |   ~TrainingData()
 | 
|---|
| 57 |   {}
 | 
|---|
| 58 | 
 | 
|---|
| 59 |   /** We go through the given \a range of homologous fragments and call
 | 
|---|
| 60 |    * TrainingData::extractor on them in order to gather the distance and
 | 
|---|
| 61 |    * the energy value, stored internally.
 | 
|---|
| 62 |    *
 | 
|---|
| 63 |    * \param range given range within a HomologyContainer of homologous fragments
 | 
|---|
| 64 |    */
 | 
|---|
| 65 |   void operator()(const range_t &range);
 | 
|---|
| 66 | 
 | 
|---|
| 67 |   /** Getter for const access to internal training data inputs.
 | 
|---|
| 68 |    *
 | 
|---|
| 69 |    * \return const ref to training tuple of input vector
 | 
|---|
| 70 |    */
 | 
|---|
| 71 |   const InputVector_t& getTrainingInputs() const {
 | 
|---|
| 72 |     return DistanceVector;
 | 
|---|
| 73 |   }
 | 
|---|
| 74 | 
 | 
|---|
| 75 |   /** Getter for const access to internal training data outputs.
 | 
|---|
| 76 |    *
 | 
|---|
| 77 |    * \return const ref to training tuple of output vector
 | 
|---|
| 78 |    */
 | 
|---|
| 79 |   const OutputVector_t& getTrainingOutputs() const {
 | 
|---|
| 80 |     return EnergyVector;
 | 
|---|
| 81 |   }
 | 
|---|
| 82 | 
 | 
|---|
| 83 |   /** Calculate the L2 error of a given \a model against the stored training data.
 | 
|---|
| 84 |    *
 | 
|---|
| 85 |    * \param model model whose L2 error to calculate
 | 
|---|
| 86 |    * \return sum of squared differences at training tuples
 | 
|---|
| 87 |    */
 | 
|---|
| 88 |   const double getL2Error(const FunctionModel &model) const;
 | 
|---|
| 89 | 
 | 
|---|
| 90 |   /** Calculate the Lmax error of a given \a model against the stored training data.
 | 
|---|
| 91 |    *
 | 
|---|
| 92 |    * \param model model whose Lmax error to calculate
 | 
|---|
| 93 |    * \return maximum difference over all training tuples
 | 
|---|
| 94 |    */
 | 
|---|
| 95 |   const double getLMaxError(const FunctionModel &model) const;
 | 
|---|
| 96 | 
 | 
|---|
| 97 |   /** Creates a table of columns with all distances and the energy.
 | 
|---|
| 98 |    *
 | 
|---|
| 99 |    * \return array with first columns containing distances, last column energy
 | 
|---|
| 100 |    */
 | 
|---|
| 101 |   const DistanceEnergyTable_t getDistanceEnergyTable() const;
 | 
|---|
| 102 | 
 | 
|---|
| 103 | private:
 | 
|---|
| 104 |   // prohibit use of default constructor, as we always require extraction functor.
 | 
|---|
| 105 |   TrainingData();
 | 
|---|
| 106 | 
 | 
|---|
| 107 | private:
 | 
|---|
| 108 |   //!> private training data vector
 | 
|---|
| 109 |   InputVector_t DistanceVector;
 | 
|---|
| 110 |   OutputVector_t EnergyVector;
 | 
|---|
| 111 |   //!> function to be used for training input data extraction from a fragment
 | 
|---|
| 112 |   const extractor_t extractor;
 | 
|---|
| 113 | };
 | 
|---|
| 114 | 
 | 
|---|
| 115 | // print training data for debugging
 | 
|---|
| 116 | std::ostream &operator<<(std::ostream &out, const TrainingData &data);
 | 
|---|
| 117 | 
 | 
|---|
| 118 | #endif /* TRAININGDATA_HPP_ */
 | 
|---|