/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
* Please see the COPYING file or "Copyright notice" in builder.cpp for details.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* TrainingData.cpp
*
* Created on: 15.10.2012
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "TrainingData.hpp"
#include
#include "CodePatterns/toString.hpp"
#include "Fragmentation/SetValues/Fragment.hpp"
#include "FunctionApproximation/FunctionModel.hpp"
void TrainingData::operator()(const range_t &range) {
for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
// get distance out of Fragment
const Fragment &fragment = iter->second.first;
FunctionModel::arguments_t args = extractor(
fragment,
DistanceVector.size()
);
DistanceVector.push_back( args );
const double &energy = iter->second.second;
EnergyVector.push_back( FunctionModel::results_t(1, energy) );
}
}
const double TrainingData::getL2Error(const FunctionModel &model) const
{
double L2sum = 0.;
FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
for (; initer != DistanceVector.end(); ++initer, ++outiter) {
const FunctionModel::results_t result = model((*initer));
const double temp = fabs((*outiter)[0] - result[0]);
L2sum += temp*temp;
}
return L2sum;
}
const double TrainingData::getLMaxError(const FunctionModel &model) const
{
double Lmax = 0.;
size_t maxindex = -1;
FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
for (; initer != DistanceVector.end(); ++initer, ++outiter) {
const FunctionModel::results_t result = model((*initer));
const double temp = fabs((*outiter)[0] - result[0]);
if (temp > Lmax) {
Lmax = temp;
maxindex = std::distance(
const_cast(DistanceVector).begin(),
initer
);
}
}
return Lmax;
}
std::ostream &operator<<(std::ostream &out, const TrainingData &data)
{
const TrainingData::InputVector_t &DistanceVector = data.getTrainingInputs();
const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs();
out << "(" << DistanceVector.size()
<< "," << EnergyVector.size() << ") data pairs: " << std::endl;
FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
for (; initer != DistanceVector.end(); ++initer, ++outiter) {
for (size_t index = 0; index < (*initer).size(); ++index)
out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second
<< ") " << (*initer)[index].distance;
out << " with energy ";
out << (*outiter);
out << std::endl;
}
return out;
}