| 1 | /* | 
|---|
| 2 | * TrainingData.hpp | 
|---|
| 3 | * | 
|---|
| 4 | *  Created on: 15.10.2012 | 
|---|
| 5 | *      Author: heber | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef TRAININGDATA_HPP_ | 
|---|
| 9 | #define TRAININGDATA_HPP_ | 
|---|
| 10 |  | 
|---|
| 11 | // include config.h | 
|---|
| 12 | #ifdef HAVE_CONFIG_H | 
|---|
| 13 | #include <config.h> | 
|---|
| 14 | #endif | 
|---|
| 15 |  | 
|---|
| 16 | #include <iosfwd> | 
|---|
| 17 | #include <boost/function.hpp> | 
|---|
| 18 |  | 
|---|
| 19 | #include "Fragmentation/Homology/HomologyContainer.hpp" | 
|---|
| 20 | #include "FunctionApproximation/FunctionApproximation.hpp" | 
|---|
| 21 |  | 
|---|
| 22 | class Fragment; | 
|---|
| 23 |  | 
|---|
| 24 | /** This class encapsulates the training data for a given potential function | 
|---|
| 25 | * to learn. | 
|---|
| 26 | * | 
|---|
| 27 | * The data is added piece-wise by calling the operator() with a specific | 
|---|
| 28 | * Fragment. | 
|---|
| 29 | */ | 
|---|
| 30 | class TrainingData | 
|---|
| 31 | { | 
|---|
| 32 | public: | 
|---|
| 33 | //!> typedef for a range within the HomologyContainer at which fragments to look at | 
|---|
| 34 | typedef std::pair< | 
|---|
| 35 | HomologyContainer::const_iterator, | 
|---|
| 36 | HomologyContainer::const_iterator> range_t; | 
|---|
| 37 | //!> Training tuple input vector pair | 
|---|
| 38 | typedef FunctionApproximation::inputs_t InputVector_t; | 
|---|
| 39 | //!> Training tuple output vector pair | 
|---|
| 40 | typedef FunctionApproximation::outputs_t OutputVector_t; | 
|---|
| 41 | //!> Typedef for a function containing how to extract required information from a Fragment. | 
|---|
| 42 | typedef boost::function< FunctionModel::arguments_t (const Fragment &, const size_t)> extractor_t; | 
|---|
| 43 |  | 
|---|
| 44 | public: | 
|---|
| 45 | /** Constructor for class TrainingData. | 
|---|
| 46 | * | 
|---|
| 47 | */ | 
|---|
| 48 | explicit TrainingData(const extractor_t &_extractor) : | 
|---|
| 49 | extractor(_extractor) | 
|---|
| 50 | {} | 
|---|
| 51 | /** Destructor for class TrainingData. | 
|---|
| 52 | * | 
|---|
| 53 | */ | 
|---|
| 54 | ~TrainingData() | 
|---|
| 55 | {} | 
|---|
| 56 |  | 
|---|
| 57 | /** We go through the given \a range of homologous fragments and call | 
|---|
| 58 | * TrainingData::extractor on them in order to gather the distance and | 
|---|
| 59 | * the energy value, stored internally. | 
|---|
| 60 | * | 
|---|
| 61 | * \param range given range within a HomologyContainer of homologous fragments | 
|---|
| 62 | */ | 
|---|
| 63 | void operator()(const range_t &range); | 
|---|
| 64 |  | 
|---|
| 65 | /** Getter for const access to internal training data inputs. | 
|---|
| 66 | * | 
|---|
| 67 | * \return const ref to training tuple of input vector | 
|---|
| 68 | */ | 
|---|
| 69 | const InputVector_t& getTrainingInputs() const { | 
|---|
| 70 | return DistanceVector; | 
|---|
| 71 | } | 
|---|
| 72 |  | 
|---|
| 73 | /** Getter for const access to internal training data outputs. | 
|---|
| 74 | * | 
|---|
| 75 | * \return const ref to training tuple of output vector | 
|---|
| 76 | */ | 
|---|
| 77 | const OutputVector_t& getTrainingOutputs() const { | 
|---|
| 78 | return EnergyVector; | 
|---|
| 79 | } | 
|---|
| 80 |  | 
|---|
| 81 | /** Calculate the L2 error of a given \a model against the stored training data. | 
|---|
| 82 | * | 
|---|
| 83 | * \param model model whose L2 error to calculate | 
|---|
| 84 | * \return sum of squared differences at training tuples | 
|---|
| 85 | */ | 
|---|
| 86 | const double getL2Error(const FunctionModel &model) const; | 
|---|
| 87 |  | 
|---|
| 88 | /** Calculate the Lmax error of a given \a model against the stored training data. | 
|---|
| 89 | * | 
|---|
| 90 | * \param model model whose Lmax error to calculate | 
|---|
| 91 | * \return maximum difference over all training tuples | 
|---|
| 92 | */ | 
|---|
| 93 | const double getLMaxError(const FunctionModel &model) const; | 
|---|
| 94 |  | 
|---|
| 95 | private: | 
|---|
| 96 | // prohibit use of default constructor, as we always require extraction functor. | 
|---|
| 97 | TrainingData(); | 
|---|
| 98 |  | 
|---|
| 99 | private: | 
|---|
| 100 | //!> private training data vector | 
|---|
| 101 | InputVector_t DistanceVector; | 
|---|
| 102 | OutputVector_t EnergyVector; | 
|---|
| 103 | //!> function to be used for training input data extraction from a fragment | 
|---|
| 104 | const extractor_t extractor; | 
|---|
| 105 | }; | 
|---|
| 106 |  | 
|---|
| 107 | // print training data for debugging | 
|---|
| 108 | std::ostream &operator<<(std::ostream &out, const TrainingData &data); | 
|---|
| 109 |  | 
|---|
| 110 | #endif /* TRAININGDATA_HPP_ */ | 
|---|