| 1 | /*
 | 
|---|
| 2 |  * FunctionApproximation.hpp
 | 
|---|
| 3 |  *
 | 
|---|
| 4 |  *  Created on: 02.10.2012
 | 
|---|
| 5 |  *      Author: heber
 | 
|---|
| 6 |  */
 | 
|---|
| 7 | 
 | 
|---|
| 8 | #ifndef FUNCTIONAPPROXIMATION_HPP_
 | 
|---|
| 9 | #define FUNCTIONAPPROXIMATION_HPP_
 | 
|---|
| 10 | 
 | 
|---|
| 11 | // include config.h
 | 
|---|
| 12 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 13 | #include <config.h>
 | 
|---|
| 14 | #endif
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #include <vector>
 | 
|---|
| 17 | 
 | 
|---|
| 18 | #include "FunctionApproximation/FunctionModel.hpp"
 | 
|---|
| 19 | 
 | 
|---|
| 20 | class TrainingData;
 | 
|---|
| 21 | 
 | 
|---|
| 22 | /** This class encapsulates the solution to approximating a high-dimensional
 | 
|---|
| 23 |  * function represented by two vectors of tuples, being input variables and
 | 
|---|
| 24 |  * output of the function via a model function, manipulated by a set of
 | 
|---|
| 25 |  * parameters.
 | 
|---|
| 26 |  *
 | 
|---|
| 27 |  * \note For this reason the input and output dimension has to be given in
 | 
|---|
| 28 |  * the constructor since these are fixed parameters to the problem as a
 | 
|---|
| 29 |  * whole and usually: a different input dimension means we have a completely
 | 
|---|
| 30 |  * different problem (and hence we may as well construct and new instance of
 | 
|---|
| 31 |  * this class).
 | 
|---|
| 32 |  *
 | 
|---|
| 33 |  * The "training data", i.e. the two sets of input and output values, is
 | 
|---|
| 34 |  * given extra.
 | 
|---|
| 35 |  *
 | 
|---|
| 36 |  * The problem is then that a given high-dimensional function is supplied,
 | 
|---|
| 37 |  * the "model", and we have to fit this function via its set of variable
 | 
|---|
| 38 |  * parameters. This fitting procedure is executed via a Levenberg-Marquardt
 | 
|---|
| 39 |  * algorithm as implemented in the
 | 
|---|
| 40 |  * <a href="http://www.ics.forth.gr/~lourakis/levmar/index.html">LevMar</a>
 | 
|---|
| 41 |  * package.
 | 
|---|
| 42 |  *
 | 
|---|
| 43 |  * \section FunctionApproximation-details Details on the inner workings.
 | 
|---|
| 44 |  *
 | 
|---|
| 45 |  *  FunctionApproximation::operator() is the main function that performs the
 | 
|---|
| 46 |  *  non-linear regression. It consists of the following steps:
 | 
|---|
| 47 |  *  -# hand given (initial) parameters over to model.
 | 
|---|
| 48 |  *  -# convert output vector to format suitable to levmar
 | 
|---|
| 49 |  *  -# allocate memory for levmar to work in
 | 
|---|
| 50 |  *  -# depending on whether the model is constrained or not and whether we
 | 
|---|
| 51 |  *   have a derivative, we make use of various levmar functions with prepared
 | 
|---|
| 52 |  *   parameters.
 | 
|---|
| 53 |  *  -# memory is free'd and some final infos is given.
 | 
|---|
| 54 |  *
 | 
|---|
| 55 |  *  levmar needs to evaluate the model. To this end, FunctionApproximation has
 | 
|---|
| 56 |  *  two functions whose signatures is such as to match with the one required
 | 
|---|
| 57 |  *  by the levmar package. Hence,
 | 
|---|
| 58 |  *  -# FunctionApproximation::LevMarCallback()
 | 
|---|
| 59 |  *  -# FunctionApproximation::LevMarDerivativeCallback()
 | 
|---|
| 60 |  *  are used as callbacks by levmar only.
 | 
|---|
| 61 |  *  These hand over the current set of parameters to the model, then both bind
 | 
|---|
| 62 |  *  FunctionApproximation::evaluate() and
 | 
|---|
| 63 |  *  FunctionApproximation::evaluateDerivative(), respectively, and execute
 | 
|---|
| 64 |  *  FunctionModel::operator() or FunctionModel::parameter_derivative(),
 | 
|---|
| 65 |  *  respectively.
 | 
|---|
| 66 |  *
 | 
|---|
| 67 |  */
 | 
|---|
| 68 | class FunctionApproximation
 | 
|---|
| 69 | {
 | 
|---|
| 70 | public:
 | 
|---|
| 71 |   //!> typedef for a vector of input arguments
 | 
|---|
| 72 |   typedef std::vector<FunctionModel::arguments_t> inputs_t;
 | 
|---|
| 73 |   //!> typedef for a vector of input arguments
 | 
|---|
| 74 |   typedef std::vector<FunctionModel::list_of_arguments_t> filtered_inputs_t;
 | 
|---|
| 75 |   //!> typedef for a vector of output values
 | 
|---|
| 76 |   typedef std::vector<FunctionModel::results_t> outputs_t;
 | 
|---|
| 77 | public:
 | 
|---|
| 78 |   /** Constructor of the class FunctionApproximation.
 | 
|---|
| 79 |    *
 | 
|---|
| 80 |    * \param _data container with tuple of (input, output) values
 | 
|---|
| 81 |    * \param _model FunctionModel to use in approximation
 | 
|---|
| 82 |    * \param _precision desired precision of fit
 | 
|---|
| 83 |    * \param _maxiterations maximum number of iterations for LevMar's optimization
 | 
|---|
| 84 |    */
 | 
|---|
| 85 |   FunctionApproximation(
 | 
|---|
| 86 |       const TrainingData &_data,
 | 
|---|
| 87 |       FunctionModel &_model,
 | 
|---|
| 88 |       const double _precision,
 | 
|---|
| 89 |       const unsigned int _maxiterations);
 | 
|---|
| 90 | 
 | 
|---|
| 91 |   /** Constructor of the class FunctionApproximation.
 | 
|---|
| 92 |    *
 | 
|---|
| 93 |    * \param _input_dimension input dimension for this function approximation
 | 
|---|
| 94 |    * \param _output_dimension output dimension for this function approximation
 | 
|---|
| 95 |    * \param _model FunctionModel to use in approximation
 | 
|---|
| 96 |    */
 | 
|---|
| 97 |   FunctionApproximation(
 | 
|---|
| 98 |       const size_t &_input_dimension,
 | 
|---|
| 99 |       const size_t &_output_dimension,
 | 
|---|
| 100 |       FunctionModel &_model,
 | 
|---|
| 101 |       const double _precision,
 | 
|---|
| 102 |       const unsigned int _maxiterations) :
 | 
|---|
| 103 |     input_dimension(_input_dimension),
 | 
|---|
| 104 |     output_dimension(_output_dimension),
 | 
|---|
| 105 |     precision(_precision),
 | 
|---|
| 106 |     maxiterations(_maxiterations),
 | 
|---|
| 107 |     model(_model)
 | 
|---|
| 108 |   {}
 | 
|---|
| 109 |   /** Destructor for class FunctionApproximation.
 | 
|---|
| 110 |    *
 | 
|---|
| 111 |    */
 | 
|---|
| 112 |   ~FunctionApproximation()
 | 
|---|
| 113 |   {}
 | 
|---|
| 114 | 
 | 
|---|
| 115 |   /** Setter for the training data to be used.
 | 
|---|
| 116 |    *
 | 
|---|
| 117 |    * \param input vector of input tuples, needs to be of
 | 
|---|
| 118 |    *        FunctionApproximation::input_dimension size
 | 
|---|
| 119 |    * \param output vector of output tuples, needs to be of
 | 
|---|
| 120 |    *        FunctionApproximation::output_dimension size
 | 
|---|
| 121 |    */
 | 
|---|
| 122 |   void setTrainingData(const filtered_inputs_t &input, const outputs_t &output);
 | 
|---|
| 123 | 
 | 
|---|
| 124 |   /** Setter for the model function to be used in the approximation.
 | 
|---|
| 125 |    *
 | 
|---|
| 126 |    */
 | 
|---|
| 127 |   void setModelFunction(FunctionModel &_model);
 | 
|---|
| 128 | 
 | 
|---|
| 129 |   /** This enum steers whether we use finite differences or
 | 
|---|
| 130 |    * FunctionModel::parameter_derivative to calculate the jacobian.
 | 
|---|
| 131 |    *
 | 
|---|
| 132 |    */
 | 
|---|
| 133 |   enum JacobianMode {
 | 
|---|
| 134 |     FiniteDifferences,
 | 
|---|
| 135 |     ParameterDerivative,
 | 
|---|
| 136 |     MAXMODE
 | 
|---|
| 137 |   };
 | 
|---|
| 138 | 
 | 
|---|
| 139 |   /** This starts the fitting process, resulting in the parameters to
 | 
|---|
| 140 |    * the model function being optimized with respect to the given training
 | 
|---|
| 141 |    * data.
 | 
|---|
| 142 |    *
 | 
|---|
| 143 |    * \param mode whether to use finite differences or the parameter derivative
 | 
|---|
| 144 |    *        in calculating the jacobian
 | 
|---|
| 145 |    */
 | 
|---|
| 146 |   void operator()(const enum JacobianMode mode = FiniteDifferences);
 | 
|---|
| 147 | 
 | 
|---|
| 148 |   /** Evaluates the model function for each pair of training tuple and returns
 | 
|---|
| 149 |    * the output of the function as a vector.
 | 
|---|
| 150 |    *
 | 
|---|
| 151 |    * This function as a signature compatible to the one required by the
 | 
|---|
| 152 |    * LevMar package (with double precision).
 | 
|---|
| 153 |    *
 | 
|---|
| 154 |    * \param *p array of parameters for the model function of dimension \a m
 | 
|---|
| 155 |    * \param *x array of result values of dimension \a n
 | 
|---|
| 156 |    * \param m parameter dimension
 | 
|---|
| 157 |    * \param n output dimension
 | 
|---|
| 158 |    * \param *data additional data, unused here
 | 
|---|
| 159 |    */
 | 
|---|
| 160 |   void evaluate(double *p, double *x, int m, int n, void *data);
 | 
|---|
| 161 | 
 | 
|---|
| 162 |   /** Evaluates the parameter derivative of the model function for each pair of
 | 
|---|
| 163 |    * training tuple and returns the output of the function as vector.
 | 
|---|
| 164 |    *
 | 
|---|
| 165 |    * This function as a signature compatible to the one required by the
 | 
|---|
| 166 |    * LevMar package (with double precision).
 | 
|---|
| 167 |    *
 | 
|---|
| 168 |    * \param *p array of parameters for the model function of dimension \a m
 | 
|---|
| 169 |    * \param *jac on output jacobian matrix of result values of dimension \a n times \a m
 | 
|---|
| 170 |    * \param m parameter dimension
 | 
|---|
| 171 |    * \param n output dimension times parameter dimension
 | 
|---|
| 172 |    * \param *data additional data, unused here
 | 
|---|
| 173 |    */
 | 
|---|
| 174 |   void evaluateDerivative(double *p, double *jac, int m, int n, void *data);
 | 
|---|
| 175 | 
 | 
|---|
| 176 |   /** This functions checks whether the parameter derivative of the FunctionModel
 | 
|---|
| 177 |    * has been correctly implemented by validating against finite differences.
 | 
|---|
| 178 |    *
 | 
|---|
| 179 |    * We use LevMar's dlevmar_chkjac() function.
 | 
|---|
| 180 |    *
 | 
|---|
| 181 |    * \return true - gradients are ok (>0.5), false - else
 | 
|---|
| 182 |    */
 | 
|---|
| 183 |   bool checkParameterDerivatives();
 | 
|---|
| 184 | 
 | 
|---|
| 185 | private:
 | 
|---|
| 186 |   static void LevMarCallback(double *p, double *x, int m, int n, void *data);
 | 
|---|
| 187 | 
 | 
|---|
| 188 |   static void LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data);
 | 
|---|
| 189 | 
 | 
|---|
| 190 |   void prepareModel(double *p, int m);
 | 
|---|
| 191 | 
 | 
|---|
| 192 |   void prepareParameters(double *&p, int &m) const;
 | 
|---|
| 193 | 
 | 
|---|
| 194 |   void prepareOutput(double *&x, int &n) const;
 | 
|---|
| 195 | 
 | 
|---|
| 196 | private:
 | 
|---|
| 197 |   //!> input dimension (is fixed from construction)
 | 
|---|
| 198 |   const size_t input_dimension;
 | 
|---|
| 199 |   //!> output dimension (is fixed from construction)
 | 
|---|
| 200 |   const size_t output_dimension;
 | 
|---|
| 201 |   //!> desired precision given to LevMar
 | 
|---|
| 202 |   const double precision;
 | 
|---|
| 203 |   //!> maximum number of iterations for LevMar
 | 
|---|
| 204 |   const unsigned int maxiterations;
 | 
|---|
| 205 | 
 | 
|---|
| 206 |   //!> current input set of training data
 | 
|---|
| 207 |   filtered_inputs_t input_data;
 | 
|---|
| 208 |   //!> current output set of training data
 | 
|---|
| 209 |   outputs_t output_data;
 | 
|---|
| 210 | 
 | 
|---|
| 211 |   //!> the model function to be used in the high-dimensional approximation
 | 
|---|
| 212 |   FunctionModel &model;
 | 
|---|
| 213 | };
 | 
|---|
| 214 | 
 | 
|---|
| 215 | #endif /* FUNCTIONAPPROXIMATION_HPP_ */
 | 
|---|